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Artificial	Intelligence	in	Politics	
	

An	Interview	with	Sven	Körner	and	Mathias	Landhäußer	of	thingsTHINKING	

by	Walter	Tichy	

	
Editor’s Introduction	

Natural language processing, an area of artificial intelligence (AI), has attained remarkable 
successes. Digital assistants such as Siri and Alexa respond to spoken commands, and 
understand several languages. Google has demonstrated a machine can call up a restaurant and 
make a reservation in a manner that is indistinguishable from a human. Automated translation 
services are used around the world in over a hundred languages. This interview discusses a new 
and surprising application of language processing in politics. Though the AI software analyzes 
texts in German, it could be adapted to any language. The underlying technology has wider 
applications in text analysis, including legal tech, contracting, and others. Here is a summary. 
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An	Interview	with	Sven	Körner	and	Mathias	Landhäußer	of	thingsTHINKING	

by	Walter	Tichy	

	
The	 results	 of	 the	 German	 elections	 of	 2017	 forced	 political	 parties	 to	 form	 coalitions.1	 On	
February	11,	2018,	the	two	largest	parties	(the	alliance	of	the	Christian	Democratic	Union	and	
Christian	Social	Union,	commonly	known	as	CDU/CSU,	and	the	Social	Democratic	Party,	or	SPD)	
finally	 announced	 the	 completion	 of	 their	 written	 coalition	 agreement.	 Instantly,	 a	 debate	
about	whether	 the	agreement	was	commensurate	with	 the	number	of	 seats	 the	parties	won	
began.	 (CDU/CSU	 had	 33	 percent	 of	 the	 votes,	 while	 SPD	 had	 20	 percent.)	 Had	 one	 party	
succeeded	in	placing	more	of	its	policies	into	the	agreement,	to	the	disadvantage	of	the	other?	

thingsTHINKING,	a	startup	with	ties	to	the	Karlsruhe	Institute	of	Technology	(KIT),	decided	to	let	
the	 computer	 answer	 this	 question.	 Its	 artificial	 intelligence	 (AI)	 software	 compared	 each	
party’s	program	against	the	coalition	agreement	to	check	how	many	political	goals	made	it	into	
the	agreement.	This	involved	a	sentence-by	sentence	comparison	of	each	party’s	program	with	
the	 coalition	 agreement.	 Doing	 this	 work	 manually	 would	 be	 a	 daunting	 task,	 since	 the	
CDU/CSU’s	program	 is	 76	pages,	 the	 SPD’s	 116	pages,	 and	 the	 agreement	 itself	 is	 176	pages	
long.	The	machine	performed	the	comparison	within	minutes,	with	high	accuracy.	

In	 this	 interview,	 two	of	 the	 founders	of	 thingsTHINKING	discuss	 the	 results	produced	by	 the	
machine,	 how	 their	 software	 works,	 and	 where	 else	 it	 could	 be	 applied.	 They	 also	 clarify	
whether	their	technology	could	help	identify	fake	news	or	plagiarism.		

(This	interview	has	been	slightly	edited	for	clarity.)2	

	

																																																													
1	Like	other	parliamentary	political	systems	(common	throughout	much	of	the	world),	in	Germany	when	no	single	
party	wins	an	outright	majority	of	parliamentary	seats,	the	different	political	parties	must	come	together	to	form	a	
coalition.	In	other	words,	two	or	more	parties	must	agree	to	work	together	to	create	a	majority.	Then	together,	
they	form	a	government,	designating	the	Federal	Chancellor	and	ministers	of	key	governmental	departments	
(finance,	foreign	affairs,	justice,	etc.).	

2	We	apologize	for	publishing	this	interview	long	after	the	election;	peer	reviews	took	time,	especially	since	the	
interviewees	had	a	start-up	to	run.	
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Walter	Tichy	(WT):	What	were	the	results	of	the	computer	analysis?	

Sven	Körner	 (SK):	We	 let	 the	 computer	 analyze	 how	much	of	 the	 parties’	 political	 programs	
made	 it	 into	 the	 coalition	 agreement.	 The	 software	 identified	 2-3	 times	 more	 thematic	
relationships	between	 the	SPD’s	political	program	and	 the	coalition	agreement	 than	with	 the	
CDU/CSU	program,	even	though	the	SPD	had	fewer	votes.	Just	like	human	beings,	the	machine	
does	not	look	at	the	actual	wording.	Rather,	it	builds	a	meaning	model	of	the	sentences	and	is	
therefore	able	 to	 compare	 semantics.	 For	 instance,	 “A	 runs	away	 from	B”	and	“B	 is	 trying	 to	
catch	A”	are	similar	 to	 the	machine	 (in	 the	same	context).	Here	 is	a	graph	of	 the	results	 (see	
Figure	1).	

	

	

Figure	1.	The	graph	shows	the	results	of	thingsTHINKING’s	analysis	of	the	2018	coalition	
agreement	between	Germany’s	two	main	political	parties.	

	
WT:	The	 figure	 shows	 three	 comparisons.	What	do	you	mean	by	 “loose,”	 “moderate,”	 and	
“strict”	comparison—and	which	one	is	the	actual	result?	
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Mathias	 Landhäußer	 (ML):	 We	 can	 configure	 how	 strictly	 the	 software	 compares	 the	
documents.	 For	 example,	when	we	 tell	 the	 software	 to	be	extremely	 lax,	 it	 tells	 us	 that	 text	
fragments	are	“similar”	if	they	are	written	in	the	same	language	no	matter	the	content.	When	
we	tell	 it	to	be	extremely	strict,	 it	only	considers	fragments	to	be	“similar”	when	they	are—in	
fact—identical.	The	bar	plots	 in	the	figure	correspond	to	three	reasonable	configurations	that	
become	more	and	more	strict	from	left	to	right	

WT:	Can	you	give	us	some	examples?	

SK:	Sure.		

§ CDU:	 “We	want	 that	 all	 our	 children	 receive	 the	 best	 possible	 upbringing,	 education,	
and	care,	independent	of	their	parents’	origin	and	life	situation.”	

§ SPD:	“We	will	eliminate	the	disadvantages	of	children	of	poor	parents	and	provide	equal	
participation.”	

The	machine	considers	these	statements3	as	similar	in	the	given	context.	

	

WT:	How	do	you	know	the	results	are	trustworthy?	

SK:	As	mentioned,	we	can	configure	the	software	to	be	more	or	less	strict.	We	ran	the	analysis	
in	different	configurations	(more	than	the	three	in	the	figure)	and	the	ratios	stayed	roughly	the	
same.	 Based	 on	 our	 experience,	 this	 is	 an	 indicator	 that	 the	 numbers	 are	 reliable.	 To	 cross-
check	the	results	we	compared	the	political	documents	to	unrelated	texts	from	user	manuals,	
Ph.D.	theses,	and	other		textual	corpora	and	found	no	significant	overlap.	

ML:	 And	we	 analyzed	 the	 texts	 from	different	 viewpoints.	When	one	 considers	 the	 opposite	
question,	“how	much	of	the	coalition	agreement	is	in	a	party’s	program,”	we	find	more	of	it	in	
the	SPD	program	than	in	the	CDU/CSU’s.	Also,	we	can	cluster	the	party	programs	according	to	
certain	areas,	subjects,	and	focal	points	and	compare	them	to	the	coalition	agreement.	Often	
the	media	report	that	the	two	parties	have	grown	more	and	more	similar	over	the	years.	When	
we	compared	their	programs	to	each	other,	we	found	exactly	that:	They	are	roughly	one-third	
equal.	 Finally,	we	printed	out	all	 correspondences	between	party	programs	and	 the	 coalition	
agreement	and	deposited	them	with	a	trustee.	Anyone	interested	can	check	the	results.	

	

																																																													
3	The	sample	statements	were	translated	from	German.		
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WT:	How	large	is	this	set,	and	is	anyone	doing	a	manual	check?	

SK:	The	data	 is	a	total	of	246	MB	of	reports,	 i.e.,	plain	text.	The	top	hits	still	sum	up	to	more	
than	14MB	of	plain	text	and	comparison	values.	Working	through	the	set—and	therefore	the	
contracts—would	take	days.	

Concerning	the	question	if	people	are	actually	doing	manual	checks:	yes,	funny	enough.	We	had	
requests	from	newspaper	readers	who	wanted	the	full	reports.	But	we	never	heard	back	from	
them.	Also,	there	have	been	universities	that—at	least	from	Twitter	statements—were	working	
on	replicating	our	results.	After	we	ran	the	first	tests,	we	took	150	random	samples	and	gave	
them	to	a	handful	of	lawyers	to	double-check	the	samples.	It	turns	out	we	were	not	quite	able	
to	determine	the	machine’s	error	 rate	due	to	differences	 in	 the	human	assessments	 (lawyers	
have	 differing	 opinions).	 In	 short,	 there	 are	 a	 number	 of	 paragraphs	 and	 statements	 in	 the	
coalition	contract	that	might	or	might	not	be	in	the	corresponding	party’s	program.	It	all	comes	
down	 to	how	 freely	 you	 interpret	 the	meaning.	And	as	we	 say,	 the	machine	 cannot	perform	
better	than	humans,	only	faster.		

		

WT:	How	 important	 or	 substantial	 are	 the	 points	 that	 the	 parties	were	 able	 to	 negotiate?	
Couldn’t	it	be	the	case	that	one	party	concedes	a	few	negligible	points	in	order	to	win	a	large	
concession	elsewhere?	

ML:	 These	 are	 questions	 we	 cannot	 answer.	 Our	 study	 cannot	 rate	 the	 quality	 of	 the	
negotiations	rather	than	(just)	the	quantitative	aspects.	We	found	there	is	more	of	one	party	in	
the	contract	even	though	that	party	won	roughly	50	percent	fewer	votes	during	the	election.	
Whether	 the	 negotiated	 clauses	 are	 of	 high	 or	 little	 value	 (and	 to	 whom)	 is	 something	 we	
cannot	 decide.	 Personally,	 I	 doubt	 that	 the	 SPD’s	 negotiators	 outwitted	 Chancellor	Merkel.	 I	
rather	believe	the	parties	had	different	priorities	and	that	quantity	does	not	translate	to	quality	
or	 importance.	 The	 software	 cannot	 help	 there,	 either:	 We	 based	 our	 analysis	 on	 common	
world	 knowledge,	 and	 the	machine	 has	 no	 societal	 value	 system	 to	 decide	 what	 points	 are	
more	important	than	others.	To	make	a	qualified	statement	regarding	your	question,	we’d	have	
to	include	specific	knowledge	about	politics,	ethics,	and	even	rhetorics.	

SK:	This	is	what	we	do	in	our	customer	projects	where	the	machine	receives	additional	input	(or	
bias)	 from	 the	 customer.	 This	will	 help	 it	 rate	 clauses,	 texts,	 and	 paragraphs.	 In	 this	 specific	
case,	the	study	stops	at	quantitative	results	since	we	would	have	to	configure	two	systems,	one	
for	 each	 party.	 That	 is	 due	 to	 the	 fact	 that	 each	 party	 has	 its	 own	 emphasis.	 These	 are	 the	
aspects	that	are	impossible	to	grasp	mathematically	since	they	are	not	based	on	actual	ground	
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truth,		but	on	perceived	truth	of	each	of	the	parties.	What	is	possible—but	certainly	not	during	
a	lunch	break,	as	in	this	case—is	to	configure	the	machine	so	it	could	be	a	sidekick	for	contract	
negotiations.	 The	machine	 would	 have	 the	 customer’s	 bias	 	 and	 could	 be	 adapted	 for	 each	
customer.	

	

WT:	We’ve	spent	quite	some	time	on	the	results	now,	can	you	please	explain	how	the	system	
works?	

SK:	Our	system	compares	each	sentences	of	an	input	document	(in	this	case	a	party	program)	
to	each	sentence	of	a	reference	document	(in	this	case	the	coalition	agreement).	The	analysis	
then	 connects	 text	 passages	 from	 the	 input	 document	 to	 text	 passages	 from	 the	 reference	
document	if	they	are	thematically	related.		

This	 is	 usually	 only	 the	 first	 step,	 and	 sufficient	 for	 analyzing	 the	 coalition	 agreement.	 In	 a	
second	step	we	can	also	extract	 specific	data	 from	 the	 text,	 and	 in	a	 third	 step	 the	 software	
could	 reason	 about	 this	 data.	 Given	 a	 proper	 configuration,	 the	 system	 could	 answer	 your	
questions	regarding	the	quality	of	negotiation	results.	

	

WT:	 How	 does	 the	 software	 make	 the	 connection?	 This	 sounds	 a	 bit	 like	 searching	 for	
keywords.	

SK:	Keyword	spotting	would	be	one	way	to	do	this—but	no.	Our	research	at	KIT	and	many	real-
world	 use	 cases	 showed	 that	 working	 with	 natural	 language	 cannot	 be	 handled	 by	 a	 single	
technical	approach.	For	instance,	there	have	been	discussions	over	the	years	whether	symbolic	
(ontologies,	 inference,	search)	or	sub-symbolic	(neural	networks,	SVMs,	LDA,	etc.)	approaches	
are	 best	 for	machines	 to	 handle	 natural	 language.	Well,	 we	 think	 it’s	 a	wild	 combination	 of	
those,	 plus	 a	 little	 “spice”	 to	make	 it	 all	 tasty	 once	 you	 cook	 it.	We	would	 agree	with	 Gary	
Marcus’	“whatever	works”	approach.	 In	short,	we	are	not	religious	regarding	technology.	Our	
software	 uses	 a	 combination	 of	 different	 methods	 to	 identify	 semantic	 similarities	 in	 texts	
depending	on	the	language,	style,	 length,	etc.	When	we	enter	a	special	(constrained)	domain,	
say	non-disclosure	agreements,	we	can	train	additional,	special-purpose	models	that	take	the	
peculiarities	 of	 the	 domain	 into	 account.	 If	 enough	 data	 exists,	 training	 can	 be	 done	 in	 an	
unsupervised	way	in	what	we	call	a	“bottom-up”	fashion	[1].	

ML:	I’ll	explain	a	basic	method	that	uses	word	embeddings.	Word	embeddings	map	a	word	to	a	
(high	dimensional)	vector	of	real	numbers.	The	vector	space	and	the	vectors	are	constructed	in	
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such	a	way	 that	 vectors	of	 semantically	 related	words	are	geographically	 close.	 For	example,	
“king”	and	“queen”	are	close	to	each	other	and	“airplane”is	in	a	different	location	together	with	
other	means	 of	 transportation.	Word2vec	 is	 a	 popular	 toolkit	 for	 learning	word	 embeddings	
released	by	Google	 in	2013,	but	 the	underlying	 idea	 is	much	older.	 Firth	was	one	of	 the	 first	
linguists	to	express	the	idea	that	words	have	a	semantic	relationship	when	they	occur	in	similar	
contexts	often	[2].	We	can	think	of	the	word	embeddings		as	semantic	fingerprints	that	abstract	
from	the	actual	wording:	the	fingerprints	of	“automobile”	and	“car”	are	almost	 identical.	One	
can	combine	the	vectors	of	a	sentence’s	words	to	get	a	vector	for	the	sentence.	Once	we	have	
done	this,	identifying	semantically	similar	spots	boils	down	to	comparing	the	fingerprints.	Then	
we	only	have	to	aggregate	the	information	from	sentences	to	text	passages.	But	this	goes	way	
too	deep	into	the	details.	

	

WT:	What	about	negations?	Suppose	one	document	says:	“We	will	raise	the	minimum	wage”;	
the	other	says:	“We	will	not	raise	the	minimum	wage.”	Won’t	these	two	sentences	be	treated	
as	equivalent	with	word	embeddings?	

ML:	Classic	word	embeddings	will	indicate	a	very	high	similarity	for	the	two	statements—after	
all,	the	statements	are	literally	almost	identical.	But	when	it	comes	to	semantics,	the	difference	
couldn’t	be	bigger.	Negative	words	(such	as	“not”	in	your	example)	could	have	specific	features	
but	their	vectors	are	very	similar	to	their	positive	counterparts	(for	example,	“absolutely”).	So	
from	Word2vec’s	perspective,	the	words	are	just	more	or	 less	similar.	Only	 if	we	had	used	an	
extremely	strict	setting	during	the	analysis	would	the	difference	 in	the	sentence	vectors	have	
been	detected	with	word	embeddings.	In	general,	that	is	an	issue.	In	the	specific	analysis	of	the	
political	documents	it	was	not:	In	the	party	programs	and	the	coalition	contract,	positive	speech	
is	preferred—after	all	this	is	politics.	Therefore	the	problem	did	not	arise—at	least	we	did	not	
notice	 such	 examples	 during	 our	 inspection	 of	 the	 results.	 But	 getting	 to	 the	 core	 of	 your	
question,	if	one	wants	to	interpret	negations	or	potential	conflicts	as	in	your	example	(I’d	rather	
not	call	it	contradictions,	because	these	are	too	hard	to	find	in	general),	one	would	cater	to	the	
specifics	of	that	problem.	One	would	enrich	the	training	data	with	additional	information	from	
part-of-speech	taggers,	or	parsers,	and	then	train	a	second	neural	network	to	evaluate	whether	
a	sentence	has	a	positive	or	negative	meaning	(not	sentiment,	that’s	a	different	story).	This	way	
the	first	analysis	would	identify	the	statements	are	almost	identical,	and	the	second	would	tell	
you	 the	 first	 one	 is	 a	 positive	 statement	 and	 the	 second	 a	 negative	 one.	 You	 could	 use	 this	
approach	to	identify	where	your	party’s	policy	was	not	only	discarded	(because	it	is	missing	in	
the	 coalition	 agreement)	 but	 even	 contradicted	 (because	 it	 is	 in	 the	 agreement	 but	 with	 a	
negated	meaning).	
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WT:	 	 Isn’t	 it	easy	 to	 fool	 the	 special	 treatment	of	negations?	Suppose	 the	 second	sentence	
said:	“We	will	keep	the	minimum	wage	as	it	is.”	Then	you	need	some	semantic	processing	to	
find	out	that	raising	something	is	not	the	same	as	leaving	it	unchanged.	

ML:	Depending	on	the	training	data—in	our	case	world	knowledge	—this	case	might	actually	be	
easier	to	solve	than	the	negation	problem.	One	part	of	our	system	learns	meaning	from	reading	
many	 texts.	 The	 	 phrases	 “to	 keep”	 and	 “raising	 something”	would	have	different	meanings.	
This	 challenge	 is	 similar	 to	 the	 above	 example,	 where	 “the	 best	 possible	 upbringing”	 and	
“eliminate	the	disadvantages”	is	interpreted	as	semantically	similar—independent	of	the	actual	
words	used.	

	

WT:	Are	plagiarism	detectors	such	as	TurnItIn	or	JPlag	similar	to	what	you	are	doing?	

ML:	No.	A	plagiarism	detector	like	TurnItIn	looks	for	exact	copies	of	phrases	in	texts.	With	word	
embeddings,	the	whole	point	is	that	the	words	need	not	be	the	same.	So	our	software	would	
produce	far	too	many	false	positives.	

JPlag	compares	programs.	It	produces	an	internal	representation	called	an	abstract-syntax	tree	
for	 each	 program	 and	 searches	 for	 similar	 sub-trees.	 It	 eliminates	 identifiers	 (the	 “words”)	
entirely.	Instead,	it	detects	structural	similarity,	even	if	the	plagiarizer	renamed	all	identifiers	or	
translated	them	to	another	language.	So	the	techniques	are	quite	different.	

		

WT:	Could	you	detect	fake	news?	

SK:	That’s	a	tough	one!	If	we	had	alternative	texts	for	the	same	topic,	we	could.	For	example,	
the	UN	 recently	 published	 a	 report	 that	 18.5	million	Americans	 live	 in	 extreme	poverty.	 In	 a	
rebuke,	 U.S.	 officials	 said	 there	 appear	 to	 be	 only	 250,000	 Americans	 in	 extreme	 poverty.	 A	
neural	 net	 trained	 for	 finding	 discrepancies	 could	 detect	 this,	 but	 the	 software	 couldn’t	 say	
which	claim	is	correct.	It	does	not	know	how	extreme	poverty	is	defined	(nor	do	most	readers).		

A	more	complex	example:	President	Trump	tweeted	“Crime	in	Germany	is	up	10%	plus”	(June	9,	
2018).	 This	 claim	 has	 no	 basis	 in	 fact.	 To	 debunk	 it,	 one	 would	 have	 to	 go	 to	 the	 Federal	
Statistics	Office	of	Germany.	There	you	would	find	that	crime	in	Germany	is	currently	at	a	26-
year	 low.	From	this	example	we	see	 fact	 checking	 is	not	 simply	a	matter	of	 comparing	 texts.	
Note	that	there	is	also	a	translation	problem	lurking	here.	
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A	 better	 approach	 might	 be	 to	 train	 a	 classifier	 to	 identify	 fake	 news	 using	 the	 following	
indicators:	the	source	of	the	news,	the	geolocation	of	the	reporter,	the	medium	being	used,	the	
political	leanings	of	source,	reporter	and	medium,	the	choice	of	words,	the	topic,	and	perhaps	
the	history	of	the	news	item.	A	neural	net	should	be	able	to	call	out	fake	news	with	adequate	
accuracy,	but	the	final	check	would	still	have	to	be	done	by	the	human.	In	social	nets	you	could	
also	consider	the	reputation	of	the	network	itself	and	the	flow	of	 information.	Social	network	
providers	are	working	on	this	problem.	

	

WT:	Where	 else	 could	 one	 use	 text	 comparison,	 or	more	 general,	 text	 analysis,	 and	what	
techniques	are	needed?	 	

SK:	Here	are	some	examples:	

§ Extract	 information	 from	 rental	 contracts	 and	 use	 that	 in	 tax	 returns	 (imagine	 real	
estate	companies	with	thousands	of	contracts).	

§ Analyze	tens	of	thousands	of	requirements	documents	of	a	company	to	see	(1)	whether		
requirements	contain	weak	or	unclear	expressions,	(2)	whether	there	are	duplicates	in	
the	 database	 of	 requirements,	 (3)	 whether	 a	 new	 requirement	 in	 a	 customer’s	 loose	
verbiage	matches	an	existing	requirement	(some	companies	have	precise	standards	for	
formulating	requirements),	and	(4)	whether	something	is	missing.	

§ Scan	 numerous	 legal	 cases	 for	 relevance	 to	 a	 current	 lawsuit	 or	 identify	 problematic	
clauses	in	legal	documents,	for	example	non-disclosure	agreements.	In	essence,	support	
paralegals.	

§ Process	 documents	 in	 large	 data	 rooms	 in	 due	 diligence	 and	mergers	 and	 acquisition	
cases.	In	such	cases,	there	is	more	information	in	the	documents	than	explicitly	stated,	
i.e.,	the	interpretation	of	the	documents	is	really	important.	This	is	where	semantics	are	
a	solution.	

§ Search	 confiscated	 data.	 Here,	 the	 searched-for	 items	 are	 weakly	 specified,	 and	
keyword	search	performs	poorly.	

The	text	analysis	is	only	the	first	of	a	three-tier	approach:	

1. Our	 semantic	 similarity	 layer	 uses	 semantic	 generalization	 to	 compare	 contents	 on	
different	 levels	 of	 abstraction.	 It	 compares	 semantic	 models	 to	 find	 differences	 and	
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similarities	among	corresponding	models.	Once	you	found	the	right	spots	in	documents	
and	unstructured	information,	it	is	time	to	move	to	the	next	step.	

2. With	semantic	extraction,	we	extract	relevant	and	useful	information	from	unstructured	
data	 and	 represent	 it	 in	 a	 structured	 format	 for	 further	 analysis.	 This	 is	 important	
because	once	you	understand	data,	there	are	always	other	systems	that	need	that	data	
in	a	structured	way.	For	instance,	in	the	auditing	space	we	process	rental	contracts	and	
compare	the	extracted	values	to	the	information	that’s	stored	in	the	accounting	systems	
to	verify	or	double-check	the	recorded	entries.	Extracting	information	semantically	has	
two	benefits:	First,	 it	more	or	 less	 ignores	form.	Therefore	different	documents	of	the	
same	 type	 can	 be	 processed	 and	 data	 extracted	 independently	 of	 their	 structure,	
wording,	 or	 layout.	 The	 second	 benefit	 is	more	 often	 than	 not,	 different	 expressions	
with	the	same	meaning	are	used.	Also,	once	taught	 its	domain,	the	machine	detects	 if	
expected	 information	 seems	 to	 be	 missing.	 The	 reason	 could	 be	 that	 (a)	 it	 did	 not	
discover	the	information	or	(b)	it	is	actually	missing.	Either	way,	it	can	provide	what	we	
call	 a	 “finding,”	which	 can	 then	be	used	 for	 interacting	with	 the	user,	 for	 instance	by	
posing	a	follow-up	question	tailored	to	the	specific	use	case.	Of	course,	this	interaction	
could	 be	 used	 for	 improving	 the	machine	 further	 though	 you’d	 have	 to	 be	 careful—
knowledge	 is	 not	 distributed	 equally—which	 would	 then	 again	 lead	 to	 wrong	
interpretations	or	at	least	bias.	

3. The	third	layer	leverages	semantic	knowledge	to	make	decisions	that	today	only	humans	
can	take.	This	is	where	GOFAI	(good	old-fashioned	AI)	approaches	including	knowledge	
graphs	come	into	play.	They	were	pretty	uncool	in	2016	and	2017,	but	are	now	having	a	
renaissance	due	to	the	number	of	mishaps	and	limitations	of	data-driven	approaches	in	
real-world	projects.	Even	Paul	Allen’s	AI2	went	back	to	it	recently	[4].	

4. In	this	step,	the	machine	can—depending	on	the	domain	of	application—reason	on	the	
information	extracted	in	step	2.	This	step	is	important	for	all	challenges	that	do	not	have	
enough	training	data—be	it	due	to	lack	of	data	or	 legal	restrictions.	The	legal	field	is	a	
good	 example	 for	 that.	 For	 large-scale	 repetitive	 problems	 supervised-learning	
approaches	work,	 e.g.,	 for	 NDAs	 or	 flight	 right	 litigation.	 It	 simply	 does	 not	 work	 for	
more	complex	scenarios.	This	is	where	the	“instruction”	of	our	solution	comes	into	play.	
Essentially,	you	explain	to	the	machine	the	specific	domain	it	operates	in,	it	will	do	the	
reasoning	from	there	and	draw	its	own	conclusions.	This	might	take	as	long	as	it	takes	to	
teach	a	human	to	do	the	same	job—it	just	scales	vastly	better.	Therefore	we	encourage	
to	 not	 instruct	 everything	 that’s	 possible,	 but	 to	 tackle	 the	main	 efforts	 and	mitigate	
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those	with	machine	help.	The	special	cases	will	be	 left	for	humans,	and	probably	for	a	
while.	

	

	

WT:	Will	the	machine	catch	everything	it	is	supposed	to	catch?	

ML:			No,	but	the	great	thing	about	this	approach	is	the	machine	knows	when	it	doesn’t	know.	
That	 means,	 it	 won’t	 work	 through	 a	 100-page	 document	 and	 tell	 you	 it	 finished	 with	 87	
percent	accuracy,	essentially	not	telling	you	which	13	pages	it	messed	up.	No,	it	would	tell	you	
that	 it	worked	through	100	pages,	was	sure	with	56	of	 these	and	has	some	kind	of	clue/idea	
what	the	other	13	pages	are	about.	The	remaining	31	pages	are	 left	 for	 the	user	to	work	on.	
Still,	it	shrunk	the	workload	by	more	than	half	in	the	examples	we	use	with	customers.	

	

WT:	Can	you	say	something	of	where	text	analysis	is	going	in	the	future?	

SK:	 Natural	 language	 processing	 (NLP)	 or	 understanding	 (NLU)	 is	 believed	 to	 be	 the	 next	 big	
hype	within	 the	AI.	As	a	matter	of	 fact,	mankind	has	always	dreamed	of	being	able	 to	 lead	a	
reasonable	conversation	with	a	computer.	Kubrick’s	classic	“2001”	was	mentally	so	far	ahead	of	
our	society	and	expectations	when	 it	was	first	released	50	years	ago	(Still	a	must-watch	from	
my	perspective!).	All	of	these	approaches	are	steps	in	the	right	direction.	

But	recall	the	conversation	we	led	over	the	past	minutes:	it	is	based	on	our	understanding	and	
not	on	 the	words	we	actually	used	 in	whichever	 sequence.	The	 latter	of	which	would	be	 the	
approach	 of	 a	 classic	 deep	 learning	 system.	We	 all	 know	 that	 the	 Alexa’s,	 Siri’s	 and	 Google	
Now’s	are	not	even	close	to	human	capabilities	when	it	comes	to	language	understanding—and	
I	exclude	audio	processing	here.	My	four-year-old	leaves	me	flabbergasted	daily	when	I	see	her	
innate	capabilities	when	it	comes	to	language.	The	next	step	in	our	point	of	view	is	combining	
multiple	 technologies	 and	 follow	 a	 more	 engineering-based	 rather	 than	 a	 research-based	
approach.	That	means	sometimes	we	don’t	have	to	know	why	exactly	something	is	working,	it’s	
a	good	start	just	to	get	it	to	work.	Innateness,	or	it’s	lack	thereof,	in	current	approaches	is	the	
next	big	obstacle	we	need	to	overcome.	And	this	is	where	this	conversation	turns	philosophical.	
So	let’s	stop	right	here.	To	sum	it	up:	I’d	say	language	is	beautiful	because	it	is	hard,	not	in	spite	
of.	
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WT:	Coming	back	to	the	coalition	agreement,	did	your	analysis	cause	any	changes?	

ML:	 Not	 that	 we	 know	 of.	 The	 agreement	 was	 signed	 by	 both	 parties	 on	 March	 12,	 2018	
without	 modifications.	 Germany	 is	 once	 more	 governed	 by	 a	 coalition	 of	 conservatives	 and	
social	democrats.	A	coalition	requires	constant	compromise.	This	can	be	a	good	way	to	govern.	
It	can	also	fall	apart.		
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