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In this paper we explore the distributed database 
allocation problem, which is intractable. We also 
discuss genetic algorithms attd how they have been 
used successfully to solve combinatorial problems. 
Our experimental  results show the GA to be far  
superior to the greecly heuristic in obtaining opti- 
mal and near optimal fragment  placements for  the 
allocation problem with various data sets. 

1 I n t r o d u c t i o n  

Computerized databases have become an essential part of 
our lives. They play a critical role in nearly all areas 
where computers are used. A few of the areas include 
business, engineering, science, medicine, law, and eduea- 
tmn. Traditionally, databases and database management  
systems (DBMS) have resided on a single site. This is called 
a centralized databa'~e system. Recently, there has been 
a rapid trend toward distributed models of computation.  
where several remote sites are connected via a communi- 
cations net work. Distribu ted database systems (D D BS) and 
distributed database mavagement systems (DDBMS) have 
been developed in response to this trend. For convenience, 
we will use the term distributed databases (DDBs) to refer 
to DDBSs and DDBMSs, collectively• The advantages of 
distributed databases include greater reliability and avail- 
ability as well a.s intproved performance. Unfortunately, dis- 
tributed databases are accompanied by increased overhead 
and comploxity in the system design and implementation.  
This comp!exity is often combinatorial in nature. 

Genetic algorithms (GAs) provide an excellent technique for 
deahng w~t h ~he combinatorial problems found in distributed 
databases. (;As borrow the techniques and mechanisms from 
genetics aitd natural  evolution to effectively find optimal and 
near-optima! solntions t~ complex and difficult problems. 
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This paper is organized as follows: Section '2 provides an in- 
troduction to distributed databases. This include.-, a discus- 
sion of the advantages and disadvantages of DDBs. A simple 
DDB model is presented which proves to be intractable. Sec- 
tion 3 provides an introduction to genetic algorithms. Sec- 
tion 4 describes our application of a GA to the DDB problem 
a.s well as the experimental results obtained. Finally, Sec- 
tion 5 provides a suntmary and conclusiotts. 

2 D i s t r i b u t e d  D a t a b a s e s  

Distributed databases is the term we use collectively for dis- 
tributed database systems and distributed database manage- 
ment systems. These systems were developed in response to 
the current trend toward distributed computing. Unlike tra- 
ditional centralized database systems, DDBs are spread over 
many sites. These sites are connected by a communications 
network. 

Site 1 Site 2 Site n 

Communications] 
Network .J 

Figure 1: A Typ ica l  D i s t r i bu t e d  DaLabase 

Figure 1 illustrates the architecture of a typical distributed 
database. Portions of the entire databa.se are spread out over 
multiple computers, called sites or nodes. Ttte computers 
are connected by a communications network with a given 
topology. Each local site may have its own local database, 
which can be maintained by a traditional DBMS. Each site 
may also contain fragments, or portions of the distributed 
global database. Fragments are managed by application and 
communication processing software. 

Some of tile advantages of DDBs include reliability ~nd avail- 
ability. Reliability is loosely defined as the probability that 
a system is up at a particular moment  in time. Availabil- 
ity refers to the probability that  a system is continuously 
available during some time interval. Ill a traditional cen- 
tralized database system, the failure of tile single site means 
failure of the entire system. In a DDB, ~he failure of a sin- 
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gle site will only" effect access to data located at that site. 
Clearly, this leads to improved refiability and availability. 
Another advantage of DDBs is the performance improve- 
ment obtained by distributed processing. Local queries and 
transactions accessing data  at a single site are much f a s t e r  

since the local da tabase ' i s  smaller. Transactions involving 
different sites can be processed concurrently, reducing execu- 
tion and response time. This is especiMly an advantage when 
the database is naturally distributed over different locations, 
such ms in a business with databases used by regional offices 
which are all accessible from the corporate headquarters. 
These types of database systems are typically dominated by 
local queries and transactions. Finally, DDBs allow sharing 
of data  while at the same time retaining localized control. 
This can be an important  issue in database security when 
maintaining a 'need to know' authorization scheme. 

A potential drawback in a DDB is the added complexity 
and overhead involved in its design and implementat ion.  
The DDB must be designed to preserve consistency in the 
database yet provideacceptable  response time for transac- 
tions across many different sites. Strategies must be devel- 
oped to handle distributed queries and transactions. The 
distr ibution design step involves fragmentation of relations 
and allocation of these fragments. The objective of fragInen- 
tation is to achieve better units of distribution. Allocation is 
concerned with optimal placement of the fragments among 
the available sites. Special care must be taken in the place- 
ment of replicated fragments to maintain consistency and 
access efficiency. Finally, the DDB must be able to grace- 
fully recover from failures such a,s site crashes or network 
hangups. 

The additional functionality and flexibility in a DDB is a 
difficult problem to deal with. Finding optimal solutions is 
a step beyond. In addition to the normal database design 
issues and the fragmentation process, the designer of a dis- 
tr ibuted database must also decide on how to distribute the 
fragments over the sites. We now present a formal descrip- 
tion of a simple distributed database allocation problem. 

A distributed database is composed of a collection .5' of m 
sites, where each site i is characterized by its capacity, ci, 

,~" = { c ~ , c ~ , ~  . . . . .  e . . . . . .  c m } ,  

and a set F of n fragments, where each fragment i is char- 
acterized by its size, s), 

F = { . ~ ,  s 2 ,  .~3 . . . . . .  ~ . . . . .  .~,, }. 

Each fragment is required by at least one of the sites. The 
site requirements for each fragment are indicated by the re- 
quirements ~natrix, 

R = 

r l ,1  

r2,1 

Trtl,l 

TI,2 r l ,n  

r2,2 T2,n 

Tin,2 Tm,n 

where rio indicates the requirement by site i for fragment ). 
In general, this requirement is represeuted by a real value, 
that  is, a weight. A variation of this is to use a boolean value 
to indicate that  fragment j is either required or not required 

by site i. Transmission cost is given by the transmission cost 

T = 

m a t  r ix ,  

tl,l ~I,2 " ' " ~Z,m 

$2,1 $2,2 " " " $2,rn 

: : ".. : 

trn,l ~rn,2 " " " tm,m 

where ti,j indicates the cost for site i to access a fragment 
located on site J'. 

Given the above definitions, the distr ibuted database allocz~- 
tion problem is one of finding the optimal placement of the 
fragments at the sites. Tha t  is, we wish to find the place- 
l n e u t ,  

P = {pt,p2,P3, ..-,P~, ...,P,~} 
(where pj = i indicates fragment j is located at site i) for the 
n fragments so that the capacity of any site is not exceeded, 

~ r i , . l s 3  < C, Viii < i < m 

3=1 

and the total transmission cost, 

~=1 1=1 

is minimized. 

By restricting the use of the requirements matrix and having 
zero transmission cost, the distributed database allocation 
problem can be transformed to the bin packing problem, 
which is known to be NP-complete [7]. The DDB allocation 
problem is considerably more difficult than bin packing, so it 
is clearly also N P-complete. Consequently, unless an efficient 
algorithm has been found to solve intractable problems and 
it is proven that P = NP, then we must turn to heuristic 
methods to obtain approximate solutions. Also, in this paper 
we ignore exhaustive methods such as branch and bound due 
to their inability to solve large combinatorial problems. 

For a more detailed t reatment  of databa.ses and distributed 
databases, the reader is referred to works by Bell [1], Bell and 
(i;rimson [2], Ceri et al. [3], Chang and Shielke [4], Elm,v~ri 
and Navathe [6], and (~)zsn and Valdnriez [10]. 

3" G e n e t i c  A l g o r i t h m s  

A genetic algorithm (GA) is an adaptive search technique 
ba.sed on the principles and mechanisms of naturM selection 
and 'survival of the fittest '  from natural  evolution. (.;.-ks 
grew out of Holland's [9] study of adaptat ion in artificial and 
natural  systems. By simulating natural  evolution, in this 
way, a GA can effectively search the problem domain and 
easily solve complex problems. Furthermore, bv emulating 
biological selection and reproduction techniques, a (.;A can 
perform the search in a general, representat ion-independent  
i l l a n n e r .  

The genetic algorithm operates as an iterative procedure on 
a fixed size population or pool of candidate solutions. The 
candidate solutions represent an encoding of the l)roblean 
into a form that  is analogous to the chromosomes of biologi- 
cal systems. Each chromosome represents a possible solution 
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for a given object ive functi,~n. Associated with each chro- 
mosome is a fitness value, which is found by evaluating the 
chromosome with the object iee  function. It is the fitness of 
a chromosome which determines  its ab i l i ty  to survive and 
produce offspring. Each chromusome is made up of a str ing 
of genes (whose values ~.re called alleles). The chromosome is 
typically represented in the GA a.s a string of bits. However, 
integers and floating point numbers can easily be used. 

The  GA begins by geuerat ing av initial population,  P ( t  = 0), 
and evaluating each of its members  with the objective func- 
tion. While the tern,!,aatiov condition is not satisfied, a por- 
tion of the populat ion is selected, somehow altered, evalu- 
ated, and placed back into the population. At each step 
in the i terat ion,  chromosomes axe probabilist ically seIected 
from the population for reproduct ion according to the prin- 
ciple of the 'survival of the f i t test ' .  Offspring are generated 
through a process called cros:"over, which can be augmented 
by mutat ion.  The offspring are then placed back in the 
pool, perhaps replacing ol;her members of the pool. This 
process can be modeled using either a 'generat ional '  [8, 9] 
or a ' s t eady- s t a t e '  [12] genetic algorithm. The generational 
GA saves offspring in a temporary  location until the end of 
a generation. At that  t ime the offspring replace the entire 
current  populat ion.  Conversely, the s teady-s ta te  GA imme- 
diately places offspring back into the current populat ion.  

4 E x p e r i m e l x t a l  R e s u l t s  

We developed a genetic algori thm for the dis t r ibuted 
databa.se problem using LibGA [5]. The problem was en- 
coded so tha t  each gene in the chromosome corresponds to 
a fragment.  An integer representat ion was used in which 
the allele values correspond to site locations. For example.  
an allele value of 5 in gene 7 would indicate the placement 
of f ragment  7 at site 5. This  corresponds to the placement 
vector. P, in Section 2. Initial allele values were selected at 
random, ranging from 1 to the number of sites, m. It is pos- 
sible with this encoding scheme to have infea.sible solutions, 
that  is. solutions which violate the site capacity constraints  
or which place fragments in inaccessible sites. Consequently, 
our object ive function calculated the proper cost for fea.si- 
hie solutions and used a penalty for the infeasible solutions. 
The  penal ty depended on the number of sites, m. For each 
fragment placement which violated a constraint,  the objec- 
tive function added a penal ty of 500m to the fitness. Such a 
mild penal ty  balances the preservation of beneficial genetic 
material  with the selection pressure of feasibility [11]. 

The genetic Mgorithm was tested with several different pa- 
rameters.  We used two different population modeis: gen- 
erat ional  and s teady-s ta te .  We also used three different 
crossover operators:  simple (one point),  uniform, and a.sex- 
ual. Note, asexual crossover is simply a swap of two ran- 
domly selected genes. Wheh mutat ion occurred, a randomly 
selected gene wars replaced with a randondy selected choice 
from the range of  valid allele values. The  mutat ion rate was 
fixed at 0.1, and the pool size was fixed at 500. Note, all of 
our repor ted results rel)resent feasible solutions. 

We began with a small problem in order to bet ter  visualize 
our results. A problem was generated which had ,5 sites and 

_.5 fragmenl.s to allocate. The  fragment  size was fixed at  1 
and the site capaci ty  was fixed ~t 3. C, onsequently, the final 
result has no wasted site ca.pacify and exactIy 3 f ragments  
per  site. A requirements mat r ix  was generated with each 
tragment required by a randomly selected site. Addit ionM 

-requirements  were generated randomly with a 21% probabil-  
ity that  a par t icular  fragment is required at any part icular  
site. Network topology was also generated randomly with a 
70% probabil i ty  tha t  any two sites are adjace-aL Transmis-  
:-ton cost w.e.s fixed at  1 unit per hop. 

L. .i ( ,) 

Figure 2: 'Bow Tie' Network TopoLogy 

Figure 2 i l lustrates the resulting network topology gener- 
ate& Ceincidentally,  this topology resemb!es a :bow tie' .  
The  requirements were as follows: 

[ ~ I ~ 7 ~ e d  Fragments  

i ~ ~  6, 9, 10, 12, 13, 14 
7, 11 

3, 4, 5, 6, 10, 12, 13, 14 
4 2 , 4 , 5 , 8 , 9 ,  10,11, 14 

1, 2, 3, 6, 10, 15 

We applied a greedy heuristic to this problem which places 
each fragment  in turn in the least cost location. The greedy 
heuristic determined the following allocation: 

I Site I Fragmen.ts 

i ] < 9, i~ 
2 2,3,  r 

3 4, 5, 12 
4 [ 8. 11, 13 
5 t 1, 14, 15 

with a total  transmission cost of 27. This allocation places 
4 fragments at sites in which they are not required. 

L~Model [ Crossover z ..... /: o "e ~r 

Simple 26 30.10 4.322 2.079 
Gen. ' Uniform 24 26.70 2.678 1.636 

i Asexual 23 23.00 0 0 
• Simple 25 27.40 1.8'2 '2 1.350 
.qSL Utdform 24 25.80 3.51 t 1.874 

Asexual 23 23.00 0 0 

T a b l e  1: Resu l t s  for ' bow t ie '  d a t a  set 

Table 1 summarizes  the results we.obta ined with the GA. 
For each reproduction model and crossover operator ,  the ta- 
ble lists the best result obtained (x . . . .  ) after running the 



GA with 10 different random seeds. Other  columns list the 
average (~), variance (on), and s tandard  deviation (a)  of the 
10 runs. From the Xmin values, we see the GA easily outper-  
forms the greedy heuristic. However, on the average, simple 
crossover did worse than greedy under both models. Uniform 
crossover performed slightly be t te r  on average than greedy. 
Asexual crossover wars the best  performing crossover, consis- 
tently obtaining apparent ly  opt imal  results. The following 
is an Mlocation generated by the GA: 

[ ~ 1 ~  ents ] 

9, 12, 13 ] 
7, 10, 11 
3, 5, 14 
' 2 , 4 ,8  ] 

1 , 6 , 1 5  

This allocation places 2 f ragments  at sites in which they are 
aot  required, half a,s many a~s by the greedy. 

Fitness 

3 4  . t i J i i 

32 
GA 

30 

2 8  ( ; r e e d y  

24 " * * 

I I 22 ! I 1 l 
0 2 4 ~, 8 1 0  1 2  

Generations 

F igure  3: C o n v e r g e n c e  Profi le  (Boa '  Tie)  

I Site Fragments  

6, 9, 12 
7, I I ,  13 

] 3 3 , 4 ,  5 
i 4 2, 8, 10 

5 li i4; 15 

with a total  tra::shhssion cost of 24. In this cause the greedy 
only placed two fragments at sites in which they were not 
require:l. 

FgTao,I c: ss°ver t i 
Sin:pie . 2e 30.40 2.044 : ..t30 

Gen. Uniform 24 26.80 3.956 1 .'.-) 89 
Asexual 23 23.00 0 0 
Simpie 24 27.70 4.011 2.0!)3 

SS. Uniform 25 26.00 0.8889 ())428 
Asexual 23 23.10 0.10(10 0.3!62 

T a b l e  2: Result.~ for "ring'  d a t a  set 

Table 2 lists the results for the GA on the "ring' da:t.a see. 
Under this topology, the simple and uniform crossovers could 
only equal the performance of the greedy at best, and were 
much worse on average. Asexual crossover proved to be the 
best, with apparently optimal results under both models. 
The  following is an assignment generated by the GA: 

[ Z E  Fragments 

6, 9, 13 
7, 11, 12 
3, 5, 14 
' 2 , 4 ,8  

1, 10, 15 

Figure 3 i l lustrates the convergence profile of the genetic 
algorithm. The greedy result is indicated by the dashed 
line. While the GA begins with a worse result than greedy, 
it is able to quickly converge to a be t te r  answer. 

F igu re  4: ' R i n g '  Ne twork  T o p o l o g y  

Figure 4 i l lustrates the next problem we examined. In this 
cause we changed the network topology to a ring and left the 
other parameters  identical to the %ow tie'  problem. For 
this problem, the greedy heuristic resulted in the following 
placement of the fragments:  

The  GA placed only one fragment at a site in winch it was 
not required. This was half as many as in the greedy. 

Fimcss 

31 

30 

29 

28 

27 

26 

25 

24 

23 

I I ~ t I [ 

G r e e d y  . . . . . . .  

1 2 3 4 5 6 
Generations 

F igu re  5: Conve rgence  Profi le  (R ing)  

Figure 5 il lustrates the convergence profile for the (3A on 
the rfng da ta  set. As before, the GA star ted with a worse - 
answer than tile greedy but quickly converged to the optimal .  
However, for this da t a  set the greedy was able t. -btai~ 
nearly optimal results, 

We next turned our at tent ion to a complex fragment allo- 
cation problem. We generated a da t a  set with 20 si~::s and 
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50 fragments. This corresponds to a search space of 205°, 
or about 106'5 possible solutions. Not all of these solutions 
are feasible. Fragment sizes were randomly generated in the 
range from 1 to 10. Site capacities were randomly generated 
in the range from 20 to 40. The  probability that  more than 
one site required a fragment was 40% and the probability 
that any any two sites were adjacent was 30%. Transmis- 
sion cost was randomly generated in the range from 1 to 10. 
All of these values and ranges were chosen arbitrarily. For 
this data  set, the greedy obtained a placement with total 
transmission cost of 2014. 

I Model Crossover [ z,~i~ 

Simple 
Gen. Uniform 

Asexual 
Simple 

SS. Uniform 
Asexual 

1978 2007.40 237.4 15.41 
1972 1985.70 113.8 10.67 
1952 1958.70 31.79 5.638 
2036 2065.80 821.3 28.66 
2001 2030.00 394.9 19.87 
1990 2017.80 506.6 22.51 

Tab le  3: Resul t s  for 20 site d a t a  set 

Table 3 summai'izes the results obtained with the GA on 
the 20 site data  set. The best GA result was better than the 
greedy in all cases except for the steady-state model with 
simple crossover. The greedy was able to beat the average 
performance of the steady-state model under all crossover 
operators. However, under the generational model, the aver- 
age performance of all crossover operators was able to beat 
the greedy. The clear victor for this data  set was asexual 
crossover under the generational model. 

As a final test of our GA, we ran it on a variation of the 
20 site data set. This new data  set was generated using the 
same parameters as before except that there were 100 frag- 
ments and site capacities were generated in the range from 
50 to 55. With 100 fragments and 20 sites, this corresponds 
to a search space of 20 ~°°, or about 10 ~a° possible solutions, 
not all of which are feasible. The greedy heuristic ob ta ined  
4t42 for this data  set. We only tested the generational (.;A 
with asexua.l crossover on this data set as it is clearly the 
best choice. We obtained the following results over ten runs: 

Zmtn -g cr 2 O" 
4013 4027.80 81.51 9.028 

As before, the GA was a clear winner over the greedy heuris- 
tic. With this data  set we see the GA's  solution quality did 
not degrade as the search space size was increased. 

5 C o n c l u s i o n s  

in this paper, we have explored the distributed database al- 
location problem, which is intractable. We introduced the 
genetic algorithm as a technique which has been used to 
obtain optimal and near optimal solutions to cotnbiuatorial 
problems. We found the GA to have superior performance 
to the greedy heuristic on fragment allocation problems of 
various sizes. While the greedy heuristic took time and effort 
to intplement, the GA was very straightforward: an encod- 
ing wa.~ decided upon, and a simple flmction was written to 

evaluate candidate solutions. We found the best paralfie- 
ters for the GA to be the use of a generational reproduction 
model with asexual crossover. This  is most likely due to the 
fact that  the fitness landscape is rather rugged, and since 
a.sexual crossover is much like a mutat ion,  it performs well 
on such rugged landscapes. 

In future, we plan to extend our DDB allocation problem 
to include explicit repfication of fragments. We have found 
that  the GA allows us to easily obtain solutions to the at- 
location problem and is easily extended to tile solution of 
other related problems. 
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