
A G E N E T I C A L G O R I T H M F O R F R A G M E N T A L L O C A T I O N I N
A D I S T R I B U T E D D A T A B A S E S Y S T E M *

- A r t h u r L . C o r c o r a n J o h n Hale

The University of Tulsa

K e y w o r d s : Gertetic Algorithms, Distributed Databases,

A b s t r a c t

In this paper we explore the distributed database
allocation problem, which is intractable. We also
discuss genetic algorithms attd how they have been
used successfully to solve combinatorial problems.
Our experimental results show the GA to be far
superior to the greecly heuristic in obtaining opti-
mal and near optimal fragment placements for the
allocation problem with various data sets.

1 I n t r o d u c t i o n

Computerized databases have become an essential part of
our lives. They play a critical role in nearly all areas
where computers are used. A few of the areas include
business, engineering, science, medicine, law, and eduea-
tmn. Traditionally, databases and database management
systems (DBMS) have resided on a single site. This is called
a centralized databa'~e system. Recently, there has been
a rapid trend toward distributed models of computation.
where several remote sites are connected via a communi-
cations net work. Distribu ted database systems (D D BS) and
distributed database mavagement systems (DDBMS) have
been developed in response to this trend. For convenience,
we will use the term distributed databases (DDBs) to refer
to DDBSs and DDBMSs, collectively• The advantages of
distributed databases include greater reliability and avail-
ability as well a.s intproved performance. Unfortunately, dis-
tributed databases are accompanied by increased overhead
and comploxity in the system design and implementation.
This comp!exity is often combinatorial in nature.

Genetic algorithms (GAs) provide an excellent technique for
deahng w~t h ~he combinatorial problems found in distributed
databases. (;As borrow the techniques and mechanisms from
genetics aitd natural evolution to effectively find optimal and
near-optima! solntions t~ complex and difficult problems.

*Research partially supported by O(:AST Grant AR2-002,
OCAST Grant AK2-004. NSF Grant IRI-9110709 and Sun Mi-
crosysteH~s,].n¢.

Permission to copy without fee all or part of this material is granted provided that
the copies are :+'. made or di.sm~uted for direct commercial advaa~ge, the ACM
copyright notice and the title of the publication and its date appear, and notice is
given that copying is by permission of the Association for Computing Machinery•
To copy otherwise, or 'to republish, requires a fee and/or specific penmission.

© 1994 ACM 089791..647..61 94/;b"~,03 $3.50

247

This paper is organized as follows: Section '2 provides an in-
troduction to distributed databases. This include.-, a discus-
sion of the advantages and disadvantages of DDBs. A simple
DDB model is presented which proves to be intractable. Sec-
tion 3 provides an introduction to genetic algorithms. Sec-
tion 4 describes our application of a GA to the DDB problem
a.s well as the experimental results obtained. Finally, Sec-
tion 5 provides a suntmary and conclusiotts.

2 D i s t r i b u t e d D a t a b a s e s

Distributed databases is the term we use collectively for dis-
tributed database systems and distributed database manage-
ment systems. These systems were developed in response to
the current trend toward distributed computing. Unlike tra-
ditional centralized database systems, DDBs are spread over
many sites. These sites are connected by a communications
network.

Site 1 Site 2 Site n

Communications]
Network .J

Figure 1: A Typ ica l D i s t r i bu t e d DaLabase

Figure 1 illustrates the architecture of a typical distributed
database. Portions of the entire databa.se are spread out over
multiple computers, called sites or nodes. Ttte computers
are connected by a communications network with a given
topology. Each local site may have its own local database,
which can be maintained by a traditional DBMS. Each site
may also contain fragments, or portions of the distributed
global database. Fragments are managed by application and
communication processing software.

Some of tile advantages of DDBs include reliability ~nd avail-
ability. Reliability is loosely defined as the probability that
a system is up at a particular moment in time. Availabil-
ity refers to the probability that a system is continuously
available during some time interval. Ill a traditional cen-
tralized database system, the failure of tile single site means
failure of the entire system. In a DDB, ~he failure of a sin-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F326619.326738&domain=pdf&date_stamp=1994-04-06

gle site will only" effect access to data located at that site.
Clearly, this leads to improved refiability and availability.
Another advantage of DDBs is the performance improve-
ment obtained by distributed processing. Local queries and
transactions accessing data at a single site are much f a s t e r

since the local da tabase ' i s smaller. Transactions involving
different sites can be processed concurrently, reducing execu-
tion and response time. This is especiMly an advantage when
the database is naturally distributed over different locations,
such ms in a business with databases used by regional offices
which are all accessible from the corporate headquarters.
These types of database systems are typically dominated by
local queries and transactions. Finally, DDBs allow sharing
of data while at the same time retaining localized control.
This can be an important issue in database security when
maintaining a 'need to know' authorization scheme.

A potential drawback in a DDB is the added complexity
and overhead involved in its design and implementat ion.
The DDB must be designed to preserve consistency in the
database yet provideacceptable response time for transac-
tions across many different sites. Strategies must be devel-
oped to handle distributed queries and transactions. The
distr ibution design step involves fragmentation of relations
and allocation of these fragments. The objective of fragInen-
tation is to achieve better units of distribution. Allocation is
concerned with optimal placement of the fragments among
the available sites. Special care must be taken in the place-
ment of replicated fragments to maintain consistency and
access efficiency. Finally, the DDB must be able to grace-
fully recover from failures such a,s site crashes or network
hangups.

The additional functionality and flexibility in a DDB is a
difficult problem to deal with. Finding optimal solutions is
a step beyond. In addition to the normal database design
issues and the fragmentation process, the designer of a dis-
tr ibuted database must also decide on how to distribute the
fragments over the sites. We now present a formal descrip-
tion of a simple distributed database allocation problem.

A distributed database is composed of a collection .5' of m
sites, where each site i is characterized by its capacity, ci,

,~" = { c ~ , c ~ , ~ e c m } ,

and a set F of n fragments, where each fragment i is char-
acterized by its size, s),

F = { . ~ , s 2 , .~3 ~~,, }.

Each fragment is required by at least one of the sites. The
site requirements for each fragment are indicated by the re-
quirements ~natrix,

R =

r l ,1

r2,1

Trtl,l

TI,2 r l ,n

r2,2 T2,n

Tin,2 Tm,n

where rio indicates the requirement by site i for fragment).
In general, this requirement is represeuted by a real value,
that is, a weight. A variation of this is to use a boolean value
to indicate that fragment j is either required or not required

by site i. Transmission cost is given by the transmission cost

T =

m a t r ix ,

tl,l ~I,2 " ' " ~Z,m

$2,1 $2,2 " " " $2,rn

: : ".. :

trn,l ~rn,2 " " " tm,m

where ti,j indicates the cost for site i to access a fragment
located on site J'.

Given the above definitions, the distr ibuted database allocz~-
tion problem is one of finding the optimal placement of the
fragments at the sites. Tha t is, we wish to find the place-
l n e u t ,

P = {pt,p2,P3, ..-,P~, ...,P,~}
(where pj = i indicates fragment j is located at site i) for the
n fragments so that the capacity of any site is not exceeded,

~ r i , . l s 3 < C, Viii < i < m

3=1

and the total transmission cost,

~=1 1=1

is minimized.

By restricting the use of the requirements matrix and having
zero transmission cost, the distributed database allocation
problem can be transformed to the bin packing problem,
which is known to be NP-complete [7]. The DDB allocation
problem is considerably more difficult than bin packing, so it
is clearly also N P-complete. Consequently, unless an efficient
algorithm has been found to solve intractable problems and
it is proven that P = NP, then we must turn to heuristic
methods to obtain approximate solutions. Also, in this paper
we ignore exhaustive methods such as branch and bound due
to their inability to solve large combinatorial problems.

For a more detailed t reatment of databa.ses and distributed
databases, the reader is referred to works by Bell [1], Bell and
(i;rimson [2], Ceri et al. [3], Chang and Shielke [4], Elm,v~ri
and Navathe [6], and (~)zsn and Valdnriez [10].

3" G e n e t i c A l g o r i t h m s

A genetic algorithm (GA) is an adaptive search technique
ba.sed on the principles and mechanisms of naturM selection
and 'survival of the fittest ' from natural evolution. (.;.-ks
grew out of Holland's [9] study of adaptat ion in artificial and
natural systems. By simulating natural evolution, in this
way, a GA can effectively search the problem domain and
easily solve complex problems. Furthermore, bv emulating
biological selection and reproduction techniques, a (.;A can
perform the search in a general, representat ion-independent
i l l a n n e r .

The genetic algorithm operates as an iterative procedure on
a fixed size population or pool of candidate solutions. The
candidate solutions represent an encoding of the l)roblean
into a form that is analogous to the chromosomes of biologi-
cal systems. Each chromosome represents a possible solution

248

for a given object ive functi,~n. Associated with each chro-
mosome is a fitness value, which is found by evaluating the
chromosome with the object iee function. It is the fitness of
a chromosome which determines its ab i l i ty to survive and
produce offspring. Each chromusome is made up of a str ing
of genes (whose values ~.re called alleles). The chromosome is
typically represented in the GA a.s a string of bits. However,
integers and floating point numbers can easily be used.

The GA begins by geuerat ing av initial population, P (t = 0),
and evaluating each of its members with the objective func-
tion. While the tern,!,aatiov condition is not satisfied, a por-
tion of the populat ion is selected, somehow altered, evalu-
ated, and placed back into the population. At each step
in the i terat ion, chromosomes axe probabilist ically seIected
from the population for reproduct ion according to the prin-
ciple of the 'survival of the f i t test ' . Offspring are generated
through a process called cros:"over, which can be augmented
by mutat ion. The offspring are then placed back in the
pool, perhaps replacing ol;her members of the pool. This
process can be modeled using either a 'generat ional ' [8, 9]
or a ' s t eady- s t a t e ' [12] genetic algorithm. The generational
GA saves offspring in a temporary location until the end of
a generation. At that t ime the offspring replace the entire
current populat ion. Conversely, the s teady-s ta te GA imme-
diately places offspring back into the current populat ion.

4 E x p e r i m e l x t a l R e s u l t s

We developed a genetic algori thm for the dis t r ibuted
databa.se problem using LibGA [5]. The problem was en-
coded so tha t each gene in the chromosome corresponds to
a fragment. An integer representat ion was used in which
the allele values correspond to site locations. For example.
an allele value of 5 in gene 7 would indicate the placement
of f ragment 7 at site 5. This corresponds to the placement
vector. P, in Section 2. Initial allele values were selected at
random, ranging from 1 to the number of sites, m. It is pos-
sible with this encoding scheme to have infea.sible solutions,
that is. solutions which violate the site capacity constraints
or which place fragments in inaccessible sites. Consequently,
our object ive function calculated the proper cost for fea.si-
hie solutions and used a penalty for the infeasible solutions.
The penal ty depended on the number of sites, m. For each
fragment placement which violated a constraint, the objec-
tive function added a penal ty of 500m to the fitness. Such a
mild penal ty balances the preservation of beneficial genetic
material with the selection pressure of feasibility [11].

The genetic Mgorithm was tested with several different pa-
rameters. We used two different population modeis: gen-
erat ional and s teady-s ta te . We also used three different
crossover operators: simple (one point), uniform, and a.sex-
ual. Note, asexual crossover is simply a swap of two ran-
domly selected genes. Wheh mutat ion occurred, a randomly
selected gene wars replaced with a randondy selected choice
from the range of valid allele values. The mutat ion rate was
fixed at 0.1, and the pool size was fixed at 500. Note, all of
our repor ted results rel)resent feasible solutions.

We began with a small problem in order to bet ter visualize
our results. A problem was generated which had ,5 sites and

_.5 fragmenl.s to allocate. The fragment size was fixed at 1
and the site capaci ty was fixed ~t 3. C, onsequently, the final
result has no wasted site ca.pacify and exactIy 3 f ragments
per site. A requirements mat r ix was generated with each
tragment required by a randomly selected site. Addit ionM

-requirements were generated randomly with a 21% probabil-
ity that a par t icular fragment is required at any part icular
site. Network topology was also generated randomly with a
70% probabil i ty tha t any two sites are adjace-aL Transmis-
:-ton cost w.e.s fixed at 1 unit per hop.

L. .i (,)

Figure 2: 'Bow Tie' Network TopoLogy

Figure 2 i l lustrates the resulting network topology gener-
ate& Ceincidentally, this topology resemb!es a :bow tie' .
The requirements were as follows:

[~ I ~ 7 ~ e d Fragments

i ~ ~ 6, 9, 10, 12, 13, 14
7, 11

3, 4, 5, 6, 10, 12, 13, 14
4 2 , 4 , 5 , 8 , 9 , 10,11, 14

1, 2, 3, 6, 10, 15

We applied a greedy heuristic to this problem which places
each fragment in turn in the least cost location. The greedy
heuristic determined the following allocation:

I Site I Fragmen.ts

i] < 9, i~
2 2,3, r

3 4, 5, 12
4 [8. 11, 13
5 t 1, 14, 15

with a total transmission cost of 27. This allocation places
4 fragments at sites in which they are not required.

L~Model [Crossover z /: o "e ~r

Simple 26 30.10 4.322 2.079
Gen. ' Uniform 24 26.70 2.678 1.636

i Asexual 23 23.00 0 0
• Simple 25 27.40 1.8'2 '2 1.350
.qSL Utdform 24 25.80 3.51 t 1.874

Asexual 23 23.00 0 0

T a b l e 1: Resu l t s for ' bow t ie ' d a t a set

Table 1 summarizes the results we.obta ined with the GA.
For each reproduction model and crossover operator , the ta-
ble lists the best result obtained (x) after running the

GA with 10 different random seeds. Other columns list the
average (~), variance (on), and s tandard deviation (a) of the
10 runs. From the Xmin values, we see the GA easily outper-
forms the greedy heuristic. However, on the average, simple
crossover did worse than greedy under both models. Uniform
crossover performed slightly be t te r on average than greedy.
Asexual crossover wars the best performing crossover, consis-
tently obtaining apparent ly opt imal results. The following
is an Mlocation generated by the GA:

[~ 1 ~ ents]

9, 12, 13]
7, 10, 11
3, 5, 14
' 2 , 4 ,8]

1 , 6 , 1 5

This allocation places 2 f ragments at sites in which they are
aot required, half a,s many a~s by the greedy.

Fitness

3 4 . t i J i i

32
GA

30

2 8 (; r e e d y

24 " * *

I I 22 ! I 1 l
0 2 4 ~, 8 1 0 1 2

Generations

F igure 3: C o n v e r g e n c e Profi le (Boa ' Tie)

I Site Fragments

6, 9, 12
7, I I , 13

] 3 3 , 4 , 5
i 4 2, 8, 10

5 li i4; 15

with a total tra::shhssion cost of 24. In this cause the greedy
only placed two fragments at sites in which they were not
require:l.

FgTao,I c: ss°ver t i
Sin:pie . 2e 30.40 2.044 : ..t30

Gen. Uniform 24 26.80 3.956 1 .'.-) 89
Asexual 23 23.00 0 0
Simpie 24 27.70 4.011 2.0!)3

SS. Uniform 25 26.00 0.8889 ())428
Asexual 23 23.10 0.10(10 0.3!62

T a b l e 2: Result.~ for "ring' d a t a set

Table 2 lists the results for the GA on the "ring' da:t.a see.
Under this topology, the simple and uniform crossovers could
only equal the performance of the greedy at best, and were
much worse on average. Asexual crossover proved to be the
best, with apparently optimal results under both models.
The following is an assignment generated by the GA:

[Z E Fragments

6, 9, 13
7, 11, 12
3, 5, 14
' 2 , 4 ,8

1, 10, 15

Figure 3 i l lustrates the convergence profile of the genetic
algorithm. The greedy result is indicated by the dashed
line. While the GA begins with a worse result than greedy,
it is able to quickly converge to a be t te r answer.

F igu re 4: ' R i n g ' Ne twork T o p o l o g y

Figure 4 i l lustrates the next problem we examined. In this
cause we changed the network topology to a ring and left the
other parameters identical to the %ow tie' problem. For
this problem, the greedy heuristic resulted in the following
placement of the fragments:

The GA placed only one fragment at a site in winch it was
not required. This was half as many as in the greedy.

Fimcss

31

30

29

28

27

26

25

24

23

I I ~ t I [

G r e e d y

1 2 3 4 5 6
Generations

F igu re 5: Conve rgence Profi le (R ing)

Figure 5 il lustrates the convergence profile for the (3A on
the rfng da ta set. As before, the GA star ted with a worse -
answer than tile greedy but quickly converged to the optimal .
However, for this da t a set the greedy was able t. -btai~
nearly optimal results,

We next turned our at tent ion to a complex fragment allo-
cation problem. We generated a da t a set with 20 si~::s and

249

50 fragments. This corresponds to a search space of 205°,
or about 106'5 possible solutions. Not all of these solutions
are feasible. Fragment sizes were randomly generated in the
range from 1 to 10. Site capacities were randomly generated
in the range from 20 to 40. The probability that more than
one site required a fragment was 40% and the probability
that any any two sites were adjacent was 30%. Transmis-
sion cost was randomly generated in the range from 1 to 10.
All of these values and ranges were chosen arbitrarily. For
this data set, the greedy obtained a placement with total
transmission cost of 2014.

I Model Crossover [z,~i~

Simple
Gen. Uniform

Asexual
Simple

SS. Uniform
Asexual

1978 2007.40 237.4 15.41
1972 1985.70 113.8 10.67
1952 1958.70 31.79 5.638
2036 2065.80 821.3 28.66
2001 2030.00 394.9 19.87
1990 2017.80 506.6 22.51

Tab le 3: Resul t s for 20 site d a t a set

Table 3 summai'izes the results obtained with the GA on
the 20 site data set. The best GA result was better than the
greedy in all cases except for the steady-state model with
simple crossover. The greedy was able to beat the average
performance of the steady-state model under all crossover
operators. However, under the generational model, the aver-
age performance of all crossover operators was able to beat
the greedy. The clear victor for this data set was asexual
crossover under the generational model.

As a final test of our GA, we ran it on a variation of the
20 site data set. This new data set was generated using the
same parameters as before except that there were 100 frag-
ments and site capacities were generated in the range from
50 to 55. With 100 fragments and 20 sites, this corresponds
to a search space of 20 ~°°, or about 10 ~a° possible solutions,
not all of which are feasible. The greedy heuristic ob ta ined
4t42 for this data set. We only tested the generational (.;A
with asexua.l crossover on this data set as it is clearly the
best choice. We obtained the following results over ten runs:

Zmtn -g cr 2 O"
4013 4027.80 81.51 9.028

As before, the GA was a clear winner over the greedy heuris-
tic. With this data set we see the GA's solution quality did
not degrade as the search space size was increased.

5 C o n c l u s i o n s

in this paper, we have explored the distributed database al-
location problem, which is intractable. We introduced the
genetic algorithm as a technique which has been used to
obtain optimal and near optimal solutions to cotnbiuatorial
problems. We found the GA to have superior performance
to the greedy heuristic on fragment allocation problems of
various sizes. While the greedy heuristic took time and effort
to intplement, the GA was very straightforward: an encod-
ing wa.~ decided upon, and a simple flmction was written to

evaluate candidate solutions. We found the best paralfie-
ters for the GA to be the use of a generational reproduction
model with asexual crossover. This is most likely due to the
fact that the fitness landscape is rather rugged, and since
a.sexual crossover is much like a mutat ion, it performs well
on such rugged landscapes.

In future, we plan to extend our DDB allocation problem
to include explicit repfication of fragments. We have found
that the GA allows us to easily obtain solutions to the at-
location problem and is easily extended to tile solution of
other related problems.

A c k n o w l e d g e m e n t s

This research has been partially supported by O(;AST Grant
AR2-002, OCAST Grant AR2-004, and NSF Grant lRI-
9110709. The authors also wish to acknowledge the support
of Sun Ivlicrosystems, Inc.

R e f e r e n c e s

[1] D. A. Bell. Diffncult data placement problems. (7ompnt~'r J..
27'(4). 1992.

['2] D. A. Bell and J. Grmlson. Distributed Database .5'ys~ms.
Addison-Wesley, Menlo Park. California, 1992.

{3] $. f..;eri, G. Martelia, and G. F'elagatti. Optima[file aiiocatiou
for a distributed databasee on a network of minicomputers.
h~. Proe. ICOD I Conf., Aberdeen, Scotland, 1980.

[4] C. C. Chang and Shielke. On the complexity of the file al-
location problem. In Conf. on Foundation.s of Data Organi.
sation, Kyoto, Japan, 1985.

[5] A. L. C, orcoran and R. L. Wainwright. Lib(.;A: A user-
friendly workbench for order-based genetic algorithm re-
search. In E. I-)eaton, K. M. (;eorge, H. Berghet, and
G. Hedrick, editors, Proce:edings off the 1 :J.~t.7 A (TM/SIGA ['.1:'
Symposium on Applied (7,~mputing, pages 1]1-118, New
York, 199:$, ACM Press.

[6] R. Ehnasri and S. B. Navathe. Fundarn,.ntals of Oatabas~
Systems. Belljamin/Cunmfings, F~edwood City, California,
1989.

[7] . M. R. Garey and D. S. Johnson. (7ornpntrrs and Intractabil-
ity: A Guid; to the: Theow oj NP-Cornph'teness. W. H.
Freeman and Company, San Francisco. 1979.

[8] [). E. Goldberg. Genetic Algorithms in Search, Optirniza-
lion. and Machine Learning. Addison-Wesley, Reading, Ma.~-
sadmsetts, 1989.

[9] J. H. Holland. Adaptation in Natural and Artificial .5'ys.
terns. Tim University of :Michigan Press, Aim Arbor, Michi-
gan, 1975.

[I0] M. T. ()zsu and P. Valduriez. Principles of Distribu&'d
Database Systems. Prentice Hall, Englewood (.:lifts, New Jer-
sey, 1991.

[11] ,1. T. Richardson, M. Ft. ['Miner. G. E. Liepens, and
M. Hilliard. Some guidelines for genetic algorithms with
penalty functions. In J. D. Schaffer, edRor, Pr'oce~din.qs of
tt~e Third International Conference on Genetic Algorithms,
Arlington, Virginia, 1989. Morgan Kaufmann.

[12] D. Whitley and .I. Kauth. (.;~NITOFt: A different genetic
algorithm. In Proceedings of the' Rocky Monntain (?onfercnce
on Artificial Intelligence, pages 118-130, I')enver, Colorado,
1988.

2 5 0

