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A b s t r a c t  

The redundant  allocation of files over a number  of sites 
in a network to minimize the total transmission and ac- 
cess costs for queries and updates  is known to be an NP- 
complete problem even under a static schedule of trans- 
actions. As such, a number  of heuristic solution tech- 
niques have been proposed in l i terature to address this 
problem. We propose a stochastic opt imizat ion tech- 
nique, simulated annealing, to find sohltions for the tile 
placement problem. Our experiments  verify that  good 
solutions to the problem can be found using this algo- 
r i thm in a reasonable amount  of time. This allows for 
solving larger sized problems than can be done using 
most other  heuristic techniques. 

I n t r o d u c t i o n  

We are interested m the problem of distr ibuted resource 
allocation over a network of computers.  In this pa- 
per. we deal with a part icular  instance of that  prob- 
lem. namely, the file allocation problem (FAP) [2, 3, 9]. 
There are several variants of the problem. In particular,  
we are concerned with allocating copies of a single file to 
a subset of processing nodes in the network so that the 
sum of transmission and access costs for queries and up- 
dates are minimized. This problem has been proved to 
be NP-complete  by Eswaran [4]. Several heuristic tech- 
niques have been proposed to solve the FAP problem. 
Most of these techniques use a mathemat ica l  program- 
ruing approach, and are largely limited in the size of 
the problem for which they can generate approximately  
optimal sohltions [6, 8]. The  FAP is a very impor tan t  
real-life opt imizat ion problem for which no good solu- 
tion techniques are available for large problem sizes, and 

.the development of any such technique would be of great 
service to the distr ibuted comput ing systems commu- 
nity. Stochastic algori thms such as simulated annealing, 
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genetic algorithms, etc. have been used successfltlly on 
a number of difficult opt imizat ion problems in the past 
decade. We have appl ied a couple of variants of the 
simulated annealing [5] opt imizat ion technique to solve 
large sized FAP problems (100 node'networks) .  
Application of the simulated annealing technique is not 
limited to allocating copies of a single file. (liven the ap- 
propriate cost function to evaluate potential  solutions. 
this techniques can be applied to a number of variants 
of the FAP problem (including allocating multiple files. 
problems requiring accessing two or more copies of a file 
for increased reliability, problems where tile cost flmc- 
tion includes storage cost, etc.). The only flmdarnental 
assumptions that  are made are the following: 

1. In processing queries, tile site of origin of the query 
decomposes queries involving more than one file so 
that  each of the subqueries involve only one data  
file. This  assumption makes the distr ibuted FAP 
problem different from the distr ibuted database al- 
location problem [1], because, in the latter case. 
subqueries may be processed at a node different 
from the query origination node and may involve 
more than one database. This assumption guarna- 
tees that  the access and transrnission cost. for any 
individual file is minimized in a redundant  alloca= 
lion schema that  minimizes the surn tot.al of the 
access and transmission costs for all the tiles. As 
a result, when this assumption holds, techniques 
used in this paper can be used for multiple file al- 
location. The assumption also implies the problem 
complexity of tile allocation will depend primarily 
on the number  of sites in the network• 

2. We also assume that  write updates all and read 
accesses the closest, of the file copies. 

We use the term da ta  fragment to refer to eidler a whole 
file or a part of it, copies of which are to be redun- 
dantly allocate~t over the network ~o minimize access 
and transmission cost. The opt imizat ion problem in file 
allocation involves a tradeoff between response time for 
queries and update  t ime to maintain consistency across. 
the database,  tf there are too few copies of a data  frag- 
ment,  queries involving it may take considerable tirne 
to be processed. However, the more copies of a single 
fragment exists in the network, the more t ime and cost. 
is incurred in maintaining consist, ency when any da ta  
item belonging to tha t  f ragment  is updated.  The size 

e 

2 S 1  

http://crossmark.crossref.org/dialog/?doi=10.1145%2F326619.326740&domain=pdf&date_stamp=1994-04-06


of the FAP problem, determined both  by t h e n u m b e r  
of processing nodes in the network, and the number  of 
da ta  f ragments  to be al located,  can be quite large. This, 
together with the fact  tha t  no known polynomial  t ime 
algori thm exists for the problem, make the domain ideal 
for the application of stochastic opt imizat ion techniques 
like s imulated annealing. 
The paper is organized as follows: in the Problem For- 
mulat ion section we define the problem and develop a 
solution representat ion to be used by simulated anneal- 
ing. In the Simulated Annealing section we describe in 
detail the versions of the simulated algori thms that  we 
have used to address the problem under consideration. 
In the Evaluat ion section we present the different crite- 
ria tha t  are used to compare  the performance of these 
algori thms on the problern. In the Results section we 
present the results of our experiments.  In the Conclu- 
sions section we highlight the findings of our research 
and identify a useful extension to the current research. 

Problem Formulation 

We consider the allocation of m fragments  redundant ly  
over n sites in the network so.as to minimize access and 
communicat ion costs for q queries and u updates.  We 
assume the existence of a stat ic schedule for queries and 
updates.  The  static schedule includes, for each trans- 
action, its frequency of occurrence and. the volume of 
data  accessed from each fragment .  The  total access and 
communicat ion cost for fragment, i is given by 

C, = ~ ( v j , ( v  o , T ~ + ( v ~ j + l ) , T d , , ~ j +  
j~Q, 

Pd(N Ri,oj, Oj))) + 

E (uk * E (vii * T" +(vii + l)* Td*6iJ + 
kEU, rER,  

where uj is the frequency of t ransact ion j ,  vij is the 
volume of da ta  accessed by transact ion j from fragment  
i, Td is the transmission delay per packet, T, is the read 
time per block, Tw is the write time per block, Oj is the 
site of origin of t ransact ion j, NRi, ,  is the nearest site 
to site x which contains a.copy of f ragment  i, Pg(rn, n) 
is the propagat ion delay from site n to site rn, Qi and 
Ui are the sets of queries and updates  accessing the ith 
fragment ,  Ri is the set of sites containing replica of the 
f ragment  i," ~Sij iS 0 if a copy of the ith f ragment  exists 
at the origin of t ransact ion j ,  and is 1 otherwise. 
For the stochastic a lgori thms to be described in this 
report,  we use the following representat ion for an ele- 
ment in the solution space. For this problem, the solu- 
tion space is the set of all possible redundant  allocation 
schema of a single da ta  f ragment  over the n sites. We 
use an n-bit  string (one bit per site) to represent the 
allocation schema of a f ragment .  A value of l in the 

ith string positioh implies tha t  a copy of the f ragment  
exists in site i. 

Simulated annealing 

Simulated Annealing is a stoc.hastic opt imizat ion tech- 
nique based on an analogy from statist ical  rnechanics, 
where a substance is reduced to its lowest energy config- 
uration (or [he ground .slate) by a sequence of steps tha t  
involve al ternate  heating and cooling. Cooling leads to 
low energy configurations, while heat ing prevents the 
substance from gett ing stuck at local minirna by rais- 
ing its energy. As the substance approaches its ground 
state, it is subjected to smaller changes in tempera ture ,  
so that a 'good'  solution is not easily disturbed.  The  
ground state  is reached when the substance settles int.o 
a stable s tate  at a very low tempera ture .  
Solving an opt imizat ion problem using simulated an- 
nealing involves the following four steps: 

! .  Encoding the points in the solution space (analo- 
gous to the configuration). 

2. Formulat ing an evaluation function t.o determine 
the goodness of the current solution (analogous ~o 
determining the energy value of the configuration).  

3. Deciding a set of moves used to generate a new solu- 
tion from the current solution (analogous to looking 
for configurations with lower energy and switching 
to them in a probabilistic manner) .  

4. Deciding an annealing schedule, i.e.. choice of start-  
ing t.emperature, rule for t.ernt)eratttre decrements.  
number  of elements examined at every' tempera-  
ture (chain length), and the s topping criteria used 
to halt, the algori thm. 

The representat ion used in our exper iments  has been de- 
scribed in the previous section. The  evaluation function 
is the cost function developed in Problern formulat ion 
section that  computes  the total access and (,ransmis- 
sion costs for a given allocation schema. The  optirnal 
allocation schema is the one for which the cost. func- 
tion is minimized. Three  types of moves are defined in 
our annealing scheme: the first places a replica of the 
fragment  at, a new site, the second rernoves a replica 
from a site, and the third moves a replica from an old 
site to a new one (the .swap operator) .  The  first, two of 
these moves can be represented t)5," 'a single move opera- 
tor called mutation, that  flips a randornly picked bit. In 
all our experiments  we used either muta t ion  or a swap 
operator  equiprobably to generate a new configuration 
from the present configuration. 
In this paper, we present results of our experirnents with 
two different annealing schedules:a very simple hand- 
coded scheme, and an adaptive,  cornl)utationally rnore 
extensive scheme. We describe each of these in more 
detail below. 
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Fixed schedule 
T h e  first of  the annea l ing  schedules  invo lves  a f ixed ini- 
t ial  and final t empera ture  sett ing and a constant  factor  
decrease  of  temperature .  The  schedule involves thir teen 
different t empera ture  levels (determined by a decay fac- 
tor of 0.7, start ing from a max imum tempera tu re  of 100 
and lowering it. to I). Moreover, at each t empera tu re  
level, the number of points examined is dependent  on 
the number of sites in the problem, namely n. In the 
following, vi gives the cost fimction evaluation of the 
allocation schema corresponding to the s t ructure  x(i). 
The algori thm is as follows: 

1. (Start) Set T = T,~a,. Select a point x~ at random 
and evaluate it. 

2. (,qtochasiic hillclimb) Pick an adjacent point a:~ at 
random and evaluate it. Select the new point (i.e., 
a:c = a:a) with probabil i ty 1 Repeat  the 

. l + e - ( ~ ¢ )  " 
step k times. 

3. (Anneal~Convergence test) Set T = fT.  If T >_ 
Train, go to step 2. otherwise done. 

Adaptive schedule 
The second schedule we experimented with is an adap- 
tiye schedule that  involves dynamic  determinat ion of 
temperatures ,  decrements, and step numbers based on 
est imating the mean and s tandard deviation of the time- 
tion space by finite sampling. The following algori thm is 
gleaned from [7] which itself summarizes the findings of 
a lot of other researchers. In the subsequent description 
of the algori thm we use the following notations: 

• cr~,c~ are the actual s tandard deviation of the 
function values, and the s tandard deviation of the 
fflmction values observed when the schedule is at 
t e m p e r a t u r e  t. 

• E ~ ,  E~ are the actual mean of the flmction values, 
and the mean of the function vahles observed when 
the schedule is at t empera ture  t. 

• H ~  is the size of the configuration (solution) space 
(also called global accessability), Ho is the number  
of function opt ima (assumed t,o be 1 in this paper),  
Ht is the global accessability at t empera tu re  t (a 
measure of the size of the likely state space). 

• h~ is the local accessability at t empera tu re  t (a mea- 
sure of the access to neighboring states from the 
current state). /3 is the selection probabil i ty of a 
neighboring state,  a~ is the fraction of moves at 
tempera ture  t that  changed the current state. U~ is 
the average of the positive moves that  wars accepted 
at tempera ture  t. 

* T/ is the t empera tu re  at the ith step of the an- 
nealing schedule, t~top 'is the current est imate of  
the stopping temperature ,  and tlinear is the cur- 
rent e s t i m a t e  o f  the highest t empera tu re  at, which 
the o', - t curve becomes linear. 

The  algori thm is as follows: 

1. Est imate  o%0, E ~  by sampling r points (we have 
used r = 384 randomly from the solution space). 

2: (Start) Set To = rno'o~, m > 1 (we chose rn = x/~0). 
Select a point x¢ at random and evaluate it. 

3. (Stochastic hillclimb) Pick an adjacent point a:~ at 
random and evaluate it. Select the new point (i.e.. 

a:~ = x~) with probabili ty e-("Wgff "~') Repeat. the 
step ki+l = c .  ~ times (we have used c = 4). 
where 

J.~ dE 
Hi = H~ + t , - - ,  

l 

~3 Ui hi =a i ln (  ) + T  + ( a i -  l ) l n ( l - a i ) .  

If k i + l  > m a x _ m o v e s ,  t h e n  k i + l  = i H a x _ l i | o v e s  (we 

have used a value of 500). 

4. (Aaneal/Convergenee lest) Set. T/+l = T/ - 7 ~ if 

Ti > 7 ~ Otherwise, set. Ti+l = ~ .  Also calcu- 

late, tlinear = 0"¢o~7~ and 

_ __ 'u,~.-.~,-( - Ho) 
lstop =[l inear  exp "2 ~ ' 

lfo'i > O . i . ( E ¢ ~  - Ei) or Ti+l > t,,,op, go ~o step 
3, otherwise done. We have used 0 = 0.01. 

Evaluat ion  of  the  a lgor i thms  

One objective of this research was to compare the per- 
formance of the above-mentioned variants of the simu- 
lated annealing algori thms on FAP instances. In order 
to perform an objective evaluation, we decided to build 
a parameterized test case generator to provide us with 
test cases with desired characteristics. We used the fol- 
lowing parameters  to cont, rol the test. cases generated: 

• number  of clusters, number  of sites per cluster 

• minimum (25km), max imum (75kin) inter-cluster 
distance; minimum(400km),  maximum(600krn) 
intra-cluster distance 

• number of queries, number  of updates 

• minimum (20), maximum (30) frequency of queries; 
minimum (1), maximum ( l 0) frequency of up dates 

1 Double exponent iM Slnoothing is used to calculate a reliable 
es t imate  of at (to reduce the effects  of  widely sca t tered  ¢r vMues 
at  high temperatures} .  
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• minimum (5) , maximum (10) size of queries; min- 
imum (1), maximum (5) size of updates 

• network bandwidth (we have used 1.544Mbps), net- 
work latency (we have used 200,000 km/sec). 

We assume that, nodes are distributed over the network 
in clusters. Variable values are generated from an tmi- 
form distribution over corresponding domains. The size; 
of a problem is decided by the number of sites in the 
network. For each problem size (we have used 20, 64, 
and 100 sites), we generated 10 test cases. Number of 
clusters and number of sites per cluster for the differ- 
ent p'roblem sizes were 5, 8, l0 and 4, 8, 10 respectively. 
Number of queries and number of updates for the differ- 
ent problem sizes were 35, 75, 200 and 3, 6, 10 respec- 
tively. Performance of an algorithm on a test case was 
obtained by averaging over 10 runs with different ran- 
dom seeds. Performance of an algorithm on a particular 
problem size was obtained by averaging its performance 
on all the 10 test cases of this problem size. 
We evaluated performance of /m algorithm by two cri- 
teria: the goodness of the "solution that it finds, and 
how quickly it finds it. To verify the goodness of the so- 
lutions obtained, we implemented an exhaustive search 
algorithm to give us the optimal solution for reasonable 
size problems (we could run exhaustive search for up 
to 20 site problems). The second criteria for evaluation 
measures the average number of solutions evaluated be- 
fore the algorithm finds the best solution it generates. 

R e s u l t s  

Q u a l i t y  of  so lu t ions :  Froni our experiments with 
problems of size 20, we found that both versions of the 
simulated annealing found the optirnal solut, ion to all 
the test, cases in every run. When we experimented 
with problems of size 64, we found that the best so- 
lutions found in the different runs involving the same 
test case differed for the fixed schedule algorithm. For 
some problems in almost half the runs, the fixed sched- 
ule algorithm failed to reach the best solution it had 
found in other runs. This indicates that the algorithm 
was getting stuck at local optimas with increasing fre- 
quency. Presumably this deficiency can be overcome bv 
either choosing smaller temperature.diecrements or by 
choosing more iterations at each time step (the chain 
length used were 20, 75 and 125 for problems of size. 20, 
64 and 100). But the adaptive schedule algorithm auto- 
matically chooses a good schedule without this trial and 
error process which can be inefficient and error-prone. 
The overall best solution found by both the schedules 
were identical for every test case. This increases the 
likelihood that those were indeed the optimal solutions 
to the respective test cases 2. 

22 For p r o b l e m s  of th i s  size, we do  no t  know the  o p t i m a l  s o l u t i o n  
s ince  it i nvo lves  e x h a u s t i v e  e n u m e r a t i o n .  

The adaptive schedule algorithm found the best solu- 
tion to each individual problem every singly time it was 
run. This is ample proof that this algorithm can be used 
very effectively to solve file allocation problems over rel- 
atively large networks. The running time of the M'go- 
rithm for the 100 node problem was about 5 minutes on 
an IBM RS6000. This suggests that even larger sized 
problems can be successfully solved using this method. 
We can even envisage dynamically reconfiguring t.he net.- 
work in cases where static schedules are not available, 
and update and query frequencies and sizes are esti- 
mated incrementally at run time. 

S p e e d  o f  C o n v e r g e n c e :  Figure l(a) shows the aver- 
age number of trials (solution evaluations) performed by 
adaptive and fixed schedules to find the best, solution for 
different problem sizes. The  graph shows that the fixed 
schedule takes approximately one-tenth the number of 
trials to produce solutions of the sarne quality as that 
obtained with the adaptive schedule for problems of size 
20. For problems of larger sizes however, this difference 
is reduced, as. the fixed schedule has to be run for in- 
creasing number of trials to match the performance of 
the adaptive schedule in terms of the quality of the so- 
lution that it generates. (;iven a problem of arbitrary 
size, we can extrapolate the curve for the fixed schedule 
algorithm in the graph to estimate the average number 
of trials it would take for the fixed schedule to find the 
best solution. This number  can be used to calculate 
the chain length for the fixed schedule, thus giving us 
a complete fixed schedule for that problem size. The 
schedule for the adaptive method for any problem of 
any size would be, of course, automatically generated 
by sarnpting the function space. For the problem sizes 
that we have tried, both algorithrns exhibit linear in- 
crease (albeit with different slopes) in the number of 
solutions evaluated to get to the best solution. This 
is in contrast to the exponential increase in complexity 
of the only algorithm guaranteed to find the optimal 
solution, namely exhaustive search. 
Figure l(b) shows the progress of the fixed schedule S.A 
towards the best solution over the course of a run. Since 
the initial structure is chosen randomly, the quality of 
the initial solution is bad. but the figure also demon- 
strates the rap!d convergence of the fixed schedule SA 
to the best solution. The performance curve of the adap- 
tive schedule SA is similar in nature. 

C o n c l u s i o n s  

We used a domain independent stochastic optimiza- 
tion technique to address an important  problem in dis- 
tributed computer systems, namely the problem of al- 
locating data fragments redundantly over a number of 
sites on a network. We assumed the existence of a 
static query a, nd update schedule. Tile results demon- 
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Figure 1: (a) Average number of trials required by fixed and adaptive schedule SA to find the best solution for 
different problem sizes, (b) Typical run of a fixed schedule simulated annealing algorithm on a problem of size 64. 

strate the feasibility of two of these techniques, the 
fixed schedule and adaptive schedule simulated anneal- 
ing methods, in finding good solutions to the problem 
with limited search. A comparison of these two algo- 
rithms shows that the adaptive schedule simulated an- 
nealing performs more search than the fixed schedule 
version to find good solutions to problems, but finds 
them with greater certainty. The effectiveness of these 
methods is demonstrated by their ability to consistently 
find good solutions for medium to large sized problems. 
While most of the previous heuristic methods used in 
solving the file allocation problems present results with 
10-25 node networks [6, 8], we have demonstrated that 
our approach can easily solve problems with 100 nodes 
in the network. This fact, together with the likely suc- 
cess of using simulated annealing for even larger sized 
problems, makes these optimization techniques a viable 
tool for solving file allocation and related resource allo- 
cation problems in distributed computer systems. 

Our approach of optimizing the allocation of each 
fragment independently is based on the assumption of 
no communication between sites holding required frag- 
ments during a transaction. Research in distributed 
transaction processing suggest that optimal transaction 
costs can require such communication. We believe that 
the no communication assumption does not limit the 
applicability of stochastic methods to the general dis- 
tributed data allocation problem [1]. We intend to relax 
this assumption in our future work. 
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