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ABSTRACT
Emotions are often perceived by humans through a series of mul-

timodal cues, such as verbal expressions, facial expressions and

gestures. In order to recognise emotions automatically, reliable

emotional labels are required to learn a mapping from human ex-

pressions to corresponding emotions. Dimensional emotion models

have become popular and have been widely applied for annotating

emotions continuously in the time domain. However, the statistical

relationship between emotional dimensions is rarely studied. This

paper provides a solution to automatic emotion recognition for the

Audio/Visual Emotion Challenge (AVEC) 2018. The objective is to

find a robust way to detect emotions using more reliable emotion

annotations in the valence and arousal dimensions. The two main

contributions of this paper are: 1) the proposal of a new approach

capable of generating more dependable emotional ratings for both

arousal and valence from multiple annotators by extracting con-

sistent annotation features; 2) the exploration of the valence and

arousal distribution using outlier detection methods, which shows

a specific oblique elliptic shape. With the learned distribution, we

are able to detect the prediction outliers based on their local den-

sity deviations and correct them towards the learned distribution.

The proposed method performance is evaluated on the RECOLA

database containing audio, video and physiological recordings. Our

results show that a moving average filter is sufficient to remove the

incidental errors in annotations. The unsupervised dimensionality

reduction approaches could be used to determine a gold standard

annotations frommultiple annotations. Compared with the baseline

model of AVEC 2018, our approach improved the arousal and va-

lence prediction of concordance correlation coefficient significantly

to respectively 0.821 and 0.589.
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1 INTRODUCTION
Human emotions are often expressed through various modalities

such as visual information (e.g. facial expressions and gestures), au-

dio cues (e.g. tone, pitch and speed) and bodily responses (e.g. heart

rate and skin conductance). The ability to recognise human emo-

tions can enhance human computer interactions, allowing systems

to use this information for personalisation and adaption towards

users’ affective states. Even though numerous researchers have

worked on this topic through the application of discrete or dimen-

sional emotion models, automatic emotion recognition is still a

challenging task.

The Gold-Standard Emotion Sub-Challenge (GES) is a compe-

tition organised for the Audio/Visual Emotion Challenge (AVEC)

workshop. Its objective is to increase the authenticity of emotional

annotations and to improve the performance of automatic emo-

tion recognition in the valence/arousal space using multimodal and

data-driven approaches.

Detecting emotions from different multimodal affective expres-

sions is a challenging task. Each modality has different time win-

dows to reflect emotions. For example, facial expressions (visual

modality) change faster than heart rate (physiological modality).

Emotions are also highly dependent on the individual. Some people

cry out feeling sad, while others keep a neutral expression in an

attempt to hide their true feelings [23], adding to the difficulty

of recognising emotions. Research on previous AVEC challenges

have explored various methods: extracting multimodal features [6,
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35], the fusion of multiple modalities [8, 34] and numerous deep

learning architectures [33, 43] for recognising emotions.

Aside from modality and individual differences, the difficulties

also come from emotion annotation. Emotion labels are obtained

using two diverging methods: self-report or through expert (third-

party) annotations. To obtain reliable annotations, different annota-

tors are tasked in annotating the same set of emotional expressions.

However, this presents problems of consistency, as reported values

often diverge among the different annotators. They have different

pre-existing emotional knowledge and reaction times, which can

lead to time dissonance amongst annotations as shown in Figure 1.

Psychologists proposed different theoretical models for discrete

emotions on the valence-arousal distribution, such as in [24, 25,

37]. These distributions could be useful for improving emotion

prediction and classification. In practice, with manually assigned

emotion labels, valence and arousal are observed to be correlated

[10, 32]. However, for continuous emotions, the distribution of

valence and arousal does not always match the theoretical models,

which may be caused by labelling noise, stimulus bias and so on.

Due to the noise in practice, the distribution models may not be

applicable to emotion annotations or predictions directly.

Only a few studies have explored the pre-processing and post-

processing of the distribution of arousal/valence annotations [18,

41, 28]. There are a few papers working on rating annotators or

maximising the mutual information of multiple annotations [5,

19, 18]. However, so far there is no study which compares the

performance of several denoising and dimensionality reduction

methods.

The contributions of this work are mainly two-fold:

• First, we propose a new approach to obtain reliable emotion

annotations from multiple annotators. To accomplish this

task we started by applying a moving average to smooth

each individual annotation, and subsequently extract their

properties using several dimensionality reduction methods.

• Secondly, we study the distribution of arousal and valence in

an unsupervised way and use it to regularise emotion predic-

tions from multiple modalities. To the best of our knowledge,

using the dimensional emotion distribution to support data-

driven methods has not yet been explored. Outlier detection

methods, such as the Local Outlier Factor (LOF), are applied

to learn the local density deviation of a given data point with

respect to its neighbours [7]. Once the local outlier factor

has been learned, we use it as a regulariser to improve the

prediction accuracy.

2 RELATEDWORK
Emotion recognition is a multidisciplinary topic that has been ex-

plored by many researchers including psychologists, computer sci-

entists and neuroscientists. In this section, we present the related

work on modelling emotion distributions, annotation correction

and multimodal recognition aspect respectively.

2.1 Distribution of Valence and Arousal
Dimensional models of emotion have attracted significant atten-

tion, providing a methodology for annotating different "degrees" of

emotional intensity in a continuous fashion. In 1980, Russell [37]

(a) Annotation density distribution from

Annotator 1 on Video 1 (darker red color

indicates more points locate in that area)

(b) Annotation density distribution of

from Annotator 2 on Video 1

(c) Annotation values from Annotator 1 and 2 on Video 1 and 2

Figure 1: Emotion annotation distribution on valence and
arousal from RECOLA dataset [36]

formulated that emotions have a circumplex distribution in arousal

and valence as shown in Figure 2. The theory assumes that different

emotions are uniformly dispersed on a two-dimensional circular

space (i.e. arousal and valence). This theory is widely accepted by

many researchers [15, 22, 20]. Later Barrett et al [14] presented a

bipolar distribution in valence and arousal replacing the circumplex

model. In the bipolar distribution, as shown in Figure 1(a), emotions

present an ascending bipolar continuum of valence, that varies from

negative to most positive [25]. This bipolar shape has been applied

in [32, 26] as prior knowledge for choosing the emotional stimuli.

However, psychological studies showed that self-reported degrees

of happiness and sadness do not correlate [42] suggesting that the

bipolar model may be oversimplified. That leads to research such as

the independent model [24] where positive and negative valence are

independent dimensions and do not share a common axis (shown

in Figure 2 (B)). While some researchers assume that valence and

arousal are independent, it has been shown that there is actually

a strong dependency between them. For instance [10] has found

that the distribution of annotations in the valence/arousal space is

U-shaped, as shown in Figure 2(C).

In practice, emotion labelling obtained from humans is slightly

different from the aforementioned representations. This may be

caused by the noise in the handcrafted emotion annotations. In [20],

[44] and [1], the labelled data presents a similar oval shape, instead
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Figure 2: Circumplex Dimensional Model[37]

Figure 3: Valence-arousal Dimensional Model[25]

of a strict bipolar distribution or a U shape. Also, the research so far

was on discrete emotion labels instead of continuous annotations.

This work will attempt to model these distributions using real and

continuous arousal and valence ratings for the construction of

statistical and data-driven models.

2.2 Emotion Annotation Correction
The downside of emotion annotations is that they can often suffer

from noise, due to the different emotional perception and reaction

time of the different annotators. This can lead to temporal disso-

nance between the different annotations. Furthermore, annotation

errors can also occur such as miss-clicks or misapprehensions,

which can increase inaccuracy. Thus, a processing algorithm ex-

hibiting robustness and fault tolerance to manual annotations is

needed.Mariooryad and Busso [28] proposed to compensate annota-

tion dissonance by using a time-shift, which maximises the mutual

information between the emotion expressions and the annotations.

In [41], three different filters (moving average, Savitzky-Golay, and

a median filter) were applied to smooth the annotation data, where

the moving average filter was suggested as a promising method

for increasing performance. Annotation fusion by [31], [5] applied

time wrapping method and additional comparative rank-based in-

formation, which obtained better recognition results. While in [19],

it took the uncertainty of human emotion perception into account

based on the inter-rater disagreement level. [18] proposed an expec-

tation maximisation approach to model specific distortions from

each annotator such as perception bias and delay. It is important

to note that this particular research topic is still young, and more

work on this topic is still needed.

2.3 Multimodal Emotion Recognition
Previous research has shown that different deep learning archi-

tectures such as the auto-encoder, Convolutional Neural Network

(CNN) and Deep Belief Network (DBN), can generate robust fea-

tures effectively from a wide range of modalities, capable of re-

vealing complex hidden cues of emotion. A large portion of the

research focuses on basic emotion classification (e.g. [34] and [17]).

Recently, databases such as SEMAINE [29] and RECOLA [36] with

time-continuous emotion ratings have shifted the methods from

classification to regression to predict continuous emotion in several

emotion dimensions.

Models for dimensional emotion recognition can be classified

into two categories. The first class is aimed at feature extraction

whilst the second one specialises more in emotion recognition with

multiple modalities. In the first category, different levels of features

are derived from audio, visual and physiological signals. Previous

work has extensively explored audio features from an acoustic, func-

tional and linguistic perspective in [38]. The interlocutor influence

has been taken into consideration, while extracting the audio fea-

tures by [8]. Currently, deep convolutional neural networks (CNN)

are the state-of-the-art models for extracting visual features ([6, 40,

21]). A deep autoencoder network has been proposed by Ngiam et

al [30] to extract features from both audio and video modalities to

predict emotions and has shown to be promising. Although for the

physiological modality, this has rarely been explored. Currently,

features from physiological signals are mainly low level such as the

heart rate variability [2].

To predict the dimension emotions, the second category of mod-

els contains non-temporal and temporal models. The non-temporal

models usually require contextual features while temporal models

emphasise the dynamic information in the model directly. Long

Short Term Memory (LSTM) models are currently widely used for

temporal models, where several topologies are explored [16, 6, 8].

For the emotion prediction task, it is necessary to determine the

appropriate length of temporal windows, which can vary based

on the modality [43]. For example, according to [17, 16, 35], audio

signals change faster over time than video signals and physiologi-

cal signals. To take full advantages of different modalities, fusion

techniques can be applied at feature, decision or modality level. Ac-

cording to [17, 8, 43] and [30], the multimodal recognition methods

outperform unimodal methods significantly.

It is apparent from literature that deep learning methods have

been extensively used for the task of multimodal emotion recog-

nition. In contract, the approaches of annotation correction and

dimensional emotion distribution, still needs more exploration.

3 PROPOSED METHOD
In this section, we introduce our methods for annotation correction

and dimensional emotion distribution learning. Figure 4 showcases

the pipeline of our proposed system: emotion labels are learned from

annotators’ annotations as well as multimodal information. With

annotation correction methods, we get a set of intermediate arousal

and valence labels for the training dataset. Emotion recognition will

be trained with multimodal features and the intermediate labels.

The distribution of arousal and valence is learned from the same

set of labels as well. For the validation dataset, arousal and valence
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Figure 4: Schematic diagram of proposed method

values are predicted from multimodal features and then regularised

by the learned arousal and valence distribution. At the same time,

the distribution model will be updated with the new set of labels. In

this way, we get the final emotion labels represented by the yellow

box in Figure 4.

3.1 Annotation Correction
Our label correction methodology analyses annotations from two

different perspectives: the individual perspective and the group

perspective. The individual perspective consists of a denoising

methodology for each individual annotation (i.e. filtering). The

group perspective combines the multiple annotations in a single

output label. It contains dimensionality reduction methods for find-

ing consistent emotion labels.

At the individual level, it is inevitable that each annotation from a

given annotator contains noise owing to the unfamiliarity with the

annotation tool, the arousal/valence concept, or simply mistaken

mouse clicking [35]. It is reasonable to hypothesise that people

do not get from one emotional state to another instantly [41], but

there is a gradual passage that takes them from one state to the

next. Therefore, when there are very sudden changes in the anno-

tation values, they are more likely to be noise. For the RECOLA

dataset, as shown in Figure 1(c), each annotation curve presents

some sharp peaks superimposed on a smooth changing trend. The

aforementioned noise can be removed by applying sliding window

filters on the individual annotation data. The window type, size and

sliding step all influence the denoising performance and informa-

tion loss. We implemented a 1D convolution with several window

types (flat, median and Hanning) and a window size ranging from

2 to 10 seconds. The window size was chosen based on previous

work ([35, 41]).

At the group level, annotators have their unique way of perceiv-

ing and reporting emotions. Analysing Figure 1(a) and 1(b), we can

clearly see that annotations have very different distributions, even

on the same video. Combined with Figure 1(c), it reflects the incon-

sistencies between the different annotations. Even after applying

the individual level process, these inconsistencies between anno-

tators are still apparent, as demonstrated in Table 1, which shows

the valence-arousal 2D Pearson correlation coefficients. Thus we

propose to apply unsupervised dimensionality reduction methods

on annotations from all annotators to get one set of reliable repre-

sentation of arousal and valence. To be more concrete, we tested

sparse principal component analysis and feature agglomeration

methods.

Sparse Principal Component Analysis (SPCA) [47] extracts the

sparse components that best reconstruct the multivariate dataset.

SPCA is an extension of classic principal component analysis (PCA)

for reducing data dimensionality by adding sparsity constraints on

the inputs. One big advantage of SPCA is that it allows to choose the

leading principal axis, which means the obtained low-dimension

data can be interpretable. Also compared with ordinary PCA, SPCA

can find linear combinations that contain fewer input variables. For

the implementation, a minimal reconstruction error approach is

applied following [47].

Assuming that all annotations on the same video contain consis-

tent emotion features, feature agglomeration ([39]) was also tested.

Feature agglomeration is a hierarchical clustering method that

merges similar features to find a low-dimensional representation of

the original data. It starts from the ’bottom’ where each observation

is assigned to its own cluster. Then pairs of clusters are merged as

one and moves up the hierarchy. For the merge strategy, we used

recursive Ward’s method [46] to merge the pair of feature clusters

that minimally increases within-cluster variance. The Euclidean

distance d(i j) between cluster Ci and Cj is updated as:

d(i j)k = αidik + α jdjk + βdi j + γ |dik − djk |

where dik and djk are the pairwise distances between clusters Ci ,
Cj , andCk . Parameters αi , α j , β and γ depend on cluster sizes. The

feature agglomeration methods tend to have uneven cluster sizes

without constrains. These parameters are used as cluster connec-

tivity constrains [46] and are updated at each step when a pair of

clusters is merged.

3.2 Outlier regularisation on predicted labels
As mentioned in Section 2.1, arousal and valence are highly, though

not completely, correlated. We calculated the mean Pearson corre-

lation coefficient between arousal and valence on the training and

validation subsets of RECOLA. Using the processed annotations

obtained through the methodology presented in 3.1, we observed a

correlation for arousal and valence of 0.37 and 0.41, respectively.

We also observed the distribution density of the two dimensions on

the whole training dataset, shown in Figure 8. The density observed

in Figure 8 showcases a similar distribution as in [20], [44] and [1].

There is a whole research branch on learning data distributions. For

this work, the joint arousal/valence distribution is learned in order

to improve emotion prediction accuracy. To learn this distribution,

we propose the Local Outlier Factor (LOF) method.

This particular algorithm assumes that the density around an

outlier object is significantly different from the density around its

neighbours. Thus the k-NN algorithm [7] is used to calculate the

local density between neighbouring points. As shown in Figure 5,

point D has a lower local density than point A. If the red circle is the

learned decision function for the dimensional emotion distribution,

the distance between point A and B is the maximum distance. Thus

point D is out of the reachablity distance and considered as an

outlier. Several other outlier detection methods were also tested

such as: the isolation forest[27], one-class support vector machine

(SVM) [9] and robust covariance [45].

To improve the emotion prediction accuracy and correct pre-

diction outliers, we can check each pair of predicted valence and

arousal with the learned distribution. If one pair of predictions are
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Table 1: 2D Pearson Correlation Coefficients Between Annotators on Arousal and Valence

Pearson CC Annotator1 Annotator2 Annotator3 Annotator4 Annotator5 Annotator6

Annotator1 1 -0.0719444 0.414125 0.491069 0.0446386 -0.127891

Annotator2 -0.0719444 1 0.212089 -0.195357 0.212211 0.334771

Annotator3 0.414125 0.212089 1 0.190809 0.263295 0.192494

Annotator4 0.491069 -0.195357 0.190809 1 -0.217903 -0.363663

Annotator5 0.0446386 0.212211 0.263295 -0.217903 1 0.259848

Annotator6 -0.127891 0.334771 0.192494 -0.363663 0.259848 1

Figure 5: Local Outlier Factor: Each point is compared with
its local neighbours instead of the global data distribution

detected as an outlier, we first check the prediction points from

their connective time frames. If neither of these points are outliers,

we take the average of them and regularise the outlier by taking the

average value. Otherwise, we find the nearest neighbour and cor-

rect the outlier towards that direction, using half of the Euclidean

distance between the two points. This regularisation is based on

the assumption that emotions do not change abruptly [41].

Since the main goal of this study is not to propose a new method

to map the multimodal feature space to the targets, we used the

baseline emotion recognition system fromAVEC 2018 [13] to get the

predicted dimensional emotion values and to evaluate the proposed

methods.

4 EXPERIMENTS AND RESULTS
The main purpose of this study is to examine the feasibility of

learning and regularising annotations in order to improve emo-

tion recognition performance. As illustrated in Figure 4, we start

by validating our proposed methods on the annotation data from

RECOLA [36]. Subsequently, we investigated the emotion recogni-

tion performance using the baseline model from AVEC 2018 on the

pre-processed annotations.

4.1 Dataset and Baseline Model
The RECOLA dataset from the AVEC 2018 challenge [36] is used

for this study. It includes audio, video and physiological record-

ings (electro-cardiogram and electro-dermal activity data) from 27

French-speaking subjects aged between 18 and 25 years old. We

Window 2s 6s 10s

Arousal 0.97 0.86 0.78

Valence 0.98 0.94 0.88

Table 2: Average R2 result of different window sizes of the
training set

used the subset offered by the GES subchallenge, which contains

9 subjects for the training dataset and another 9 subjects for val-

idation. The remaining 9 subjects are used as the testing set for

the challenge. The results reported below are all evaluated from

the validation set. The duration of each recording is 5 minutes.

Arousal and valence are annotated by six annotators every 400 ms

(each video frame) and the annotation values are scaled between

[-1, +1]. The baseline emotion recognition model [13] provided by

AVEC 2018 extracted features with several open-source tools such

as openSMILE [11] and openFace [4]. The audio baseline features

contains Bag of Audio Words (BoAW) [11], DeepSpectrum[3] and

Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) features

[12]. Physiological features includes mean heart rate and Heart

Rate Variablity (HRV), Skin Conductance Level (SCL) and Skin

Conductance Response (SCR) while feature extracted from videos

include: appearance, action units, Box of Visual Words (BoVW) and

geometric features. To evaluate the algorithm performance, the

concordance correlation coefficient (CCC) is used, which is defined

as:

CCC = 2 ×
COVAR[X ,Y ]

(VAR[X ]
+ (E[X ] − E[Y ])2) (1)

where X denotes the prediction values and Y the gold standard

values.

4.2 Results of Annotation Correction
The information loss is evaluated when the sliding window is ap-

plied. For each annotation, the data is filtered with flat (moving

average), median and Hanning windows with a small, medium,

and large window size, which contains 50, 150, and 250 samples

respectively. The window slides forward with a constant single

frame (40 ms). Figure 6 presents an example of applying the filter-

ing technique to the annotation data of a video from the RECOLA

dataset. The result of this interpolation was compared with the

original rating by computing CCC. Pairwise t-test is applied to

check whether the difference of performance is significant.

Results (2) show that with the size of the sliding window increas-

ing, the information loss increases faster on arousal than on valence,
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Figure 6: Filtering with three types of sliding windows: flat,
median and Hanning

which indicates that the emotional valence changes less rapidly than

arousal over time [35]. The filter could remove high-frequency fluc-

tuations noticeably in the annotations. Large window size resulted

in distinct distortion in the outputted annotation data compared

with the original annotation data. Comparing the flat window to

the Hanning window, the later conserves more high-frequency fluc-

tuations, while the former leads to a smoother annotation curve.

Each annotation is subsequently normalised through z-score.

We evaluated the window influence on emotion recognition

with the baseline model.The performance (CCC) improved when

the window size increased for both Hanning and flat windows,

which confirms the findings in [41]. While for median window, the

performs drops with the largest window size. Both median and

flat window outperform the Hanning window with an identical

window size. That indicates that the high frequency information

kept by the Hanning window is more likely to be noise. The median

filter with window size equals to 6 seconds achieved the best CCC

performance.

It can be seen in Figure 7 that the annotation learned from dimen-

sionality reduction methods have analogous trends with different

variance. Comparatively to the baseline method (arousal CCC =

0.775 and valence CCC = 0.57), we can observe that feature ag-

glomeration achieved a higher CCC, 0.816 for arousal and 0.583

for valence. While SPCA has a worse performance with 0.622 on

arousal and 0.505 on valence. The SPCA method maximises the

variance among annotations, and feature agglomeration merges

the two nearest clusters, which minimises the variance within the

merged new cluster. That indicates that the consistency among

annotators contains more reliable emotion information both for

valence and arousal.

4.3 Distribution of Arousal and Valence
In order to learn the joint distribution of arousal and valence, we

compared several widely applied outlier detection methods. In this

analysis both the supervised and unsupervised methodologies are

Figure 7: Results of dimensionality reduction

Figure 8: Density Distribution of Arousal and Valence

included: local outlier factor (LOF), one-class SVM, isolation forest,

and robust covariance. As shown in Table 3 and Figure 10, local out-

lier factor outperforms the other methods significantly. Although

the difference on the false-positive ratio is not prominent with an

isolation forest, the LOF detected much more outliers when tested

on the validation set with 8000 points. LOF determines outliers

based on the local density deviation, which is calculated by k near-

est neighbours. Usually k is selected between 20 to 30 [7]. We set

k to 50 with the assumption that emotion does not change much

within 2 seconds (50 frames). When using the learned decision

function as a regularizer for the predicted values, it significantly

improves the unimodal (audio, video and physiological modality)

prediction by 0.061 (T=3.51, p=.017). The improvement on arousal

is shown in Figure 9. While for the multimodal prediction, the im-

provement is minor. The multimodal fusion significantly improves

the prediction accuracy (T=6.79, p < 0.01) compared with a unique

modality. Consequently, the inaccurate predictions of the multi-

modal fusion are mostly located within the learned arousal/valence

cluster. Consequently they are not recognised as outliers and not

regularised.
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Figure 9: CCC of Arousal and Valence: Unimodal prediction
before and after arousal-valence regularisation.

Table 3: False Positive Ratio of Outlier Detection (Bold:best
performance; *: p<0.02)

LOF Random Forest One-class SVM Robust Covariance

5.6 5.7 10.1* 10.7*

5 CONCLUSIONS AND FUTUREWORK
This paper provides a new approach to the AVEC 2018 GES chal-

lenge [13] by extracting robust annotations from multiple manual

emotion labels. This approach consists of sliding window annota-

tion denoising, feature agglomeration on multiple annotations and

local outlier factor regularisation of predicted arousal-valence val-

ues. Our approach outperforms the baseline method introduced by

the AVEC 2018 challenge. The concordance correlation coefficient

(CCC) on valence and arousal achieved by our method are 0.589 and

0.821 respectively, while the baseline results are 0.57 and 0.775. Our

primary goal is to enhance emotion recognition performance by

improving the robustness of annotation data before proceeding into

emotion recognition. Empirical results showed that our proposed

methods for treating individual and multiple annotations improved

emotion recognition results to 0.821 and 0.589 on arousal and va-

lence respectively. Learning the arousal-valence distribution and

applying an outlier detection method as a regularisor significantly

improved the performance fromunimodal emotion prediction. How-

ever, it is important to note that this work could still be improved

in the following ways. This work was tested exclusively on the

RECOLA database with six annotators. The proposed method may

be overfitted on this particular dataset. Further experimentation

is necessary to improve the robustness of the suggested approach

and validate its performance on different databases. Combining the

time-series of dynamic annotation features and the valence-arousal

spatial space is an interesting solution for emotion recognition. On

top of that, evaluating and judging the quality of a gold standard

continues to be an open question. Even if results improve through

the proposed methods, it does not guarantee that the processed

annotation will be "authentic information".

In the future, we would like to explore the multiple continu-

ous annotations with temporary models and combine with the 2D

spatial distribution in the valence/arousal space proposed in this

paper. In this way, the deep learning architectures trained on video

recognition tasks could be transferred on annotation processing,

which may generate useful features for recognising emotions.
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