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Abstract
In this paper we present a case study on drinking gesture
recognition from a dataset annotated by Experience Sam-
pling (ES). The dataset contains 8825 "sensor events"
and users reported 1808 "drink events" through experi-
ence sampling. We first show that the annotations obtained
through ES do not reflect accurately true drinking events.
We present then how we maximise the value of this dataset
through two approaches aiming at improving the quality of
the annotations post-hoc. First, we use template-matching
(Warping Longest Common Subsequence) to spot a sub-
set of events which are highly likely to be drinking gestures.
We then propose an unsupervised approach which can per-
form drinking gesture recognition by combining K-Means
clustering with WLCSS. Experimental results verify the ef-
fectiveness of the proposed method.

Author Keywords
Gesture recognition; dataset annotation; activity discovery;
dataset curation

ACM Classification Keywords
H.3.m [Information storage and retrival]: Miscellaneous



Introduction
Gesture recognition has applications in several fields such
as healthcare and sports [7]. In order to create a reliable
gesture recognition system, it is important to have a well-
annotated dataset [1]. However, creating high-quality datasets
may require to rely on lab-like naturalistic environments,
with limited ecological validity [11]. Activity recognition re-
search generally strives to employ datasets with unrealisti-
cally "perfect" ground truth annotations. In an ecologically
valid data collection, however, it is likely that a highly valu-
able dataset is acquired, but that only poor quality annota-
tions are available.

Experience sampling (ES) is a real-time annotation ap-
proach done by users themselves a mobile device [13].
This allows more ecologically valid data collection in ev-
eryday life (e.g. no need to video record the experiment).
However, ES can lead to the following issues: i) the syn-
chronisation between the activity performed and the label
annotated by the user is generally of poor quality, with the
user annotating the activity after the event, or combining
multiple activities in a single annotation; ii) the user may for-
get to label an event, iii) the user may annotate an activity
with the wrong label.

In this work, we investigate how to make sense of a dataset
with high business value, which has been annotated through
ES, which led to numerous deficiencies in the annotation
quality. The dataset contains drinking gestures annotated
by the users with a mobile application. The dataset was col-
lected in an office environment using a 3-axis accelerome-
ter and it is made by 8825 "sensor events", with 1808 "drink
events" annotated by users through ES. Using this dataset,
we aim to address two main challenges: i) to understand
why the quality of the annotation is low and consequently
how would it be possible to improve in future data collection

and ii) to understand whether it is still possible to use such
big dataset without relying on the annotations for spotting
drinking gestures and how. The contributions of this work
are:

• A study of the annotations. We analyse the user an-
notations, their distribution in time during the data
collection, and their relation to the sensor events, in
order to understand the causes of the low quality and
where the data collection process can be improved.

• A template matching approach, based on Warping
Longest Common Subsequence (WLCSS) [8], to ex-
tract a subset of drinking gestures, within a certain
level of confidence. This subset will allow the dataset
to be used for research purposes.

• An unsupervised algorithm (K-Means) adapted to
template matching. This algorithm is a new variation
of K-Means [4] where the WLCSS is used as distance
measure. It allows to cluster gestures based on the
raw signal of the sensors. At the same time, it clus-
ters gestures taking in account the variation in the
way they can be performed, by using WLCSS which
has been successfully used for robust gesture detec-
tion [8].

Related work
The quality of annotations obtained through ES can be poor
[13]. Annotations issues can include time shift of a label
with respect to the activity, as well as wrong or missing la-
bels [9].

Some approaches suggested to improve ES with manual
re-annotation [13]. This is not feasible economically for a
large number of users and however, in [13] the quality of



the annotations was still not sufficient for the training of
machine learning algorithms. The impact of ES on activ-
ity recognition has been studied in [2]. However, the authors
simulated the ES in a controlled environment and they used
only the data corresponding to the user annotations.

The problem of poorly labelled data can be tackled during
the annotation itself or during the training of the machine
learning algorithm. A method useful to reduce the effort of
the users while annotating their activity has been proposed
in [10]. The authors proposed a one-time point annotation
method that requires the users to only label a single mo-
ment per activity rather than specifing the beginning and the
end. The method then recognizes automatically the bound-
ary of the activity in the annotated signal. Nevertheless, it
requires that the labels are within the execution interval of
the activity.

Unlabelled or poorly labelled data are available in big quan-
tities nowadays due to the large diffusion of sensing de-
vices, such as smartphones and wearables devices. For
this reason, methods such as semi-supervised learning,
active learning and unsupervised learning have been ap-
plied in order to extract useful information from sparsely
annotated data. A combination of active learning and semi-
supervised learning has been studied in [12]. The authors
used a dataset of daily activities collected with two sub-
jects wearing accelerometer sensors and motioned tracked
with infrared sensors. This approach however uses a de-
cision window of 30 seconds long and thus is not suitable
for recognizing gestures that occur in a short time. Unsu-
pervised learning has been successfully applied to activity
recognition in [5] and more recently in [3]. In the latter, an
activity discovery method based on clustering is proposed
to help with ES, although it is designed for periodic move-
ments rather than sporadic gesture. Unsupervised learning

has been applied to gestures clustering in [14], where a K-
Means clustering has been evaluated specifically for hand
gestures.

Several studies have tried to address the challenge of ac-
tivity recognition from poorly annotated data. While most
of them used synthetic dataset and focused on periodic or
long activity (such as walking, running, etc.), to the best of
our knowledge none of them applies to drinking gestures
collected in a real-life office environment.

Dataset
The dataset was collected by providing a set of mugs to 60
users (one mug per user) in an office environment. Each
user collected data for a period of 4 days. Each mug was
instrumented with a logger comprising a 3-axis accelerom-
eter [15]. The loggers were placed in a hollow at the bottom
of each mug. As the mugs were customly made, the posi-
tioning of the loggers was not the same in all mugs. The
loggers sample acceleration at 20 Hz, with a timestamp in
ms. In order to save power, they start logging acceleration
when a movement is detected. After 5 seconds of inactiv-
ity they automatically stop the recording, without record the
inactivity period. We use the term sensor events to refer to
every recording performed by the loggers that lasts at least
4 seconds (as configured on the loggers for this data col-
lection). Therefore, sensor events can occur for a variety of
reasons: moving the mug on the desk, washing it, drinking
from the cup, etc.

The data annotation was performed through experience
sampling by the users themselves. They labelled each
drinking event manually using an Android application in-
stalled on their smartphones. Each annotation could be
punctual or delayed. An annotation is considered punctual
when it was entered immediately after the drinking event.



It is considered delayed, when it refers to an event in the
past. The users could specify in the application whether
their annotation was punctual or delayed. However they did
not have to provide an indication as to how much the de-
lay was. Furthermore, there were no guidance indicating
after how much time an annotation should be considered
"delayed" rather than "punctual".
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11-27 08 11-27 20 11-28 08 11-28 20 11-29 08 11-29 20 11-30 08 11-30 20

R
e
c
. 

e
v
e
n
ts

11-27 08 11-27 20 11-28 08 11-28 20 11-29 08 11-29 20 11-30 08 11-30 20

D
e
la

y
e
d
 a

n
n
.

11-27 08 11-27 20 11-28 08 11-28 20 11-29 08 11-29 20 11-30 08 11-30 20

P
u
n
c
tu

a
l 
a
n
n
.

(b) User 461

Figure 1: Example of annotations
of two different users, over the 4
days period. The start time of the
sensor events are displayed in the
top plot of each figure, one thin line
per event. The delayed and
punctual annotations inserted by
the users are displayed
respectively in the second and the
third plot of both figures. The
X-axis reports date and time, in the
format "MM-DD HH". It is also
possible to notice the differences in
the way two users annotated the
drinking events.

The resulting dataset is made by 8825 sensor events, 1808
user annotations, of which 1477 marked as "punctual"
and 331 as "delayed". The percentage of annotated ges-
tures with respect to the total amount of sensor events is of
20.5%.

User annotation analysis
We aim to analyse the causes of the poor annotations in
order to improve future data collections, as well as helping
during the next steps of this study.

Figure 1 indicates the main challenge of the annotation pro-
tocol, which is how users understood differently how and
what to annotate. The data collection protocol did not re-
quire participants to annotate drinking solely when using
the instrumented mugs: they could annotate drinking as
well when using regular mugs. It might happen that users
annotated drinking events performed using other cups. The
protocol did also not specify what to consider as a "drinking
event". Users could interpret it as referring to a single sip,
multiple sips, or drinking the entire cup. It is also possible
to notice how the annotations are not perfectly aligned with
the sensor events.

We also studied the distribution of the labels, per user, over
the 4 days of data collection. It could help to understand the
users’ commitment in annotating their drinking gestures, as-
suming they were keeping the same drinking habits among
all the days. This may be useful in order to spot days for

which the annotations can be more reliable. The results are
presented in Figure 2. While there is no significant change
between day 1 and day 2, with an average increase in the
number of annotation of 0.24%, starting from day 3 the
engagement decrease by 11% on average among all the
users. The plot shows also a great variability in the data:
there were users that increased their commitment over
the 4 days, as well as users for which the commitment de-
creased over the 4 days.

From the analysis of the annotations, it can be concluded
that they were not reliable enough to be used together with
the data for the supervised classifier training.

Gesture classification
In order to make the collected dataset useful for drinking
gesture recognition, each event recorded by the sensors
had to be classified in drinking/non-drinking. As highlighted
previously, the users annotations cannot be used as-is as
they are not accurate enough. A manual relabelling of the
entire dataset was unfeasible given the lack of any video
recordings.

We developed an approach based on a template match-
ing method (TMM) to automatically spot a subset of events
which are believed to be drinking gestures with a certain
confidence value. The approach then uses few events
which are manually identified as drinking events with high
confidence to train the TMM.

Data processing and training set selection
We used a heuristic method to select a few sensor events
as the training set. We performed a few drinking gestures
using the same instrumented mug and discovered that the
Z-axis of the accelerometer quite clearly indicates the ges-
ture of lifting the cup to drink. A template of such gesture
is displayed in Figure 3. A subset of gestures visually sim-



(a) Drinking gestures

(b) Non-drinking gestures

Figure 4: Training set of gesture. 4a displays the templates
chosen as drinking gestures. 4b shows those selected as
no-drinking gestures. All the plots show the templates
downsampled to the fixed length of 170 samples (X-axis). The
Y-axis represents the acceleration within a range of ± 2g.

ilar to this template was selected manually from the entire
set of the available gestures. We selected this subset trying
to include some variability in the way the drinking gestures
were performed. Another subset of non-drinking gestures
was selected too, chosing the templates that were very vi-
sually different from the drinking gestures. The training set
is displayed in Figure 4. It is formed by 78 events: 37 drink-
ing gestures (4a) and 41 non-drinking gestures (4b).
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Figure 2: Change in the user
commitment in the annotation
during day 2, 3, and 4. The gray
bars represents the percentage of
annotations for each day with
respect to day 1. Day 2 displays an
increment of 0.24%; Day 3 and 4
an average decrease of 11% in the
number of annotations. The
vertical bars represents the
standard deviation for each day.
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Figure 3: Template of a drinking
gesture, performing a single sip.

All the instances in the dataset were filtered using a But-
terworth low pass filter with cut off frequency set to 10
Hz. They were also resampled to a fixed number of sam-
ples. The number of samples was selected as the average

length of a drinking gesture, which is 170. This step was
performed in order to reduce the impact of non-drinking
events that can last longer time than drinking gestures (e.g.
washing the cup, moving the cup around the office, etc.).

Template matching using WLCSS
The Warping Longest Common Subsequence (WLCSS) [8]
is an algorithm developed for template matching in real-time
applications. Using dynamic programming, the algorithm
can compute a matching score between a template and a
stream, updating it at every new sample of the stream. It
can be used for gesture recognition as it can handle ges-
tures performed with variation in their speed of execution.
This is achieved by three parameters: reward (R), penalty
(P) and acceptance distance (ϵ). The algorithm is shown in
(1).

M(i, j) =



0 if i ≤ 0 or j ≤ 0

M(j − 1, i− 1) +R if |S(i)− T (j)| ≤ ϵ

max


M(j − 1, i− 1)− P · |S(i)− T (j)|
M(j − 1, i)− P · |S(i)− T (j)|
M(j, i− 1)− P · |S(i)− T (j)|

if |S(i)− T (j)| > ϵ

(1)

The matching score M(i,j) is computed as function of the
previous scores, by adding a reward (R) when the distance
between the i-th stream sample (S(i)) and the j-th template
sample (T (j)) is below an acceptance distance (ϵ), or by
subtracting a penalty (P) proportional to the distance, when
this is above ϵ. In addition to R,P, and ϵ, WLCSS needs a
threshold T. As WLCSS computes a matching score (M) be-
tween an instance in the dataset and a template, T is used
to define whether an instance matches with the template
(M≥T) or not (M<T). The value of the threshold is related
to the specificity and the sensitivity of the matching algo-
rithm: a high threshold means high specificity, while a low



threshold means high sensitivity. The values of R,P,ϵ and T
must be found during the training phase. We optimized this
based on an evolutionary optimization technique.

WLCSS optimization using evolutionary algorithm
We optimise the values of R, P, e, T to maximise the ability
of WLCSS to distinguish drink from non-drink using an evo-
lutionary algorithm (EA). We used the EA in order to opti-
mize the values of the parameters starting from a randomly
generated population. Each individual of the population
is an array containing the 4 parameters. The EA evolves
this population through the usual selection, mutation and
crossover operators [6]. Here, the F1 score is used for the
selection. The optimization process stops after a predefined
number of iterations, in this case .
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Figure 5: 4 Parameter Logistic
Regression function used to assign
a confidence with the respect to
the threshold.

Given the unreliability of the labels in the dataset, it is not
possible to evaluate precisely the correctness of a match for
this particular dataset. For this reason, we opted to provide
a confidence level for each gesture as output of our method
rather than a simple match/no-match. The confidence level
was assigned using Four Parameter Logistic Regression:

y = d+
a− d

1 + (MT )b

where y is the confidence level, M is the matching cost,
and T is the threshold. The function, displayed in Figure 5,
provides a confidence value in the range [0:1]. The range
is defined by the parameters a = 0 and d = 1. The pa-
rameter b, which define the slope of the function curve, was
set manually to 5. Using a fixed interval for the confidence
makes its value unrelated from the absolute value of T ,
which can vary according with the parameters R, P and ϵ.
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Figure 6: Comparison of WLCSS matching scores with recorded
data for a single user. From the top: the WLCSS matching scores
and the threshold T, as horizontal line (first plot), the start time of
the sensor events (second plot), and the user annotations delayed
and punctual (respectively third and fourth plot). The data are for 4
days period, with the X-axis reporting date and time in the format
"MM-DD HH"

Evaluation
We trained the system using the EA and the subset of in-
stances selected as training set. As the EA is a stochastic
process, we repeated the training 10 times, and we picked
the best values of R=68, P=0, ϵ=28 and T=3364 for the
WLCSS. With these values, we run the algorithm on the
entire dataset, by using the template displayed in Figure 3,
which was selected manually from the training set as tem-
plate.

Figure 6 displays a comparison of the sensor events and
the annotations for a single user, with the corresponding
matching scores. In the figure, it is also reported the thresh-
old: the matching costs >= T are those which are detected
as drinking gesture with a confidence ≥50%. The percent-
ages of total detected gestures compared to the total num-
ber of events are displayed in Table 1, for different confer-



ence values. The low percentages are due to the nature of
the sensors, which were collecting all sort of movements
such as moving the mug on the desk, washing it or even ac-
cidental movements. It is important to note that the number
of detected events is also lower than the number of user an-
notations (1808). This may be a result of the data collection
protocol which did not specify to annotated only the drinking
movements performed with the instrumented mug.

We studied the relation between user annotations, sensor
events and detected gestures. To do this, we assigned to
every recorded event the closest user annotation in time.
Then, computing the time difference between the sensor
events and the corresponding closest annotations, we cre-
ated the cross-correlogram displayed in Figure 7. Figure 8
presents the distribution of the same time differences, but
considering only the gestures detected by WLCSS with a
confidence ≥50%. The latter plot presents a more pointy
distribution, confirming that WLCSS detected events that
were actually closer in time to the user annotations.

Unsupervised learning

Table 1: Number of drinking
gestures detected for some
confidence levels. The
percentages are with the respect to
the total number of sensor events
in the dataset (8825).

Confidence # gestures %

≥ 25% 1481 17%
≥ 50% 942 10%
≥ 75% 543 6%
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Figure 7: Cross-correlogram
representing the distribution of the
delays (in seconds) between the
user annotations and all the events
recorded by the loggers.
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Figure 8: Cross-correlogram
representing the distribution of the
delays (in seconds) between the
user annotations and the events
detected with a confidence ≥50%.

We evaluated also an unsupervised approach in order to
classify the gestures in drinking/non-drinking as it does
not require a training set. We developed a custom method
based on K-Means. We modified K-Means in order to make
it able to cluster gestures performed with variation in their
speed of execution.

K-Means with WLCSS
K-Means is a clustering technique that aims to partition
n observation in k clusters. Each observation belongs to
the cluster with the closest mean. It can be used for unsu-
pervised learning by clustering the input data based on a
distance measure. The algorithm is based on two steps, as-
signment step and update step, which are repeated until a

stopping criteria is met [4]. This criteria can be reaching a
maximum number of iterations, the change of the clusters
in the update step in below a thresholds, etc. We imple-
mented a modified version of the K-Means, where WLCSS
was used a distance measure in place of the Euclidean dis-
tance. The assignment in our implementation is modified as
following:

arg max
ci

WLCSS(x, ci)

where x is a sensor events, ci is the centroid for the i-th
cluster. The function argmin is replaced by argmax as
WLCSS compute a matching score rather than a distance.
The update step is unmodified.

Evaluation
We compared our version of K-Means (named K-Means-
WLCSS) against the standard version that uses the Eu-
clidean distance in order to assign each instance to the
closest cluster. We applied both the implementation on
the training set from the previous step, with k = 2 as the
goal was to distinguish between drinking and non-drinking
gestures. As all the instances were resampled to the same
length, they could be used as feature vectors for both the
implementations, without dealing with different lengths of
the feature vectors (in this case the resampled raw signal).
Applying the algorithms on the training set allowed us to
compare the clustering results with the labels assigned
manually to each gesture, during the data selection. Fig-
ure 9 presents a visual comparison between the clusters
obtained with the two versions of K-Means. For both the im-
plementations, Cluster 1 seems to include mainly the drink-
ing gestures, while Cluster 2 the non-drinking gestures.
We used this consideration in order to evaluate the perfor-
mance of the two algorithms computing precision, recall
and F1 score, presented in Table 2. They are computed by
comparing the clustering of K-Means with the manual labels



of the instances in the extracted subset. K-Means_WLCSS
increased the F1 score by 16%, being able to detect more
variations in the drinking gestures as it is also visible from
Figure 9. It was able to cluster correctly drinking gestures
composed by two sips, such as the instances 8, 16, and 21
of Figure 9c.

Discussion

Table 2: Precision, Recall and F1
score for K-Means and
K-MeansWLCSS computed on the
training set. They are computed
using the manual labels assigned
to each instance in the training set
as ground-truth. The majority of the
gestures in a cluster is used as
classification label for the K-Means
implementations.

K-M K-M_WLCSS

Precision 100% 92.11%
Recall 62.16% 94.6%
F1 77% 93%

We discovered that the main issue for this dataset was the
data collection protocol which was too relaxed. More pre-
cise instructions would increase considerably the quality of
the data. Simultaneously, asking the users for more pre-
cision in following the protocol should be balanced with
shorter sessions of data collection, as we noticed how the
user commitment decreases over 4 days of continuous data
collection. Lastly, as it has been demonstrated that expe-
rience sampling is not reliable, we recommend to increase
the effort in the setup of the experiment by including a video
recording. It would dramatically increase the quality and
re-usability of the dataset, although it would require addi-
tional time for the labelling of the data. In order to reduce
this effort, the video recordings can be used to precisely
annotate just a small portion of the entire dataset. This well-
annotated subset, which can be also collected a-posteriori,
or can be used as training set instead of extracting one
through heuristic. The well-annotated dataset would also al-
low to evaluate more precisely the performance of the TMM
or any other classifier on the complete dataset, through sta-
tistical analysis.

In this study we extracted a subset of events which can be
considered as drinking gestures with a certain confidence.
This extracted subset can be potentially used to re-train the
TMM for a more reliable gesture recognition system. The
re-training phase can be performed using gestures with dif-
ferent levels of confidence: an higher level of confidence

would increase the specificity of the found gestures. De-
creasing this value would increase the sensitivity, potentially
including more variations of the drinking gestures.

In our approaches, we used only the accelerometer signal
recorded on the Z-axis. Using this axis, the lifting gesture
was clear (see Figure 3), but it does not necessarily mean
that the user lifts the cup and drinks. A more extensive and
potentially robust approach would include also the X and
the Y axis, computing the combined acceleration (on X and
Y), in order to spot the actual sipping gesture.

Finally, we aimed to evaluate how an unsupervised learning
technique can be used in order to extract drinking gestures
from a poorly labelled dataset. We implemented a modified
version of K-Means which uses WLCSS as distance mea-
sure for the assignment step. The results are promising:
with 2 clusters it managed to differentiate between drinking
and non-drinking gesture with an 93% F1-score, although
on a limited number of sensor events. A more extensive
evaluation can be performed on the entire dataset, although
without a reliable ground-truth, a validation of the results, in
this case, could be difficult.

Conclusion
In this study, we investigate how to extract knowledge from
a poorly labelled dataset of drinking gestures. We analysed
the user annotations in order to get qualitative information
on how to improve the data collection. We exposed how the
loose protocol created most of the problems and we high-
lighted the need of providing more precise instructions to
the users. Then, by selecting instances manually and using
a template matching algorithm, we demonstrated that it is
possible to extract a subset of instances which are actually
drinking gestures within a certain level of confidence. We
proved that an unsupervised approach based on K-Means



and WLCSS can improve the clustering of gesture over the
standard K-Means implementation. Our method outper-
formed the baseline method by including a wider variety of
drinking gestures and increasing F1-score by 16%.
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Figure 9: Comparison between clusters obtained with K-Means using Euclidean distance (top left, top right), and using WLCSS (bottom left,
bottom right).
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