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Abstract
The objective of this work is to recognize modes of
locomotion and transportation accurately, with special
emphasis on precise detection of transitions between
different activities. The recognition of activities of daily living
(ADLs), specifically modes of locomotion and
transportation, provides an important context for many
ubiquitous sensing applications. The precise detection of
activity transition time is also important for applications that
require immediate response. Many prior signal processing
techniques use a fixed-length window for signal
segmentation, which leads to poor performance for
detecting activity transitions due to the limitation of a single
window size. In this paper, we construct weak classifiers
based on different window sizes and propose a decision
level fusion approach to effectively classify and assign a
label for each sample by fusing the decisions from all weak
classifiers. Moreover, we propose a set of phone orientation
independent features to ensure the system can work with
arbitrary phone orientation. Our team, The Drifters, attained
an F-score improvement of 1.9%, increasing from 94% to
95.9%, using our proposed method compared to using a
single fixed-size window segmentation technique.
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ACM Classification Keywords
[Human-centered computing]: Ubiquitous and mobile
computing.

Introduction
The recognition of activities of daily living (ADLs), especially
the accurate recognition of mode of locomotion and
transportation and the precise identification of transition
time between different activities, has attracted much
research attention [6, 7]. The accurate detection of modes
of locomotion and transportation provides support for many
applications such as healthcare, human-computer
interaction and sociology [1, 8, 9]. In addition, the detection
of activity transition is of special benefit to applications that
require immediate response. For example, the detection of
timely activity transition will help monitor the user caroli
expenditure more accurately. Signal segmentation and
feature extraction are crucial steps towards developing
robust recognition systems since the classification
algorithms are extensively investigated and can be adopted
easily.

The first important step of activity recognition is
segmentation. We need to determine the period during
which the activity happens before we can extract features or
do classification. There are two different approaches. The
first approach is to accurately segment the data based on
certain pattern observations [12, 13]. For example,
dynamic time warping (DTW) is used to do
auto-segmentation based on the discriminative pattern of
each activity [12]. In another work, surface EMG is used to
detect the segment of American Sign Language signs
based on the muscle activity energy [13].When the user is
performing a sign, the muscle activates and the total energy
can be used to detect this period. The second approach is
to use a fixed-size window to do segmentation if accurate

segmentation is not possible [15, 10]. In this approach, it is
very important to select a suitable window size. If the
window size is too small, not enough information could be
captured to generalize the discrimination of this activity. If
the window size is too large, the window may be mixed with
other activities, which will affect the classification
performance. In practice, people usually select the best
window size empirically. In this paper, instead of choosing a
single fixed window size, we look at windows of different
sizes and treat each of them as a weak classifier. Then a
decision level fusion technique is applied to fuse the
decisions achieved by each weak classifier and a final
decision is made for each sensor sample. In this way, our
approach is able to identify the transition time from one
mode of locomotion to another more accurately since the
large window that covers a mixture of two activities will be
treated as an outlier, and the decision will rely on the weak
classifiers that cover only one activity.

Another important step of activity recognition is to extract
useful features from the raw sensor data that can be used to
distinguish different activities. There are usually two
different approaches. The first approach is to construct a
time series feature vector for each activity which can serve
as a discriminative pattern for this activity. Then a pattern
matching/recognition algorithm could be applied for
classification. The second approach is to extract useful
individual features and cascade them together into a feature
vector. These features may include time domain statistical
features, frequency domain features or other meaningful
information extracted from the data. These features can be
fit into a discriminative classifier (e.g. support vector
machine, decision tree or Naive Bayes) to recognize a
certain activity. In this paper, the objective is to determine
the locomotion or transportation, and no clear discriminative
pattern may exist for each mode. For example, for the
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modes train and subway, they may have very similar time
domain patterns. Thus, the second approach is more
appropriate, and is applied by extracting a set of
discriminative features from the raw sensor data for
classification. One challenge when extracting features is
that the sensor orientation is not fixed as the user may put
the cell phone at any orientation in his pocket. Therefore, a
set of orientation independent features are incorporated to
address this challenge.

In the previous work, most of them consider a small dataset
that is captured in a lab environment or in a short period [17,
18]. In this paper, the data is captured in real-life in a period
of four months. The training data size is about 15 GB. We
explore the feasibility of a traditional classification pipeline
and show its effectiveness when applied to big data.

The main contributions of our paper include:

• A set of orientation independent features from data
collected on a cell phone is proposed to ensure the
system works with arbitrary cell phone orientation in
the pocket.

• A decision level fusion technique is applied to fuse
the decisions achieved from each weak classifier. The
weak classifiers are constructed based on different
window sizes.

• The traditional machine learning pipeline is evaluated
on big data for ubiquitous activity recognition and the
lessons learned are described.

The remainder of this paper is organized as follows. The
Sussex-Huawei Locomotion-Transportation (SHL) dataset
used for this work is briefly introduced followed by the
introduction of our proposed approach. We then describe

the experimental setup and discuss the experimental results
followed by the conclusion of this paper.

SHL Dataset and Task Description
This paper presents the techniques our team, The Drifters,
employed for this submission to the Sussex-Huawei
Locomotion-Transportation (SHL) recognition challenge at
the HASCA Workshop at Ubicomp 2018. The goal of this
challenge is to recognize eight modes of locomotion and
transportation activities from the inertial sensors data of a
smartphone. The activities that have to be recognized are
still, walk, run, bike, car, bus, train, subway. The dataset
used for this challenge, SHL dataset, comprises 271 hours
of training data and 95 hours of test data [4, 3]. The data is
recorded by a Huawei Mate 9 smartphone attached to the
right front pocket of a single participant over 4 months. The
orientation of the smartphone is not necessarily fixed. The
participant performed the activities on a daily basis
(approximately 5-8 hours per day) with the phone logging
the sensors data. The data includes readings from 3-D
accelerometer, gyroscope, magnetometer, and ambient
pressure sensor as well as linear acceleration, gravity, and
orientation. Data is collected from all sensors at the
frequency of 100 Hz. All data samples are labeled. For both
training and testing dataset, the whole data is segmented
with a non-overlapped sliding window of 1-minute length.
After segmentation, the order of the frames are randomly
permuted, so there is no temporal dependency among the
frames. The average F1-score over all of the activity
classes is used to evaluate models.

Proposed Approach
Method Overview
Figure 1 shows the diagram of our proposed approach for
recognizing modes of locomotion and transportation. We
first extract features from the raw sensor data for weak
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Figure 1: Diagram of the proposed approach

classifier 1 to weak classifier 5. The difference between the
five weak classifiers is the window size. We set 10, 15, 20,
30, and 60 second windows for weak classifiers 1, 2, 3, 4,
and 5, respectively. After we extract features for each weak
classifier, we select the best classifier for each window from
four popular traditional classifiers (i.e. decision tree, support
vector machine (SVM), nearest neighbor and Naive Bayes)
by measuring F-score of each classifier for the selected
window size. After each weak classifier is determined, the
best parameters (e.g., cost and gamma for SVM) are tuned.
The determined model along with the best-performing
parameters will be used for classification. From each weak
classifier, a decision is determined for a certain sample. The
five decisions are then fused by majority voting to get the
final decision.

Feature extraction
Table 1 lists the features we used in our paper, including
the feature name and feature dimension. From the dataset,

we have 3-d linear acceleration, 3-d gravity, 3-d gyroscope
data, 3-d magnetometer data, 3-d accelerometer data, 4-d
orientation data and 1-d pressure data. Before we extract
the features, we simply select the modalities that will be
used in our approach. We make use of all modalities except
magnetometer and accelerometer. It is well known that
magnetometer suffers significantly from magnetic
interference in the environment. The classification
performance will be decreased if magnetometer data is
added based on our experiments. Since 3-d accelerometer
data is simply the addition of 3-d gravity and 3-d linear
acceleration, it is redundant and is not used. Instead,
features for gravity and linear acceleration are considered
completely separate.
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Feature name Dimension

Mean 1
Variance 1
Standard Deviation 1
Root Mean Square 1
Mean Cross Rate 1
Skewness 1
Kurtosis 1
FFT Coefficients 3
Entropy 1
AR coefficients 10
Integration 1
Signal Magnitude Area 1
Band Power Ratio 4
Zero Cross Rate 1

Table 1: Features

As for the features themselves, most of them are
well-known features for activity recognition [14]. For the
band power ratio, we look at the ratio of power in frequency
bins of 0-0.5Hz, 0.5-1Hz, 0-1Hz and 1-2Hz to the total
signal power. The auto-regression (AR) coefficients indicate
the temporal relationship of the signal within one window.
For the FFT coefficients, we use the first three orders.

We extract both cell phone orientation dependent features
and orientation independent features. For orientation
dependent features, we extracted the features show in Table
1 for each dimension of 3-d linear acceleration, 3-d gravity,
3-d gyroscope, 4-d orientation data and 1-d pressure. For
each dimension, we have 28 features and the total
orientation dependent feature size is 14*28 = 392. The
orientation independent features are introduced in the next

section.

Orientation independent features
One of the challenges of recognizing ADLs using cell
phones is the sensor orientation displacement. The user
could put the cell phone at any orientation in his pocket and
the orientation of the cell phone may be changing constantly
due to the user’s motion. Thus, it is very important to
incorporate orientation independent features to ensure the
system works with arbitrary sensor orientation.

In this paper, we propose the following orientation
independent features: magnitude of 3-d linear acceleration,
magnitude of 3-d gravity, magnitude of 3-d gyrocope and
axis angle feature. For every sample, the magnitude is
calculated as L2-norm (i.e. least squares) of 3-d signal. The
axis angle aa is calculated as in Equation 1. w is the last
element of an orientation quaternion which is given by [x, y,
z, w ]. Axis angle tells how much total rotation happens with
respect to a certain orientation. The total rotation is
irrelevant to the phone orientaion.

aa = 2 ∗ acos(w) (1)

We extract the same features in Table 1 for all these four
orientation independent features and it leads to a feature
size of 4*28 = 112. Therefore, the total feature size for our
approach is 504. All the features are then normalized to the
range of [0,1] for before the classification is performed.

Segmentation and Weak Classifier
As discussed in the Introduction, we use a windowing
technique for segmentation. However, it is challenging to
choose a single, suitable window size. On one hand, if the
window size is too small, not enough information might be
captured to distinguish a certain activity. On the other hand,
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if the window size is too large, it may cover more than one
activity, which will increase the misclassification rate. In this
paper, we consider five window sizes, each of which is
treated as a weaker classifier. The five window sizes we
consider are: 10 seconds, 15 seconds, 20 seconds, 30
seconds and 60 seconds. These are all reasonable window
sizes for our application.

For each weak classifier, we select the best-performing
classifier from four popular traditional classifiers (i.e.
LibSVM, decision tree (DT), 10 nearest neighbor (10-NN)
and Naive Bayes(NB)). An open source machine learning
tool, Weka, is used for this task [5]. To select the best
classifier for a given window size, the 4 traditional classifiers
are trained, and their average F-1 scores from 3-fold cross
validation are compared. Table 2 shows the average F-1
scores for different classifiers for a 60-second data window.
We can see that LibSVM achieves the best performance
and it is chosen as the classifier for 60-second window size
weak classifier. From the table, we also observe that Naive
Bayes achieves only 68.1% in F-score. This huge difference
highlights the necessity of selecting a model. The same test
on weak classifiers was used for all window sizes. For each
window size, LibSVM achieves the best results, and it is
therefore chosen as the classification model for all weak
classifiers.

Classifier F-1 score

LibSVM 94.01%
NB 68.1%
10-NN 92.1%
DT 83.1%

Table 2: Average F-1 score for 60-second weak classifier of
different classifiers

Once the model is determined, the parameters should be
tuned to achieve the best performance. Different
parameters will lead to different classification performance
and bad selection often leads to poor performance. Table 3
shows the F-1 score of 60 seconds window weak classifier
based on different parameter selections for LibSVM. We
can see a huge difference when selecting different
parameters even for the same classifier. In this paper, we
use a grid-search algorithm to determine the best
parameters for LibSVM. For all weak classifiers, the radial
basis function is used as the kernel. The LibSVM Matlab
version is used in this paper for this purpose [2].

Cost Gamma F-1 score

0.5 0.5 19.66%
0.5 0.0078125 90.55%
32 0.5 42.73%
32 0.0078125 94.01%

Table 3: Average F-1 score for 60-second weak classifier of
different parameters for LibSVM

Decision Level Fusion
The dataset provides labels sample-by-sample, so this
same level of granularity must be provided from the decision
level fusion. After we get class label for each sample from 5
weak classifiers, a decision level fusion technique is used to
enhance the system performance. There are different
decision level fusion techniques: bagging, boosting or
rule-based decision making. In this paper, we are dealing
with a large dataset and thus far, we do not have trouble
with the data size. However, when it comes to fusing the
decisions for each sample, the JAVA based software (weka)
stops working, as it requires too much RAM for reading files
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or training a model. In order to process the data more
quickly and efficiently, a simple and efficient rule-based
method majority voting is used to generate the class label
for each sample. This method applies rules
sample-by-sample by comparing the five outputs from the
weak classifiers and taking the majority label as the fusion
output. The majority voting is implemented by the author
and is run on a super computer server which will be
discussed later.

Experimental Results
Classifier Window size F-1 score

Weak classifier 1 10 seconds 93.62%
Weak classifier 2 15 seconds 93.75%
Weak classifier 3 20 seconds 93.83%
Weak classifier 4 30 seconds 93.52%
Weak classifier 5 60 seconds 94.01%
Proposed fusion NA 95.9%

Table 4: Average F-1 score for different weak classifier and
proposed decision fusion

Our proposed approach is validated with the training
dataset published by the competition committee. This is 271
hours of data collected by a Huawei Mate 9 smartphone
placed in the right front pocket of a single participant while
he performed eight locomotion and transportation activities
including still, walk, run, bike, car, bus, train, subway. 3-fold
cross validation is applied to test the performance of our
proposed approach. Since the average F-1 score is the
metric the competition chooses, we evaluate our approach
based on this metric. Table 4 shows the average F-1 score
value for different weak classifiers and our proposed
decision level fusion. We can see that our proposed

approach achieves 1.9% higher F-1 score than the best
weak classifier 5.

Computational resources
Since we have 504-d features and it takes a significant
amount of time to extract the features for different window
sizes; we use the high performance computing server of our
university to do this. For each job, we used 8 core 2.4G
Broadwell processors and 30G RAM. For classification, a
personal laptop with Intel Core i7-6700HQ cpu @ 2.60GHz
and 16G RAM is used. A model is trained for each weak
classifier and the largest weak classifier model is 170 MB. It
takes about two hours to train the largest weak classifier.

Conclusion
We propose a decision-fusion-enhanced, ubiquitous activity
recognition system to recognize modes of locomotion and
transportation. Instead of using a single window to segment
data, we propose five weak classifiers based on different
window sizes. A rule-based decision fusion technique,
majority voting, is applied to fuse the decisions achieved
from each weak classifier. The experimental results show
our proposed approach achieve 1.9% improvement in F-1
score comparing to the best weak classifier. The recognition
result for the testing dataset will be presented in the
summary paper of the challenge [11].
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