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Abstract
Sensors in our phones and wearables, leave digital traces
of our activities. With active user participation, these de-
vices serve as personal sensing devices, giving insights to
human behavior, thoughts, intents and personalities. We
discuss how acoustical environment data from hearing aids,
coupled with motion and location data from smartphones,
may provide new insights to physical and mental health.
We outline an approach to model soundscape and context
data to learn preferences for personalized hearing health-
care. Using Bayesian statistical inference we investigate
how physical motion and acoustical features may interact to
capture behavioral patterns. Finally, we discuss how such
insights may offer a foundation for designing new types of
participatory healthcare solutions, as preventive measures
against cognitive decline, and physical health.

Author Keywords
Hearing impairment; user behavior; health; aging; aug-
mented audio; activity; motion; mental health

ACM Classification Keywords
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Introduction
In the past century humans have gone through a cultural
evolution, drastically transforming dietary patterns and man-
ual labor, leading to mostly sedentary work and spend-
ing hours in front of computer screens. The resultant lack
of physical activity has contributed to a dramatic rise in
lifestyle inflicted type 2 diabetes, heart disease and demen-
tia [9]. There is an urgent need for conceptualizing new
preventive approaches, where awareness of motion will
be fundamental in order to deliver personalized participa-
tory healthcare solutions [14]. To target the comorbidity of
chronic diseases we need to integrate both physical, mental
and social aspects of health.

Several studies have linked lack of physical activity to men-
tal health issues, including dementia, cognitive decline [8]
and depression [16]. Even small measures of physical ac-
tivity has a preventive effect on mental health [4], and for
some disorders are positively correlated with higher self
rated quality of life [1]. Likewise, hearing loss is correlated
with lack of physical activity [2, 3]. Additionally, a connec-
tion between hearing loss and cognitive decline has been
established [11]. One of the major risk factors for dementia
is caused by untreated hearing loss [10]. Recent research
indicates that physical exercise may alleviate hearing loss in
mice [5]. This may indicate a direct relation between hear-
ing health and physical activity in humans.

The introduction of Internet connected hearing aids offers
new insights into the life’s of hearing aid users. Contextual
features, such as motion and activity data combined with
GPS location gives an objective measure of the level of
physical activity. Combining this with the corresponding
acoustical sound environment may potentially offer a more
personalized treatment of hearing loss.

Capturing contextual user preferences
A longitudinal study, aiming to learn preferences for hearing
aid settings dependent on the context, were carried out in
the winter 2017-2018 at Eriksholm Research Centre, Den-
mark. 10 participants volunteered for the study (9 males, 1
female). The median age was 62.9 years (std. 11.5 years).
All participants are regular smartphone users, and have
used hearing aids for a year or more. All subjects used ei-
ther an Android or iOS compatible phone. Data was logged
for eight weeks, or more. One subject dropped out after four
weeks, and was excluded.

Location data consists of clustered GPS positions, while
motion activity is estimated by the smartphone accelerom-
eter sensors. User interactions include changes between
four acoustically contrasting program settings, and volume
adjustments, either initiated on the hearing aid, or via the
accompanying smartphone app. Soundscapes are mod-
eled as a vector representing aspects of sound pressure
level and modulation characteristics processed by the hear-
ing aids. All data is time stamped. An example of subject
3’s time line for a week is shown in Figure 1, where the top
three bars show contextual sound environment, motion ac-
tivity and user preferences related to selection of contrast-
ing hearing aid programs. We then process the motion data
using a Bayesian probabilistic approach. Subsequently, we
combine the probabilities with additional contextual param-
eters including GPS location, inferred activity, time and day
of week.

Modeling human behavior
We combine three modalities to model human behavior:1)
Motion activity patterns captured by the smartphone, sam-
pled as categorical events. 2) Locations derived from clus-
tered GPS coordinates sampled as categorical events.
3)User initiated program changes combined with the cor-
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responding soundscape context, segmented according
to time, as discrete categorical events. Based on a naive
Bayes prediction we investigate the influence of the afore-
mentioned modalities. These predictions are shown in Fig-
ure 1, for subject 3 for four days. The top green bar illus-
trate changing sound environments, the blue bars shows
motion activity, while the yellow-red bars shows, user initi-
ated program changes in response to motion and sound-
scape, and three predicted scenarios based on activity and
location, soundscape, and the activity, location, and sound-
scape combined.

User

Pred 
Act/Loc

Pred: 
Sound

Pred: 
All

Activity

Sound

Figure 1: Naive Bayes prediction of contextual program
preferences for subject 3 over four days. The upper three tracks
(green, blue and yellow gradients), represent the soundscape
environment, motion activity and user selected programs,
respectively. The following three tracks of color bars (yellow
gradients) show conditional probabilities for user preferred
programs, based on a) motion activity and location alone
(Act/Loc), b) soundscape environment alone (Sound), c) motion
activity, location, soundscape and time combined (All).

Changes in motion and location generate discrete events in
time series data, providing a visual segmentation of sound-
scape data. Motion can also be interpreted as contextual

information, when location is not available. As an example,
a subject walks to lunch around 12. The location is not up-
dated, but the inferred motion, walking, indicates a change
of environment. This is confirmed by the soundscape data,
reflecting that the environment changes from a quiet office
to a noisy canteen. Motion in our study not only defines a
specific state, but may also mark the beginning or end of a
segment in the acoustical soundscape. From Figure 1 we
see that changes in motion may trigger user intents related
to program changes, which might not seem evident when
considering the acoustical soundscape alone. Thus, motion
plays and integral part in predicting user intents and behav-
ior. Additionally, the amount of motion also characterizes
the overall level of activity or physical exercise reflecting the
lifestyle of the user. We speculate such features related to
fitness might potentially correlate with other healthcare met-
rics e.g. a lower resting heart rate. Further analyses of vari-
ability in motion patterns could indicate declining trends in
physical activity. This could potentially be used in personal-
ized preventive healthcare solutions, to proactively monitor
the onset of diseases before symptoms are observed [14].
We enrich the data by using GPS location. Using clustering
algorithms, we determine various places visited by the user.
This can then be used to further segment the data, and
helps predict user intents. We also categorize the places
using Google places API.

Individual behavioral patterns are reflected in the coverage
of data related to contextual sound environments, motion
activity and user initiated interactions. While the sound data
is sampled once per minute fsound = 1

minute , both motion
activity (including location) and user interactions are dis-
crete events fmotion = [0 : n], and finteraction = [0 : n].
We interpret these discrete events as conscious actions by
the user, which can be used in a probabilistic model. The
data is treated as time series data, segmented into hourly
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and daily bins, along with a bin for the full experiment.

Combining knowledge of motion, time, activity and location,
with individual preferences, facilitates participatory hearing
healthcare solutions. Such user preferences continuously
change dependent on the contextual environment, activ-
ity, time or cognitive state of the user [6]. It is essential as
Korzepa et al. [7] has argued to incorporate user intents
for predictive modeling. Here, physical motion and activity
is a central component. Our Naive Bayesian approach il-
lustrates the impact when including or omitting contextual
parameters related to soundscape, motion, and location, in
order to predict user intents over time, see Figure 1.

We wish to further investigate how contextual data form
sequential patterns. An alternative could be to interpret
GPS locations as clusters forming spatial trajectories. The
current position in a motion sequence would be predicted
based on the preceding and subsequent locations. GPS
coordinates are thus treated as a vocabulary similar to
word2vec embeddings [12]. Such sequences have been
shown to capture demographic patterns that may be used
to classify gender, age or marital status of the users [15].
Likewise deep learning neural networks may be trained to
predict patient outcomes, by combining embeddings from
multiple modalities e.g. interventions, test results or pre-
scribed medicine in electronic healthcare records, as shown
by Rajkomar et al. [13].

Discussion
The prohibitive costs of healthcare will cause a shift from
reactive treatment towards data driven personalized, pre-
dictive and preventive approaches. Based on our pilot study
we suggest: First, in order to infer personalized hearing
healthcare insights, complementary motion, location and
soundscape environmental parameters need to be com-

bined. Second, analyzing large amounts of longitudinal
data gathered through internet connected devices, we may
provide predictive hearing healthcare suggestions of con-
textual coping strategies learned from multiple users. Third
applying a data driven approach to model user intents, pat-
terns may be extracted as a basis for developing next gen-
eration preventive healthcare tailored to the needs of each
individual. However, to provide personalized, predictive, and
preventive hearing healthcare, the user needs to be an in-
tegral part of a continuous feedback loop involving context-
aware devices and health care professionals.
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