
Test-Based Security Certification of Composite Services

MARCO ANISETTI, Università degli Studi di Milano, Italy

CLAUDIO ARDAGNA, Università degli Studi di Milano, Italy

ERNESTO DAMIANI, Khalifa University, UAE
GIANLUCA POLEGRI, Engineering Ingegneria Informatica S.p.A., Italy

The diffusion of service-based and cloud-based systems has brought to a scenario where software is often made

available as services, offered as commodities over corporate networks or the global net. This scenario supports

the definition of business processes as composite services, which are implemented via either static or runtime

composition of offerings provided by different suppliers. Fast and accurate evaluation of services’ security

properties becomes then a fundamental requirement and is nowadays part of the software development

process. In this paper, we show how the verification of security properties of composite services can be

handled by test-based security certification, and built to be effective and efficient in dynamic composition

scenarios. Our approach builds on existing security certification schemes for monolithic services and extends

them towards service compositions. It virtually certifies composite services, starting from certificates awarded

to the component services. We describe three heuristic algorithms for generating runtime test-based evidence

of the composite service holding the properties. These algorithms are compared with the corresponding

exhaustive algorithm to evaluate their quality and performance. We also evaluate the proposed approach in a

real-world industrial scenario, which considers ENGpay online payment system of Engineering Ingegneria

Informatica S.p.A. The proposed industrial evaluation presents the utility and generality of the proposed

approach by showing how certification results can be used as a basis to establish compliance to Payment Card

Industry Data Security Standard (PCI DSS).

CCS Concepts: • Security and privacy → Distributed systems security; Web application security; •
Software and its engineering → Software verification and validation; • Computer systems organi-
zation→ Cloud computing;

Additional Key Words and Phrases: Cloud, Model-Based Testing, Service-Oriented Architecture, Security

Certification, Service Composition, Software-as-a-Service, Web Services

ACM Reference Format:
Marco Anisetti, Claudio Ardagna, Ernesto Damiani, and Gianluca Polegri. 2018. Test-Based Security Certifica-

tion of Composite Services. 1, 1 (August 2018), 43 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Current trends in software distribution and provisioning envision services made available as

commodities over the Internet or in the cloud marketplace. Business processes are increasingly

implemented by either statically or dynamically composing many commodity services in the

cloud (Business Process as a Service – BPaaS) [75, 76], each one providing a single functionality.

Authors’ addresses: Marco Anisetti, Università degli Studi di Milano, Via Celoria 18, Milano, MI, 20131, Italy, marco.anisetti@

unimi.it; Claudio Ardagna, Università degli Studi diMilano, Via Celoria 18, Milano,MI, 20131, Italy, claudio.ardagna@unimi.it;

Ernesto Damiani, Khalifa University, Abu Dhabi, UAE, ernesto.damiani@kustar.ac.ae; Gianluca Polegri, Engineering

Ingegneria Informatica S.p.A., Via S. Martino della Battaglia 56, Roma, RM, 00185, Italy, gianluca.polegri@eng.it.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

XXXX-XXXX/2018/8-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: August 2018.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Marco Anisetti, Claudio Ardagna, Ernesto Damiani, and Gianluca Polegri

Business process management and services are then rapidly converging with Platform-as-a-Service

(PaaS) [57, 75, 76], providing a single, integrated cloud environment that combines application

development and process management. According to Gartner,
1
BPaaS is one of the largest segments

of the global cloud services market with $40.8 billion in 2016 and expected to reach $56.1 billion at the

end of 2020. This market growth is following, on one side, the boost of microservice infrastructures,

where extreme dynamic scenarios made of business processes composed of single-functionality

services materialize, and, on the other side, the evolution of software development processes where

after-testing, manual composition of services provided by different suppliers is implemented. In

this vision of IT, services are either statically or dynamically integrated, remotely accessed, and

continuously (re-)designed and released. To support this scenario we need accurate, efficient,

low-cost, and robust assurance evaluation of service security.

Early research on security assurance has mainly focused on approaches where security properties

of software/services are claimed by suppliers themselves, with little or no evidence [31, 63, 96].

Recently, security assurance (e.g., [9, 13, 22, 61, 62, 79, 83, 87]) is becoming part of the software

development process, and focuses on efficent and effective independent evaluation of services

and their properties. Among existing assurance approaches, certification is becoming increasingly

popular to provide evidence that a given software/service system has the desired non-functional

properties and behaves as expected [30]. Certification processes are traditionally managed by an

accredited evaluation body called certification authority, in charge of evaluation activities and

certificate issuing. Evaluation activities are carried out by an accredited lab, which focuses on

collecting evidence supporting the certification of a given property. This evidence is collected by

means of either testing activities or formal methods, and refers to a single component or system.

Approaches to (cloud) service certification (e.g., [13, 54, 61, 87]) have been inspired by traditional

software certification solutions (e.g., [30, 46, 92]) aimed at monolithic systems and do not usually

consider runtime composition. Among traditional solutions, Common Criteria (ISO 15408) [46] is

the most adopted and recognized International standard for software certification. It provides 7

assurance levels (EALs), representing 7 certification strengths. Each level describes the requirements

a product must satisfy to get certified, including requirements on collection activities: i) certification
at EAL1-EAL4 requires testing activities; ii) certification at EAL5-EAL7 requires (semi-)formal

verification. 2224 software products are currently certified by Common Criteria, 68% of which

are verified between EAL1 and EAL4. EAL4 is the biggest certification level with 36% of certified

products and requires fine-grained testing of the software product. These numbers show that formal

methods, though more trustworthy, are less adopted for software certification. This is due to the

fact that they are more complex, more costly, less applicable, and less flexible than testing. This

scenario is even exacerbated in dynamic scenarios like service composition in the cloud, where

formal methods fall short of achieving the main requirements for cloud certification, making them

inapplicable: low-cost adaptation and ability to react to composition events.

In this paper, we present a novel solution aimed to certify security properties of business processes,

implemented as composite services and deployed at cloud application layer (BPaaS). While some

architectural support for securing compositions has been described in the literature [50], there is

currently no general way to derive security properties of a composition from the properties certified

for individual components, regardless of the adopted composition model. Service composition

in the cloud in fact introduces a loss of control on security and availability due to the dynamic,

distributed and heterogeneous nature of cloud services. We consider Business Process Model and

Notation (BPMN) [74], a generic and standard notation used for modeling business processes and

service compositions, and propose a test-based security certification process that dynamically

1
http://www.gartner.com/newsroom/id/3616417

, Vol. 1, No. 1, Article . Publication date: August 2018.

http://www.gartner.com/newsroom/id/3616417

Test-Based Security Certification of Composite Services 3

generates BPMN-compliant compositions that hold a set of security properties. BPMN-compliant

compositions can be implemented using both an executable BPMN (i.e. a BPMN executed within

a framework for BPM execution like VRESCo [47]) or other executable languages such as Web

Service Business Process Execution Language (WS-BPEL
2
) [4]. For the sake of simplicity but with

no lack of generality, in this paper we use BPEL as the language for describing executable business

processes. BPEL in fact has shown sufficient generality to cover composition of both SOAP and

RESTful services [77], and is one of the most used languages for business process description [58].

Our basic idea is to produce a virtual test-based security certificate for a composition on the basis

of the certificates of its component services. We call this certificate “virtual” since it does not

involve any real testing activity on the composition; the test-based evidence proving a property is

inferred from evidence originally used to certify the individual components (evidence composition).
The trust in a virtual certificate is based on the trust the customer has in the automatic process

implemented by the certification authority and in the real certificates held by the individual

component services, coupled with the assumption that a customer prefers to have a certificate

signed by a trusted certification authority rather than self-signed certificates or no certificates

at all. Clearly, being based on virtual evidence and certificates, test-based virtual certification

achieves a level of trust lower than the one achieved when certification of service compositions

from scratch is adopted. This is the price we need to pay to i) accomplish the peculiarities of a cloud

and service-based environment, where the high dynamics and flexibility of service composition

make existing solutions, requiring certification from scratch at each service evolution, inapplicable

(e.g., component service replacement/migration), ii) implement a repeatable certification, meaning

that it can be re-executed to verify its quality. Our approach being part of the software development

process aims to increase the efficiency of the certification process and its collection activities, and

optimize the quality of the certification results and, in turn, of the composite services. We start

by extending the BPEL process specification with security requirements and present a service

selection process for the generation of security-enhanced BPEL process instances at runtime. Then,

we consider the generation of a virtual security certificate for the BPEL instance with highest

quality, prove that the corresponding problem is NP-hard, and propose three heuristic algorithms

for its computation.

The contribution of this paper is therefore fourfold: i) the ability to certify security properties of

service compositions, which are built by composing services either manually or at runtime, ii) the
generation of high-quality virtual certificates for service compositions, where test-based evidence

supporting certified security properties is produced on the basis of existing evidence in certificates

of component services, iii) a quantitative approach for calculating the quality of virtual certificates,

driving component service selection, and iv) the support for a multi-step chain of trust grounded

in the certificates of the component services and rules defined by the certification authority.

This paper develops on our previous work [7] by providing i) a new and general-purpose

approach to certification-aware service composition, ii) a new technique for the generation of

machine-readable virtual certificates including virtual test cases, and iii) a quantitative evaluation of
the quality of the virtual certification process and corresponding service composition. We provide

an extensive experimental evaluation of our approach in terms of quality and performance. We

further evaluate the generality and applicability of our approach in a real industrial scenario, which

considers the certification of the ENGpay system for online payments of Engineering Ingegneria

Informatica S.p.A., the largest Software and Information Technology services group in Italy (and

one of the largest in Europe). The industrial evaluation shows how certification results can be used

to establish compliance to internationally-recognized security standards. In particular, we prove

2
BPEL in the following

, Vol. 1, No. 1, Article . Publication date: August 2018.

4 Marco Anisetti, Claudio Ardagna, Ernesto Damiani, and Gianluca Polegri

ENGpay compliance with respect to Payment Card Industry Data Security Standard (PCI DSS)

guidelines and regulations, concerning data security and privacy, and financial transactions.

The remainder of this paper is organized as follows. Section 2 presents the approach for single

service certification. Section 3 describes a BPEL-based service composition using our reference

scenario, and the corresponding algebra for composing service certificates. Section 4 describes

our approach to the generation of virtual certificates for composite services starting from the

certificates of component services. Section 5 presents the algorithm to produce certification-aware

service compositions with virtual properties. Section 6 illustrates the heuristic algorithms for the

generation of certified BPEL instances with highest certificate quality. Section 7 proposes the

experimental evaluation of our approach. Section 8 presents the application of our approach to an

industrial case study. Finally, Section 9 discusses related work and Section 10 gives our concluding

remarks.

2 SECURITY CERTIFICATION OF SINGLE SERVICES
The approach presented in this paper extends our security certification scheme for monolithic

services [13] to the certification of composite services. [13] considered a scenario where a ser-

vice provider engages with a certification authority to certify the security properties of a single

monolithic service. The certification authority manages a certification process that takes as input

the property to be certified for the service and (a subset of) the service specifications, possibly

including Web Services Description Language (WSDL) interface, the Web Services Conversation

Language (WSCL) document, and the service implementation, and returns as output a certificate

C(p ,m,e). C(p ,m,e) specifies certified property p , service model m, and a set of test-based evidence

e supporting the property, as discussed below.

Security property. A security property p drives the certification process and all activities done

by the certification authority. It is a pair (p̂ ,Attr), where p .p̂ is an abstract property (i.e., a la-

bel from a shared controlled vocabulary, such as confidentiality, integrity [27, 28, 37, 49]) and

p .Attr is a set of class attributes specifying the threats the service proves to counteract or the

specific characteristics of the security function implemented by the service. For instance, property

p
1
=(Confidentiality,{ctx=in-storage, algo=DES, key=112}) refers to the confidentiality of data at

rest using DES algorithmwith key length of 112bits. A partial order can be straightforwardly defined

over security properties based on attribute values, inducing a hierarchyHP of properties as a pair

(P,≼P), where P is the set of properties and ≼P the partial order. Given two properties pi and pj , we
write pi≼Ppj if pi is weaker than pj . For instance, given p1 above and p

2
=(Confidentiality,{ctx=in-

transit in-storage, algo=DES, key=112}) referring to the confidentiality of data at rest and in transit

over the communication channel, using DES algorithm with key length of 112bits, p1≼Pp2 since p2
is stronger than p1. In particular, p2 extends p1 by adding an additional context (i.e., in-transit) over

which confidentiality must be preserved. Figure 1(a) shows an example of property hierarchyHP .

Service model. Service model m is a Symbolic Transition System (STS) [38] that specifies service

behavior and execution flows as a finite state automaton. It can be used for automatic genera-

tion of test cases collecting the evidence in the certificates [26, 69]. Formally, an STS is a tuple

⟨S,s1,V ,I,A,→⟩, where S is a set of states, s1∈S is the initial state,V is a set of internal variables,

I is a set of interaction variables,A is a set of actions (web service operations), and→ is a transition

relation. Each transition relation consists of a set of edges connecting two states and labeled with

an action, a guard (conditions on transition), and an update mapping.

In [13], a service modelm can be defined at two levels of granularity depending on the amount of

information (i.e., WSDL interface and/or WSCL document) available on the service. In this paper we

consider the first level only (WSDL interface), that is, the least set of information a service provider

, Vol. 1, No. 1, Article . Publication date: August 2018.

Test-Based Security Certification of Composite Services 5

*

Authenticity Integrity Confidentiality

Authenticity Authenticity Integrity Confidentiality Confidentiality

Authenticity Confidentiality Confidentiality Confidentiality

Confidentiality Confidentiality

Confidentiality

SF=PWD-Based SF=Token-Based algo=XML Sign.

prot=WS-Sec.

ctx=in transit

SF=encryption
ctx=in storage

SF=encryption
ctx=in transit

SF=Token+PWD algo=AES
key=128

ctx=in storage

SF=encryption
ctx=in transit-in storage

algo=DES
key=112

ctx=in storage

algo=AES
key=256

ctx=in storage

algo=DES
key=112

ctx=in transit-in storage

algo=DES
key=168

ctx=in transit-in storage

(a)

*

Input

Partitioning

Model

Control Flow

Code

Walkthrough

*

Invalid Stress Load

Malformed

*

Attack

Functionality Robustness Penetration

Random

Input

Boundary

Value

Equivalence

Partitioning

Fuzzy/

Mutation

Workload

Physical

Resources

Container

Configuration

Application

Specific

Read Write

Add Copy

Modify

(b)

Fig. 1. Property (a) and test type (b) hierarchies

has to release to publish its service. The WSDL interface specifies the set of service operations and

the methods for accessing them, and is used to define a WSDL-based modelMwsdl of the service.

Mwsdl is an STS that consists of a set {mwsdl } of connected components, each one modeling a single

service operation. Each mwsdl is in turn modeled as an STS with three states representing the

operation interface as follows: i) the initial state s1∈S when no input has been received yet; ii) the
intermediate state s2∈S that is reached when the received input triggers the state transition, but

no output has been generated yet; iii) the final state s3∈S that is reached whenever the output has

been produced and returned to the counterpart. State s2 of eachmwsdl∈Mwsdl can be extended

with additional states modeling the implementation of the corresponding operation. We remark

that a service can be certified for a property holding for a subset of its operations in the WSDL.

Connected componentsmwsdl∈Mwsdl of the component services are integrated to produce a BPEL-

based model Mbpel of a composition. Mbpel is an STS ⟨S,s1,V ,I,A,→⟩, where S is the union of

all the states in the interface-based model of the integrated components. Mbpel can be seen as a

generalization of the interface-based model in [13].

, Vol. 1, No. 1, Article . Publication date: August 2018.

6 Marco Anisetti, Claudio Ardagna, Ernesto Damiani, and Gianluca Polegri

Test Evidence. Test evidence e specifies the set of test cases executed on the service, each with

a reference to the WSDL operation under evaluation. It also includes a category and a type, as

well as a set of test attributes and the results of test case execution. Test cases can be classified

according to three categories of tests: i) category functionality including functional test cases based

on valid input, ii) category robustness including test cases based on invalid and malformed input,

and stress/load tests, iii) category penetration including test cases based on well-known security

attacks. Test categories functionality and robustness are employed during a security certification

process to check whether the needed security mechanisms are in place, functionally correct, and

robust. Each category has a set of test attributes describing the set of test cases (e.g., the cardinality

of the test set). Each category also includes a set of test types that specify how to generate the

test cases needed to support security properties on a given service. We note that test types (e.g.,

random input, equivalence partitioning) correspond to test design techniques of [93]. More in detail,

each category cat introduces a hierarchyHcat of test types based on test attributes.Hcat is a pair

(T ,≼cat), where T is the set of test types for cat and ≼cat is a partial order relationship over T .

Given two test types type(ei) and type(ej), we write type(ei)≼cat type(ej), if type(ei) is an abstraction

of type(ej) according to their test attributes tak . Figure 1(b) shows an example of test hierarchies

Hcat .

Certificate. A certificate C(p ,m,e) generated as a result of our certification process includes a

property p , a service model m, and a test evidence e . For simplicity (but with no lack of generality),

we assume that the certification authority will release a different certificate for eachmwsdl (i.e., for

each operation) in the service model. Security certificates C(p ,m,e) enable a procurement process

where services are selected on the basis of their security certificates.

In the following, when clear from the context, we will refer to operations using the corresponding

service name wsi .

3 BPEL-BASED SERVICE COMPOSITION
Our reference scenario is a service-based environment where services are composed according

to functional and non-functional (i.e., certified security properties) requirements. It includes the

following parties: i) a certification authority that certifies security properties of services; ii) a service
provider that implements and distributes certified services; iii) a process owner, the client of our
approach, that implements a business process by selecting and composing certified services;

3 iv) a
service registry that publishes a set of certified services (e.g., implemented as Eureka registry in

case of RESTful services); v) a customer that accesses a business process.
We use BPEL as the language for describing executable composite services. BPEL is an XML-based

language that permits to implement a business process using a collection of services, specifying

the order in which service operations are invoked, the data to be exchanged at each step of the

composition, and the (functional) conditions under which a service is selected and integrated within

the business process [4]. BPEL defines executable processes that consist of a set of activities (e.g.,

invoke, receive, and reply) combined using different structures to form a coherent system. Most

BPEL engine supports runtime service composition, where component services within registries

are dynamically selected and composed on the basis of functional requirements [68]. We formally

model a BPEL service composition as a graph as follows.

Definition 3.1 (BPEL graph). A BPEL graphG(V ,E) is a direct acyclic graph having a root vr ∈V ,

a vertex vi∈VI⊆V for each service operation invocation, two additional vertices vc ,vm∈V⊗⊂V for

3
We note that the process owner can be a developer aiming to design a static composition of services with certified security

properties.

, Vol. 1, No. 1, Article . Publication date: August 2018.

Test-Based Security Certification of Composite Services 7

Table 1. eFlight component services

Service Operation Description
Airline (AI) flightDetails flightOffer(query) Allows customers to browse available flights

orderID bookFlight(flightID,cc) Allows customers to book a flight using

their credit card

Payment Service (PS) paymentID payOrder(orderID,cc) Allows customers to pay for a transaction

Secure Storage (SS) success write(data) Stores data in a remote server

each alternative (⊗) structure modeling the alternative execution (choice) of operations and the

retrieval (merge) of the results, respectively, and two additional vertices vf ,vj∈V⊕⊂V for each

parallel (⊕) structure modeling the contemporary execution (fork) of operations and the integration
(join) of their results, respectively.

We note that {vr }∪VI∪V⊗∪V⊕=V , andvc ,vm ,vf , andvj model branching for alternative/parallel

structures. We also note that root vr represents the BPEL orchestrator, that is, the set of operations

exposed in theWSDL by the process owner. For simplicity but with no lack of generality, we assume

the BPEL orchestrator and its model to just include external service invocations, with no internal

functionalities implemented using script languages that need to be certified. In fact, any internal

BPEL functionality can be also executed by an external service, thus introducing no real limitations

to the applicability of our approach.

As an example, we shall consider a relatively simple BPEL-based business process implementing

a flight reservation service (eFlight), which allows customers to browse and compare different offers,

book a flight, and pay for it over the Internet. The eFlight process owner acts as an orchestrator and

composes a set of partner services, provided by different service providers, to implement eFlight.

In particular, it relies on n airline services selling flight tickets,m payment services to pay for the

selected flights, and an external storage service to store customer and flight information. Table 1

presents the operations of each component service in detail. When a request to book a flight is

sent to eFlight, a call to operation flightOffer of all airline services is made. The result from each

airline is reported to the customer in a tabular form, to enable comparison. The customer can then

book and pay for the preferred flight at eFlight, using one of the available payment services. In this

case, eFlight first invokes operation bookFlight of the airline service providing the selected offer,

and then operation payOrder of the selected payment service. For each purchase, eFlight stores

the transaction data using operation write of the secure storage service. Figure 2 shows the BPEL

graph for the eFlight service with a single payment service PS .
In the following, we use eFlight to clarify concepts and definitions in the paper. Then, in Section 8,

we test the utility and generality of our approach in a real-world industrial scenario, which considers

the PaymentService of eFlight extended on the basis of Engineering ENGpay system for online

payments.

4 VIRTUAL CERTIFICATE OF COMPOSITE SERVICES
The core idea of our approach is to empower certification authorities to virtually certify a composite

service starting from the certificates of the component services. Composite service certificates are

“virtual”, since they do not involve any real testing. The trust in a virtual certificate is mainly based

on the trust a customer has in the automatic process implemented by the certification authority

and in the certificates held by the individual component services. These conditions are however

necessary but not sufficient conditions to implement a trust relation in a virtual certificate, and are

coupled with an additional assumption inspired by the Zermelo’s theorem (a.k.a., well-ordering

assumption), which is equivalent to an axiom of choice, as follows.

, Vol. 1, No. 1, Article . Publication date: August 2018.

8 Marco Anisetti, Claudio Ardagna, Ernesto Damiani, and Gianluca Polegri

eFlight invocation⇒ parallel ⊕

AI1 . . . Airline.flightOfferAI2 AIn

Join Airline.flightOffer results

alternative ⊗

AI1 . . . Airline.bookFlightAI2 AIn

Airline.bookFlight results

PS PaymentService.payOrder

SS SecureStorage.writeeFlight results⇐

Fig. 2. eFlight BPEL graph

Assumption 4.1. Given a set of virtual certificates (including the empty certificate), there exists a
well-ordering with its domain modeling the user’s trust in certificates.

The well-ordering in assumption 4.1 models a classic behavior of human beings that prefer to

have a certificate signed by a trusted organization rather than no certificate at all. The well-ordering

approach implemented in this paper is presented in Section 6.

A virtual certificate is a certificate denoted as C∗i j (p
∗
i j ,m

∗
ij, e
∗
ij) where the virtual property p∗i j ,

model m∗ij , and evidence e∗i j are generated using an algebra for certificate composition. In the

following we describe how to generate the virtual property, model and evidence of C∗i j by applying

our algebra operators between a couple of services wsi and wsj having certificates Ci and Cj ,

respectively.

4.1 Algebra for certificate composition
Our algebra of certificatesmimics the algebra of service composition, meaning that each composition

of two services wsi and wsj triggers the application of the corresponding operator in the algebra of

certificates. We consider five main operators, namely, sequence ⊙, alternative ⊗, parallel ⊕, loop ⊘,

containment τ . The syntax is defined according to the following BNF-like notation.

C ::= ϵ | C | ⊘ C | C ⊙ C | C ⊗ C | C ⊕ C | CτC

C represents a security certificate, while ϵ is an empty certificate. The above notation shows

how a certificate of a given composite service can be generated by iteratively applying the algebra

operators. Our syntax is disambiguated by defining precedence and associativity rules for each

operator. In particular, operators ⊘, ⊙, ⊗, and ⊕ are left associative, while τ is non-associative. The

precedence is defined as follows: i) τ has precedence 0; ii) ⊗ and ⊕ have precedence 1; iii) ⊘ and ⊙

have precedence 2.

, Vol. 1, No. 1, Article . Publication date: August 2018.

Test-Based Security Certification of Composite Services 9

Before discussing the semantics of the algebra and its operators, we introduce the concept of

environment to describe relations in a domain of interest by means of clauses. Our environment is

defined as follows.

Definition 4.1 (Environment). An environment env is a set of clauses of two types: i) facts f that

hold in a given domain of interest and ii) boolean rules over certificates C and facts f that specify

constraints for certificate composition.

We note that facts model domain-specific information that can be used in rule definition, while

rules define constraints on the composition of certificates. In other words, facts describe true

assertions about the BPEL process (e.g., all component services share the same authorization

database) and on the component services (e.g., data are stored in an encrypted form and distributed

as they are), while rules define restrictions such as if property pi of Ci and pj of Cj are composed
using operator ⊕, then property pi j holds.

Composite certificates can be generated by composing certificates through the algebra operators

as follows.

Sequence ⊙. It composes two certificates Ci of wsi and Cj of wsj in a sequence. [Ci⊙Cj]env mimics

a composition where wsj is executed after wsi .

Alternative ⊗. It composes two certificates Ci of wsi and Cj of wsj in an alternative. [Ci⊗Cj]env
mimics a composition where either wsi or wsj are executed.

Parallel ⊕. It composes two certificates Ci of wsi and Cj of wsj in a parallel. [Ci⊕Cj]env mimics a

composition where both wsi and wsj are executed in parallel.

Loop ⊘. It composes two certificates by iteratively composing the same certificate C. [⊘C]env
mimics a composition where the same ws is executed a given number of times. In the following, ⊘

is considered as a sequence of ⊘ services with the same certificate C.

Containment τ . It composes two certificates Ci of wsi and Cj of wsj in a containment relation.

[CiτCj]env mimics a basic composition pattern where wsj is called within wsi , meaning that wsi
assumes the role of container andwsj uses container-level functionalities (e.g., signature, encryption)
to secure the message exchange.

4
We note that operator containment has not a direct map to BPEL

constructs because it is applied to a specific service before BPEL process is even considered.

4.2 Virtual Properties
The virtual property p∗i j in C

∗
i j depends on the properties pi and pj in the component service

certificates Ci and Cj , respectively, and operator op∈{⊙, ⊗, ⊕, τ } used to compose wsi and wsj .
Property composition is not restricted to a specific class of properties, but it depends on the behavior

the specific property assumes in a given domain. To this aim, our approach to virtual property

generation is based on a set of ad hoc rules modeling expectations in a specific domain and a default

rule settling scenarios in which no ad hoc rules apply to the composition of two properties. These

rules identify all pairs of properties that can be composed.

More in detail, a virtual property is generated by first applying a set of ad hoc rules in the form [pk
op pt]cond=p∗kt , where pk=(p̂k ,{ak ,1, . . . ,ak ,n }), pt=(p̂t ,{at ,1, . . . ,at ,n }), p

∗
kt=(p̂

∗
kt ,{akt ,1, . . . ,akt ,n }),

and cond is the set of conditions (verified using facts in the algebra in Section 4.1) under which

the rule is applicable. We note that each property in the rule must define the entire set of pos-

sible attributes Attr ; value null is assigned to non-specified attributes. We also note that each

4
A service container is either a middleware or a PaaS service providing functionalities (i.e. security features like WS-

Security [71]) to manage the life cycle of services and the runtime infrastructure to support service specifications [13, 21].

, Vol. 1, No. 1, Article . Publication date: August 2018.

10 Marco Anisetti, Claudio Ardagna, Ernesto Damiani, and Gianluca Polegri

attribute akt ,i in p∗kt is computed as a function fi of corresponding attributes ak ,i and at ,i (i.e.,
akt ,i=fi (ak ,i ,at ,i)), or by directly assigning a value val to it (i.e., akt ,i=val). Our ad hoc rules are

defined by trustworthy experts and represent the behavior of security properties when the services

holding them are integrated in a composition via a given composition operator.

If no ad hoc rules apply for the composition of pi and pj , a default rule is then triggered. The

default rule considers property hierarchyHP , and is such that given pi and pj the resulting virtual

property p∗i j is the least upper bound (lub) inHP . Virtual property p∗i j is calculated according to the

following definition.

Definition 4.2 (Composite properties p∗i j). Given pi ,pj∈P to be composed using operatorop∈{⊙, ⊗, ⊕, τ },
the virtual property p∗i j∈P is computed as follows:

(1) if an ad hoc rule [pk op pt]cond=p∗kt is applicable, that is, cond is satisfied by the facts in

Definition 4.1, pk≼Ppi , and pt≼Ppj , p∗i j is calculated according to it and is such that p∗kt≼Pp
∗
i j ;

(2) else, p∗i j is the lub of pi and pj inHP , such that i) p∗i j≼Ppi and p∗i j≼Ppj , and ii) ∀p∈P : p≼Ppi
and p≼Ppj ⇒ p≼Pp∗i j .

Condition 1 states that in case an ad hoc rule is applicable, at least p∗kt is guaranteed as the

virtual property. Condition 2 instead applies whenever Condition 1 fails and provides a virtual

property based on lub that is always weaker or at most equal to p1 and p2. In particular, if p1≼Pp2
(p2≼Pp1, resp.) p∗12=p1 (p

∗
12
=p2, resp.). We note that, in case multiple rules apply or multiple lub

exist, different properties are virtually certified for the service.

In this paper, we focus on Confidentiality, Integrity, Authentication (CIA) properties, which are

at the basis of a security certification process. Figure 1 shows some examples of CIA properties and

their distribution in a property hierarchy. We note that other security properties can be defined by

composing CIA properties, such as privacy and non-repudiation. We also note that our approach,

being generic, can address composition of any classes of properties, including properties (e.g., trust)

whose composition usually requires more complex algebraic structure than the ones in Section 4.1.

New algebraic structures can in fact be modeled within ad hoc rules defining the expectations on

the composition process, in a specific domain and for a specific property.

Example 4.3 (Composition of pi and pj using an ad hoc rule – 1). Let us assumeAttr={algo, key, ctx}
as the set of all attributesAttr . Let us then consider ad hoc rule [pi⊙pj]cond=p∗i j , where pi=(Confidentiality,
{algo=null, key=null, ctx=in transit-in storage}), pj=Any meaning that any property is allowed,

cond=encrypted-disclosure meaning that stored information is always disclosed in encrypted form,

and p∗i j=(Confidentiality, {algo=val(ai ,alдo), key=val(ai ,key), ctx=in transit-in storage}), with val
denoting the function that returns as output the value of the property attribute given to it as

input. Virtual property p∗i j is awarded to the corresponding composite service wsi⊙wsj , since all
information between wsi and wsj will be transmitted and stored in an encrypted form. Then, if

we consider a service with property p1=(Confidentiality,{algo=3DES ,key=168bit,ctx=in transit-in

storage) (i.e., pi≼Pp1) and assume that cond holds based on facts in Definition 4.1, the ad hoc

rule is applied and virtual property p∗
12
=(Confidentiality,{algo=3DES ,key=168bit,ctx=in transit-in

storage}) generated for wsi⊙wsj . We note that p∗
12
is such that p∗i j≼Pp

∗
12
.

Example 4.4 (Composition of pi and pj using an ad hoc rule – 2). Let us consider ad hoc rule

[piτpj]cond=p∗i j , where pi=(Authenticity,{algo=null,key=null,ctx=null}),pj=(Integrity, {algo=null,
key=null, ctx=null}), cond=action-identity-link meaning that a link between each action and the

identity of the user executing the action is kept and cannot be falsified, and p∗i j=(Non repudiation,
ctx=signature-based-integrity}). We note that cond restricts access to the private key of the user

only upon authentication. Then, if we consider a containerwith property p1=(Authenticity,{algo=biometric,

, Vol. 1, No. 1, Article . Publication date: August 2018.

Test-Based Security Certification of Composite Services 11

key=null, ctx=null}), a service with property p2=(Integrity,{algo=RSA,key=null,ctx=envelop})
and assume that cond holds based on facts in Definition 4.1, the ad hoc rule is applied and virtual

property p∗
12
=(Non repudiation,ctx=signature-based-integrity}) generated for wsi⊙wsj . Focusing

on eFlight and, in particular, on service PS in Table 1, property non repudiation is generated iff,

according to condition cond, an authentication based on biometric techniques is implemented in

the container, a privacy key is retrieved after authentication, and PS signs all payment transactions

with the retrieved key.

Example 4.5 (Composition of pi and pj using default rule). Let us consider properties
p1=(Confidentiality, {algo=DES, key=112bit, ctx=in storage}) and p2=(Confidentiality, {algo=AES,
key=128, ctx=in storage}) of services PS and SS in Table 1 to be composed in a sequence. Suppose

that there are no ad hoc rules for p
1
⊙p

2
. Then, the default rule is applied, and p∗

12
=(Confidentiality,

{algo=encryption, ctx=in storage}) generated usingHP in Figure 1(a).

4.3 Virtual Model
The virtual model m∗ij in C

∗
i j depends on models mi and mj in the component service certificates

Ci and Cj , respectively, and operator op∈{⊙, ⊗, ⊕, τ } used to compose wsi and wsj . We note that

the virtual model m∗ij is generated by merging the STS of the services according to the following

definition.

Definition 4.6 (m∗ij). Givenmi andmj ,m∗ij=mi op mj is an STS ⟨Si j ,si j ,Vi ∪Vj ,Ii ∪Ij ,Ai ∪Aj ,→i

∪ →j ⟩, where:

(1) if op=⊙, Si j=Si∪Sj , where the last vertex in the interface part of mi and the first of mj are

substituted by a single vertex;

(2) if op=⊗, Si j=Si∪Sj , where the first vertex in the interface part of mi and mj are substituted

by a single vertex;

(3) if op=⊕, Si j=Si∪Sj , where the first vertex in the interface part of mi and mj are substituted

by a single vertex. The same applies to the last vertex of mi and mj .

(4) if op=τ , the model of the container mi does not have any direct impact on the composite

model, which is the same as mj . Each state in mj relying on functionalities of container wsi
(see [13] for further details) is graphically represented as a double circle.

We remark that Definition 4.6 considers integration of connected componentsm in interface-

based models, that is, models with three states of the interface. For composition of more complex

models, there exist scenarios in which mi or mj has more than one last vertex (i.e., leaf nodes).

In this case, the process in Definition 4.6 is applied for each leaf node. We also note that Si j can

contain the vertices of the service operation implementation, if available.

Example 4.7. Figure 3 shows an example of virtual model generation for operators ⊙, ⊗, ⊕ and

τ . For this example, we assume two three-state STSs with no model of the implementation for

services ws1 and ws2, where S1={s1,s2,s3} and S2={s ′1,s
′
2
,s ′
3
}. Figure 3(a) shows the resulting model

for ws1⊙ws2, where states s3 and s ′1 are integrated in s∗; Figure 3(b) shows the model for ws1⊗ws2,
where states s1 and s

′
1
are integrated in s∗; Figure 3(c) shows the model for ws1⊕ws2, where states

s1 and s
′
1
are integrated in s∗

1
, and s3 and s

′
3
in s∗

3
; Figure 3(d) shows the model for ws1τws2, with

ws1 the service container, where S12=S2 and states in S12 that relies on functionality of ws1 are
denoted with double circles. The input actions are denoted with ?f (in), while the corresponding
output actions are denoted with !f (out). Guards specifying conditions on transitions can also be

associated with each action.

Example 4.8. As an example of virtual model generation for complex service models, let us

assume that the models in Figure 3(b) and Figure 3(a) need to be composed in a sequence. Following

, Vol. 1, No. 1, Article . Publication date: August 2018.

12 Marco Anisetti, Claudio Ardagna, Ernesto Damiani, and Gianluca Polegri

s1

s2

s∗

s ′
2

s ′
3

?f 1(in)

!f 1(out)

?f 2(in)

!f 2(out)

(a) ⊙ operator

s∗

s ′
2

s ′
3

s2

s3

?f 1(in) ?f 2(in)

!f 1(out) !f 2(out)

(b) ⊗ operator

s∗
1

s ′
2

s∗
3

s2

?f 1(in) ?f 2(in)

!f 1(out) !f 2(out)

(c) ⊕ operator

s1

s2

s3

?f 1(in)

!f 1(out)

(d) τ operator

Fig. 3. An example of virtual service models

our discussion, the merging process is applied for each leaf; in particular, the model in Figure 3(a) is

first attached to node s3 in Figure 3(b) (i.e., states s3 in Figure 3(b) and s1 in Figure 3(a) are integrated

in a single node) and is then attached to node s ′
3
in Figure 3(b) (i.e., states s ′

3
in Figure 3(b) and s1 in

Figure 3(a) are integrated in a single node).

4.4 Virtual Evidence
Virtual evidence e∗i j is the set {⟨cat(e

∗
i j), type(e

∗
i j), ta(e

∗
i j), tc(e

∗
i j), tr(e

∗
i j)⟩} in C

∗
i j , where cat(e

∗
i j) is a

virtual category, type(e∗i j) a virtual type, ta(e
∗
i j) a set of test attributes, tc(e

∗
i j) a set of test cases, and

tr(e∗i j) the results of test case execution. It depends on the evidence ei and ej in the component

service certificates Ci and Cj , respectively, and operator op∈{⊙, ⊗, ⊕, τ } used to compose wsi and
wsj . We discuss virtual evidence generation on the basis of operators in {⊙, ⊗, ⊕, τ } assuming ei
and ej to contain a single tuple ⟨cat(e), type(e), ta(e), tc(e), tr(e)⟩.

Operator ⊙. Let us first consider a composition wsi⊙wsj . Virtual evidence is generated according

to the concepts equivalence classes and equivalence class relationship. Equivalence classes are defined
for all service inputs and use the test category to model the entire set of possible values, including:

i) valid values in category functionality, ii) invalid values in category robustness, and iii) attack
values in category penetration. We denote with Fj the set {Fj ,x }={ecjx1,. . .,ecjxn } of all equivalence
classes (one for each input variable x) for servicewsj . An equivalence relationship ≈t is then defined
on the domain D of test case outputs fi (·) and corresponding test case inputs dj . From ≈t , we pass
to the quotient D/≈t of D over ≈t as the set of equivalence classes that form a partition F of D.
Clearly, given D and F, if (fi (·),dj)∈D×D, and fi (·) and dj belong to the same equivalence class, we

write fi (·)≈tdj .
We note that, although each output fi (·) and corresponding input dj take values in the same

domain D, the equivalence classes logically referring to fi (·) may differ from the ones of dj . For
instance, a token returned as output by a service login in case of success has a single equivalence

class of valid values; a token given as input to a payment service has three equivalence classes, that

is, the set of existing and valid tokens, the set of not existing and valid tokens, the set of reused

tokens. In the following, when not mandatory, we will consider a 1-to-1 equivalence relation where

the equivalence classes of fi (·) and dj are the same and have a direct mapping.

, Vol. 1, No. 1, Article . Publication date: August 2018.

Test-Based Security Certification of Composite Services 13

ec111 ec112 ec113

ws1

ec211 ec212 ec213

ws2

ec111 ec112 ec113 ec114

ws1

ec211 ec212 ec213

ws2

ec111 ec112 ec113 ec114

ws1

ec211 ec212 ec213

ws2

m

m,id1

r,id1 w w

(a) Category functionality (b) Category robustness (c) Category penetration

Fig. 4. Virtual evidence generation assuming a single input variable for both ws1 and ws2. Equivalence classes
of category functionality are denoted with solid rectangles, category robustness with dashed rectangles,
category penetration with dotted rectangles. The filled square represents the end of a BPEL flow, that is,
the output of the last service invocation when virtual test cases are generated. Special equivalence classes,
where test cases are generated before the BPEL end, are denoted with gray background. Arrows between
equivalence classes represent the relationship between inputs/outputs of services.

When we consider a sequential service composition, a virtual test case t∗∈tc(e∗i j) is generated
if a sequence of test cases covering an entire path in the composition can be integrated. There

are however some special equivalence classes (denoted ecjxk) in Fj that, when reached, trigger the

generation of a virtual test case covering a subpath of the composition that starts from its root. In

the following, when clear from the context, we denote test cases of the form ({di },{fi (·)}) using the

corresponding equivalence classes ({eci∗∗},{ecj∗∗}), with eci∗∗∈Fi and ecj∗∗∈Fj , and ∗ denoting any
input variable and equivalence class. The certification authority is responsible for the definition of

the equivalence classes of each service invocation in the composition. Indeed, a standard way of

defining them increases trust in the virtual certification process and permits to provide a consistent

comparison of virtual certificates associated with different functionally-equivalent services.

Given ei and ej , the virtual evidence e∗i j is computed based on test categories as follows.

• Category Functionality. If cat(ei)=cat(ej)=Functionality, cat(e∗i j)=Functionality, and type(e
∗
i j) is

computed as the lub between type(ei) and type(ej) usingHcat in Figure 1(b). The set of virtual

test cases tc(e∗i j) is then generated by merging pairs of test cases tc(ei) and tc(ej) according to

the following definition.

Definition 4.9 (tc(e∗i j)). Given two test cases ti=({di },{fi (·)})∈tc(ei) and tj=({dj },{fj (·)})∈tc(ej), a
virtual test case t∗i j∈tc(e

∗
i j) is generated iff for each output fi (·) of ti having a corresponding

input dj of tj , fi (·)≈tdj , that is, they belong to the same input equivalence class of wsj .

We note that the calculation of tc(e∗i j) applies to the Cartesian product tc(ei)×tc(ej). We also

note that outputs fi (·) of ti and inputs dj of tj can be partially overlapped. Outputs having no

corresponding input (and vice versa) are not consider in Definition 4.9. Figure 4(a) shows an

example of equivalence classes for category functionality, where F1={{ec111,ec112,ec113}} are
the equivalence classes for the input of ws1 and F2={{ec211,ec212,ec213}} the ones for the input
of ws2. As an example, given the equivalence classes in Figure 4(a), a test case executed on

ws1 with input in ec111 and output in ec211 (denoted t1=(ec111,ec211)) can be integrated with

a test case case executed on ws2 with input in ec211 and any output (denoted t2=(ec211,∗)) ,
generating a virtual test case t∗

12
as the sequence of the above two test cases.

• Category Robustness. If cat(ei)∨cat(ej)=Robustness and cat(ei)∧cat(ej),Penetration, cat(e∗i j)=Robustness.
If both cat(ei) and cat(ej) have category robustness, the virtual test type type(e∗i j) is calculated
as the lub of type(ei) and type(ej) using Hcat in Figure 1(b). Otherwise, type(e∗i j) assumes

the type of the evidence with category robustness. Virtual test cases are then generated by

, Vol. 1, No. 1, Article . Publication date: August 2018.

14 Marco Anisetti, Claudio Ardagna, Ernesto Damiani, and Gianluca Polegri

combining tc(ei) and tc(ej) as follows. Two test cases ti∈tc(ei) and tj∈tc(ej) form a test case

t∗i j∈tc(e
∗
i j), if each output fi (·) of ti and corresponding input dj of tj are such that fi (·)≈tdj

(Definition 4.9), and one of the following conditions are satisfied i) at least one input dj
of tj belongs to an input partition in category robustness (e.g., invalid input), ii) at least
an input of tj (with no correspondence to outputs of ti) belongs to an input partition in

category robustness (e.g., invalid input), iii) at least an output fi (·) of ti belonging to category
functionality is logically replaced by an output f ′i (·)≈tdj belonging to an input partition in

category robustness (e.g., invalid input). Condition iii) is similar to the input mutation testing

approach adopted in software testing literature [5]; a mutation, denoted ❀, exists from each

equivalence class of category functionality to each of category robustness. Condition iii) can
be reformulated as: there exists a mutation❀ such that

(
fi (·)❀f ′i (·)

)
≈tdj . Figure 4(b) shows

an example of equivalence classes for category robustness, where F1={{ec111,ec112,ec113,ec114}}
are the equivalence classes for the input of ws1 and F2={{ec211,ec212,ec213}} the ones for the
input of ws2. Classes ec113, ec114, and ec213 refer to category robustness, and classes ec212 and
ec213 trigger test case generation when reached. As an example, given the equivalence classes

in Figure 4(b), a test case t1=(ec113,ec212) executed on ws1 can be used either to generate

a virtual test case t∗
1
=t1 or as a starting point for the generation of a test case following

mutation ec212❀ec213. In the latter case, if a test case t2=(ec213,∗) executed on ws2 exists, a
virtual test case t∗

12
is generated. We note that stress/load testing, which aims to verify the

robustness of a service while varying load conditions, are based on test cases of category

functionality sent at high rates.

• Category Penetration. If cat(ei)∨cat(ej)=Penetration, cat(e∗i j)=Penetration. For test case genera-
tion, we use an approach similar to the one for category robustness. The only difference is in

condition iii) where, in a penetration scenario, the mutation of an equivalence class in another

one is driven by the set of capabilities c (e.g., read, write, modify) needed to an adversary to

implement a given attack [13]. Condition iii) is then reformulated as there exists a mutation

c
❀ such that (fi (·)

c
❀f ′i (·))≈tdj , with f ′i (·) an attack equivalence class (e.g., SQL injection),

and the test type of tj is stronger than capability c (i.e., c≼cat type(ej)). This condition must

hold for at least one pair fi (·) and dj . We note that capability c is taken from test types in

Figure 1(b), and virtual test type type(e∗i j) is generated by taking type(ei)∪type(ej) on the

basis of hierarchy Hcat , where type(ei) or type(ej) are initialized to null if their category
is not penetration. We note that, when a specific vulnerability can be exploited by a set of

valid requests executed with temporal constraints, the certification authority must report

them as ad hoc relations between equivalence classes. These relations are denoted with

c ,id
❀

and link together two input partitions of either the same or different operations, to the aim

of certifying attack id. Figure 4(c) shows an example of equivalence classes for category

penetration, where F1={{ec111,ec112,ec113,ec114}} are the equivalence classes for the input of
ws1 and F2={{ec211,ec212,ec213}} the ones for the input of ws2. Classes ec113, ec114, and ec213
refer to category penetration, and classes ec212 and ec213 trigger test case generation when

reached. As an example, given the equivalence classes in Figure 4(c), a test case t1=(ec113,ec212)
executed on ws1 can be used either to generate a virtual test case t∗

1
=t1 of type write or as a

starting point for the generation of a test case following mutation ec212
m
❀ec213. In the latter

case, if it exists a test case t2=(ec213,∗) executed on ws2, a virtual test case t∗12 of type modify
is generated based on ec212

m
❀ec213. Finally, following mutation labeled with id1, it is possible

to generate a virtual test case for attack id1.

, Vol. 1, No. 1, Article . Publication date: August 2018.

Test-Based Security Certification of Composite Services 15

We note that the virtual attributes ta(e∗i j) are generated on the basis of test attributes ta(ei) and
ta(ej), and test cases tc(e∗i j). For instance, test attribute cardinality is equal to the number of test

cases in tc(e∗i j). We also note that, since the evidence is virtual and no test cases are really executed

on the composite service, tr(e∗i j)=∅. A virtual test case t∗i j∈tc(e
∗
i j) generated following a BPEL path

composed of n invocations is a set {({ec1xk },{ec2x ′k ′}),. . .,({ecnxnkn },*)}, where each ({ec1xk },{ec2x ′k ′})
refers to a test case and wildcard symbol ∗ represents any equivalence class or, in other words, the

end of the BPEL flow.

Example 4.10. We now provide an example for each of the categories discussed above.

Let us consider a sequence between bookFlight of AI1 and payOrder of PS in Table 1. The

output of bookFlight is the encryption of an alphanumeric string orderID of 16 characters for local

flights and of 32 characters for international ones, which is then given as input to payOrder. The
set of equivalence classes for orderID are the empty string, the set of encryption of 16-character

orderID, the set of encryption of 32-character orderID, and the set of invalid orderID.
Suppose now that both services have been certified for category Functionality, and CAI has test

type Input partitioning.Equivalence partitioning and CPS Input partitioning.Random input. The set
of test cases for AI contains t1 that returns a valid encryption of a 16-character orderID and t2 that
returns a valid encryption of a 32-character orderID; the set of test cases for PS contains t3 and t4
that take as input a valid encryption of a 16-character orderID. The resulting virtual evidence e∗

belongs to category Functionality and type Input partitioning.Random input, and has two test cases

t∗
13
and t∗

14
.

Then, suppose that: i) service AI has been certified for category Functionality, while service PS
have been certified for category Robustness; ii) CAI has test type Input partitioning.Random input,
while CPS has test type Invalid.Equivalence partitioning, that is, it has been tested against invalid

input (invalid data format). The set of test cases for AI contains t1 and t2 that receive as input a
valid flightID and return as output a valid orderID; the set of test cases for PS contains t3 and t4
that take as input invalid orderID (e.g., null, wrong charset) returning error. The resulting virtual

evidence e∗ belongs to category Robustness and type Invalid.Equivalence partitioning, and has four

test cases t∗
13
, t∗

14
, t∗

23
, t∗

24
, where the valid output of t1 and t2 are substituted with the invalid input

of t3 and t4.
Finally, suppose that equivalence classes for orderID include the class of SQL injection attacks.

Also, suppose that there is a mutation labeled with capability modify (i.e.,
m
❀) between the valid

and SQL injection classes, meaning that an SQL Injection attack can be exploited by an attacker

having modify privileges on message payOrder containing orderID. At this point, let us consider
two test cases t1 and t2 for operation bookFlight of service AI returning two valid orderID, and a

single test case t3 for operation payOrder of service PS, with type(t3)=modify, taking as input an
orderID whose value is in the partition of SQL injection attacks. The resulting virtual evidence e∗

belongs to category Penetration and type Attack.Modify, and has two test cases t∗
13
and t∗

23
.

Operators ⊗, ⊕, τ . Let us consider ei and ej to be composed using operators ⊗, ⊕, τ . The virtual
evidence e∗i j is calculated as follows:

• Operators ⊗ and ⊕. Given ei and ej to be composed, the virtual evidence e∗i j=ei∪ej .
• Operator τ . Operator τ is special-type operator. It is applied a priori before the BPEL process

is evaluated and generates evidence following two distinct approaches.

In the first approach, the contained service inherits the certificate Ci of the container. The

virtual evidence e∗i j is then generated by selecting relevant evidence ei in Ci , according to

the container functionality used by the service and restrictions defined in conditions cond
of property p (Section 4.2). We note that, for this to work, evidence ei refers to a prototype

, Vol. 1, No. 1, Article . Publication date: August 2018.

16 Marco Anisetti, Claudio Ardagna, Ernesto Damiani, and Gianluca Polegri

service that is used for testing purposes only. For instance, this service is used to test the

encryption and signature functionalities of the container. Concretely, let us consider a service

to be certified for confidentiality in transit using AES. Given a container certified to support

AES encryption algorithm within WS-Security specifications, the service specifies support

for a WS-Policy requiring the AES-based encryption of data exchanged over the Internet.

In this scenario, virtual evidence is produced for the composite service by including the

test cases used by the container to certify the support for AES encryption algorithm within

WS-Security specifications.

In the second approach, container evidence ei and service evidence ej are composed in a

sequence (operator ⊙) to produce the virtual evidence e∗i j , that is, eiτ ej=ei⊙ej . Concretely, let
us consider a service to be certified for confidentiality in transit-in storage. Virtual evidence

can be generated by composing in a sequence the evidence in a container certificate for prop-

erty confidentiality in transit and the one in a service certificate for property confidentiality

at rest.

5 CERTIFICATION-AWARE SERVICE SELECTION AND COMPOSITION
Our approach produces service compositions holding a specific security property starting from

the certificates of the component services. Component services are first selected according to their

certificates and then composed to certify the target security property. Certificates of component

services are finally integrated using the operators in Section 4 to produce a virtual certificate for

the entire composition.

In the following, starting from the BPEL graph in Definition 3.1, we describe: i) how a certification

authority can annotate the BPEL graph to ensure a specific property and permit the consequent

generation of a virtual certificate (BPEL template, Definition 5.1) and ii) how to select suitable

candidate services to instantiate a runnable composition satisfying the BPEL template (BPEL

instance, Definition 5.2).

5.1 BPEL Template
Given the BPEL graph in Definition 3.1, we use annotations [15, 94] to let certification authority

specify requirements in terms of certificates for each component service, to ensure a specific

virtually certifiable property for the composition. More specifically, we use annotations with two

different objectives: i) security annotations on individual BPEL invocationsvi∈VI in the BPEL graph,
as a way to obtain a composition having the desired security property, ii) test equivalence classes
Fi on individual BPEL invocationsvi∈VI in the BPEL graph (Definition 3.1), as a way to support the

virtual test case generation for the composition (see Section 4.4).
5
Our annotation process involves

two labeling functions: i) a labeling function λ:VI→LS that associates a set of security requirements

R∈LS with each invocation vi∈VI , ii) a labeling function γ :VI→LF that associates a set Fi∈LF of

equivalence classes with each invocation vi∈VI .
We formally define a BPEL template as follows.

Definition 5.1 (BPEL template). Given a BPEL graph G(V ,E), a BPEL template Gλ,γ (V , E, λ,γ) is a
direct acyclic graph with two labeling functions: i) λ that assigns a label λ(vi), corresponding to
the security requirements to be satisfied by the service represented by vi , for each vertex vi∈VI ; ii)
γ that assigns a label γ (vi), corresponding to the equivalence classes defined for each vertex vi∈VI .

5
We note that, although not explicitly formalized, each invocation vertex in VI is also annotated with a set of functional

requirements, to be evaluated before security requirements are considered.

, Vol. 1, No. 1, Article . Publication date: August 2018.

Test-Based Security Certification of Composite Services 17

<annotation id= " ann01 " ref= " payOrder " >

<property>
<abs> C o n f i d e n t i a l i t y < / abs>
<algo>AES< / algo>
<key>128 b i t < /key>
<ctx> in s t o r a g e < / ctx>

< / property>
<model> I n t e r f a c e < /model>
<evidence>

<category> F u n c t i o n a l i t y < / func t iona l i ty>
<type> Inpu t p a r t i t i o n i n g . Random Inpu t < / type>
< a t t r s >

< a t t r id= " c a r d i n a l i t y " >100< / a t t r >
< / a t t r s >

< / evidence>
< / annotation>

<annotation id= " ann02 " ref= " wr i t e " >

<property>
<abs> C o n f i d e n t i a l i t y < / abs>
<algo>AES< / algo>
<key>128 b i t < /key>
<ctx> in s t o r a g e < / ctx>

< / property>
<model> I n t e r f a c e < /model>
<evidence>

<category> F u n c t i o n a l i t y < / func t iona l i ty>
<type> Inpu t p a r t i t i o n i n g < / type>

< / evidence>
< / annotation>

(a) (b)

Fig. 5. An example of security annotation for operations payOrder (a) and write (b) of eFlight BPEL graph
in Figure 2

The security annotation models requirements in the form of R[p ,m,e]. We note that R.p specifies

the least security property the service must hold according to hierarchy HP , R.m defines the

requirements on the service model used to certify a service, and R.e specifies the requirements on

the evidence supporting each property. Being defined by the certification authority, each security

annotation in the BPEL template contains the least set of requirements for each corresponding

invocation such that p holds. We note that different annotations can exist for a single BPEL template;

in the following, for simplicity but with no lack of generality, we assume a single annotation. We

also note that given the set of ad hoc rules, property hierarchyHP , and property p to be certified

for the composition, λ(vi) can be computed automatically for each vi∈VI , such that p is supported.

However the definition of an automatic BPEL template annotation approach is outside of the scope

of this paper.

The equivalence class annotation models a set Fi of Fi ,x={ecix1,. . .,ecixn }. We note that each Fi ,x
depends on the input parameter x and on the specific transition (v,vi); in other words, different

paths could lead to different Fi ,x for the same parameter x .
We note that both security annotation λ(vi) and equivalence class annotation γ (vi) can be

expressed as XML fragments. An example of XML-based security annotations λ(vi) is provided
in Figure 5 for operation payOrder (Figure 5(a)) and for operation write (Figure 5(b)). The XML

fragment for operation payOrder prescribes the integration of a service certified for property

Confidentiality of data in storage with AES algorithm and at least key length equal to or greater

than 128bit , using a WSDL model. The selected service must have been tested with at least 100 test

cases of category Functionality and type Input partitioning.Random input. Specific examples of γ (vi)
annotations and corresponding equivalence classes Fi are provided in Figure 4 and Example 4.10.

5.2 BPEL Instance
Given the BPEL template we define our BPEL instantiation technique as a function that takes

as input a BPEL template Gλ,γ (V , E, λ,γ) and different sets of candidate services, each satisfying

the functional requirements of one service operation invocation, and returns as output a BPEL

instance G ′(V ′, E,γ). InG ′(V ′, E,γ), every invocation vi∈V
′
I contains a service instance, and every

branching v∈V⊗∪V⊕ is maintained as it is. We formally define our BPEL instance as follows.

Definition 5.2 (BPEL instance). LetGλ,γ (V , E, λ,γ) be a BPEL template, a BPEL instanceG ′(V ′, E,γ)
is a direct acyclic graph, where vr=v

′
r , for each vertex v∈V⊗∪V⊕ it exists a corresponding vertex

, Vol. 1, No. 1, Article . Publication date: August 2018.

18 Marco Anisetti, Claudio Ardagna, Ernesto Damiani, and Gianluca Polegri

v ′∈V ′⊗∪V
′
⊕ , and for eachvi∈VI it exists a corresponding vertexv

′
i∈V

′
I instantiated with a real service

wsi having certificate Ci , such that the following conditions hold:

(1) wsi satisfies functional requirements in Gλ,γ (V , E, λ,γ);
(2) Ci satisfies λ(vi).

Condition 1 is needed to preserve the process functionality, as it simply states that each service

wsi in the BPEL instance must satisfy functional requirements associated with the corresponding

invocation in the BPEL template. Condition 2 states that a service wsi can be integrated within

the BPEL instance iff its security certificate Ci satisfies the security requirements λ(vi) associated
with the corresponding vertex vi in the BPEL template. We note that, there are no conditions on

equivalence classes γ (vi), since they are only used as a support for the computation of the virtual

evidence of G ′.
The BPEL instance in Definition 5.2 is generated by traversing the graph Gλ,γ

with a breadth-
first search. The algorithm starts from the root vertex vr which is added as root v ′r of G

′
. Root

vr in fact already contains the instance of the orchestrator. Then for each vertex v∈V⊗∪V⊕ , a
corresponding vertex v ′∈V ′⊗∪V

′
⊕ is generated. Finally, similarly to the work in [12], for each vertex

vi∈VI , a two-step selection approach is applied as follows.

(1) Matching algorithm: It matches requirements R[p,m, e] against service certificates C(p,m, e),
and returns as output a set of compatible services whose certificates satisfy R. Formally,

let us consider a set WSi of candidate services wsj , each one having certificate Cj , and

λ(vi) as the security requirements Ri for the invocation at vertex vi in the BPEL template.

Assuming that functional matching is successful for each wsj∈WSi , security requirements

λ(vi) are considered. The matching process is successful if Cj satisfies λ(vi); otherwise, wsj is
discarded and not considered for selection. The matching algorithm returns a set WS′i⊆WSi
of compatible services, which represent the possible candidates for selection.

(2) Comparison Algorithm: Upon retrieving a set of compatible services, it produces a ranking of

these services (partial order) according to their certificates, and identifies the best service

that satisfies the security requirements. Formally, compatible services wsj∈WS′i are ranked
in a partial order on the basis of their certificate Cj . The best service wsi is then selected and

integrated in v ′i∈V
′
I . There are many ways of generating this partial order as reported in [12].

We present the approach used in this paper in Section 6.

When all verticesv∈V have been visited,G ′ contains a service instance for each operation invocation
in Gλ,γ

. G ′ represents the real composite service to be certified. We note that if the above selection

approach satisfies λ(vi) for each vi∈VI of G
λ,γ

, the composite service will inherit at least property

p used as the target for its definition, according to theorem 5.3.

Theorem 5.3. [BPEL instantiation] Given a BPEL TemplateGλ,γ (V ,E,λ,γ) defined so that a property
p is guaranteed for the composition, any BPEL instance G ′(V ′, E,γ) obtained using Definition 5.2
guarantees at least p.

Proof. We proof the theorem by induction.

Base case: Let us consider a simple BPEL Template G
λ,γ
1
(V , E, λ,γ), including one invocation

v1∈VI , defined to guarantee a target property pt . According to Definition 5.2, v ′
1
∈V ′I is instantiated

with a service ws1, forming a BPEL instance G ′
1
, such that ws1 satisfies functional requirements in

G
λ,γ
1

and C1 satisfies λ(v1), meaning that λ(v1).p=pt≼PC1.p .
Inductive step: Let us consider a BPEL Template G

λ,γ
k , including k invocations v1, . . . ,vk∈VI

composed using operators op∈{⊙,⊗,⊕} and annotated with properties λ(v1).p, . . . , λ(vk).p , respec-
tively. G

λ,γ
k is defined to guarantee a target property pt for the composition. If a BPEL instance G ′k

, Vol. 1, No. 1, Article . Publication date: August 2018.

Test-Based Security Certification of Composite Services 19

is generated by instantiating invocations v1, . . . ,vk in G
λ,γ
k with services ws1, . . . ,wsk following

Definition 5.2, thus guaranteeing at least pt , thenG ′k+1 guarantees at least pt when k+1 invocations

v1, . . . ,vk ,vk+1∈VI are considered in G
λ,γ
k+1 and the additional invocation vk+1 contributes to the

support of pt .
Specifically, G ′k and wsk+1, with properties C∗k .p and Ck+1.p , are integrated in the BPEL instance

G ′k+1 generated as the instantiation of the BPEL templateG
λ,γ
k+1, with pt≼PCk .p and λ(vk+1).p≼PCk+1.p .

According to Definition 4.2, property C∗k+1.p
∗
is calculated using either an ad hoc rule [p1

op p2]=p , such that p1≼Ppt≼PCk .p and p2≼Pλ(vk+1).p≼PCk+1.p , or hierarchy HP . In the first

case, by definition, pt≼Pp∗, while in the second case pt≼Pp∗ because pt=lub(pt ,λ(vk+1).p) and
p∗=lub(Ck .p ,Ck+1.p). �

Example 5.4 (BPEL instantiation). Let us consider a BPEL templateGλ,γ
for services PS and SS

composed in a sequence, and annotated with the XML fragments in Figure 5. The BPEL template is

defined by the certification authority to guarantee at least p=(Confidentiality,{algo=DES, key=128,
ctx=in storage}) for the composition. Let us then consider a valid BPEL instanceG ′(V ′, E,γ) integrat-
ing two service instances wsj and wsk , with certified properties Cj .p=(Confidentiality,{algo=DES,
key=256, ctx=in storage}) and Ck .p=(Confidentiality,{algo=DES, key=256, ctx=in storage}), re-

spectively. Following Definition 4.2, a virtual property p∗ik=(Confidentiality,{algo=DES, key=256,
ctx=in storage}) greater than property p ensured by the BPEL template is calculated using hierarchy

HP . p∗jk has in fact higher key length than p .

5.3 Virtual Certificate Generation
Virtual certification is a process owned by a certification authority, which receives as input a BPEL

instance G ′(V ′,E) and iteratively composes pairs of (virtual) certificates Ci and Cj to generate a

virtual certificate C∗G′ for the composition. The virtual certification process proceeds as follows:

i) all pairs of services wsi⊙wsj in a sequence are selected, their certificate Ci and Cj composed

in a virtual one C∗i j , and their respective vertices vi ,vj∈V
′
substituted with a single vertex vi j

annotated with certificate C∗i j ; ii) when no service sequences are left, a pair of services in either an

alternative (wsi⊗wsj) or a parallel (wsi⊕wsj) are composed, a virtual certificate C∗i j generated, and

their vertices vi ,vj∈V
′
substituted with a single vertex vi j annotated with certificate C∗i j ; iii) the

process is repeated untilG ′ is reduced to a graph having a single vertexv with virtual certificate C∗G′ .

C∗G′ is finally awarded to G ′. Given two certificates Ci and Cj , a virtual certificate C
∗
i j is generated

through a three-step approach which composes: i) the property of Ci and Cj (Section 4.2), ii) the
model of Ci and Cj and, in particular, the model of the operations ofwsi andwsj involved in the

composition (Section 4.3), iii) the evidence of Ci and Cj (Section 4.4).

The trustworthiness of virtual certificate C∗G′ is discussed in the following proposition.

Proposition 5.5 (Virtual certificate trustworthiness). The trustworthiness of virtual cer-
tificate C∗G′ relies on well-ordering assumption (assumption 4.1) and the trust a specific customer has
on the correctness of the requirements specified by the certification authority in the BPEL template and
on the BPEL instantiation process (theorem 5.3).

We remark that as a result, a multi-step chain of trust is built, grounded in the certificates of the

atomic services: anyone who trusts the authorities who signed the certificates of the component

services and the authority computing the virtual certificate for the BPEL composition, will trust the

virtual certificate itself; then, the virtual certificate awarded to the composition can be recursively

used as a basis to virtually certify another orchestration where the composition is just a component.

, Vol. 1, No. 1, Article . Publication date: August 2018.

20 Marco Anisetti, Claudio Ardagna, Ernesto Damiani, and Gianluca Polegri

6 HEURISTIC APPROACHES TO BPEL INSTANCE GENERATION
In the previous section we described our general approach based on matching and comparison,

aimed to generate and virtually certify a BPEL instance (see Sections 5.2 and 5.3). Here we refine

the approach to produce the BPEL instance with the “best” virtual certificate.

The first step in this direction is the definition of a metric of quality of the BPEL instance, which

measures the quality of its virtual certificate. We propose to measure the certificate quality by

evaluating the quality of its virtual evidence. The main reasons supporting this idea are as follows:

i) our approach guarantees a minimum virtual property for each BPEL instance (see Theorem 5.3),

ii) the virtual model is not used for test case generation, while test cases are generated from the

ones of component service,
6 iii) virtual evidence is the only artifact evaluating the strength of the

certified property.

Given a BPEL instanceG ′(V ′, E,γ) and its virtual certificate C∗G′ , we define a quality metric θ (G ′)
that evaluates the quality of C∗G′ . θ (G

′) measures the coverage of equivalence classes in G ′ using
the test cases in C∗G′ and is calculated as follows.

Definition 6.1 (θ (G ′)). Given G ′ and tc(e∗G′)∈C
∗
G′ , θ (G

′) is calculated as

θ (G ′) =
∑
∀v ′i ∈V

′
I

|{ecixk ∈ γ (v ′i)|∃t ∈ tc(e
∗
G′) s .t . (ecixk , ∗) ∈ t}|, (1)

where ecixk is the k-th equivalence class for the x-th input variable of wsi instantiating vertex v ′i .

We note that in case a BPEL instance G ′ is composed of a single vertex v ′i instantiated with

service wsi , θ (G ′) is calculated as the number of input equivalence classes in γ (v ′i) covered by test

cases in Ci of wsi .
We also define a general purpose quality metric Θ(G ′) as the normalization of θ (G ′). Θ(G ′) is

computed as the ratio between θ (G ′) and the total number of equivalence classes in G ′ according
to the following definition.

Definition 6.2 (Θ(G ′)). Given G ′ and θ (G ′), Θ(G ′) is calculated as

Θ(G ′) =
θ (G ′)∑

∀v ′i ∈V
′
I
|γ (v ′i)|

, (2)

where the numerator represents the equivalence classes covered by test cases in C∗G′ and the

denominator the number of equivalence classes in G ′.

While θ (G ′) is used to generate the best BPEL instance, Θ(G ′) can be used to compare different

functionally equivalent BPEL instances.

The problem of computing a BPEL instance G ′ that satisfies security annotations in the BPEL

Template and maximizes the certification quality metric θ (G ′) can be formally defined as follows.

Problem 6.1. (Best BPEL Instance) Given a BPEL Template Gλ,γ (V , E, λ,γ) and a set WSi of
candidate services for each invocation vi∈VI⊆V , find a maximum BPEL instance G ′(V ′, E,γ) that
satisfies the following requirements:

(1) G ′ satisfies functional requirements in Gλ,γ (Definition 5.2, Condition 1);
(2) G ′ satisfies security annotations in Gλ,γ (Definition 5.2, Condition 2);
(3) @ a BPEL instance G ′′ such that G ′′ satisfies Gλ,γ and θ (G ′′)>θ (G ′).

6
We remark that the assumption the better the model, the higher the certification quality [13] at the basis of certificate

comparison in [12] does not hold for the certification of composite services.

, Vol. 1, No. 1, Article . Publication date: August 2018.

Test-Based Security Certification of Composite Services 21

A BPEL instance G ′ represents the best BPEL instance iff the replacement of a service instance

associated with a given invocation v ′i∈V
′
I either violates functional requirements for the corre-

sponding vi in G
λ,γ

(Condition 1), violates λ(vi) in G
λ,γ

(Condition 2), or produces a lower θ (G ′)
(Condition 3).

The Best BPEL Instance problem is NP-hard, as proven by the following theorem.

Theorem 6.3. The Best BPEL Instance problem is NP-hard.

Proof. The proof is a reduction from the NP-hard problem of the Knapsack, formulated as

follows. Given a set of items S={1,. . .,n}, where item i has size sj and valuevali , and knapsack capacity
Cp, find the subset S ′⊂S that maximizes the value of

∑
i ∈S ′ vali given that

∑
i ∈S ′ si ≤ Cp, that is, it

fits in a knapsack of size Cp.
Given a BPEL template Gλ,γ (V , E, λ,γ) and the set WS of available services, the correspondence

between the Max-Instance problem and the Knapsack problem can be defined as follows.

First, we assume each service wsj∈WS to be composed of different operations all with the same

certificate Cj with evidence of category functionality. In the following, for simplicity, we refer to an

operation using its corresponding service wsj ; we also considerGλ,γ
that consists of a sequence of n

services and is annotated with the same set of equivalence classes for each invocation. Then, let |VI |
be the knapsack capacity Cp. The set WS of services includes a service wsj for each item in S , with
size si=1. Each wsj is a candidate service for at least one vertex vi∈VI and its value depends on the

service associated with the instance of the preceding vertex v ′i−1 in G
′
. In particular, the value valj

of wsj , if selected to instantiate v ′i∈V
′
I in G ′, is calculated as valj=θ (v

′
i)=|θ (v

′
i−1 ⊙ v

′
i)|−|θ (v

′
i−1)|,

meaning that valj for wsj is calculated as the intersection between the equivalence classes γ (vi)
covered by the inputs of test cases in Cj and the ones covered by the outputs of test cases in the

certificate of the service selected for v ′i−1.
7
We note that valj calculated for candidate services

wsj associated with root vr of the BPEL graph is equal to θ (v ′r), that is, it is the number of input

equivalence classes in γ (vr) covered by test cases in Cj of wsj . We also assume that for each service

the same set of equivalence classes are covered both in input and output; as a consequence, when a

service is selected to instantiate two consecutive invocations, the whole set of equivalence classes

are covered for the second invocation. We finally assume that for each possible combination of

wsi−1 and wsi in a sequence (wsi−1⊙wsi), the produced value vali for wsi is less than/equal to vali
achieved when wsi−1=wsi .
Each vertex vi∈VI in Gλ,γ

is associated with a subset of compatible services WSi⊆WS, where
every service in WSi has a certificate C that satisfies λ(vi). Let us now consider an instance set

W={ws1,. . .,wsn }⊆WS, withn≤Cp, where each service inW is used to instantiate at least onev ′i∈V
′
I

in G ′. If the selected set produces a BPEL instance G ′ with maximum quality θ (G ′)=
∑
v ′i ∈V

′
I
vali ,

then it represents a solution S ′ for the corresponding knapsack problem. Since the integration of a

new service does not increase the total number θ (G ′) of covered equivalence classes, we will be

able to to find the minimum subset of services that represent a valid BPEL instanceG ′ and therefore
maximize the quality metric θ . We therefore start from a BPEL template Gλ,γ

and try to found an

instanceW of services in S , such that all invocation vi∈VI are instantiated by services inW and

related annotations λ(vi) satisfied. Let us consider an instance setW={ws1}, with ws1∈WS1. If the
selected set is such that a validG ′ is produced, then it represents a solution S ′ for the corresponding
knapsack problem, where the instance set maximizes the value θ of G ′. If a valid G ′ is not found,
meaning that at least one instantiation of vi fails, we consider a new instance setW={ws1,ws2},
with ws1∈WS1 and ws2∈WS2, that tries to find a set of at most two services (i.e., a valid solution

7
The definition of service value valj that depends on the preceding service is equivalent to the scenario in which different

instances of wsj (one for each preceding service) are available and have different θ .

, Vol. 1, No. 1, Article . Publication date: August 2018.

22 Marco Anisetti, Claudio Ardagna, Ernesto Damiani, and Gianluca Polegri

INPUT
Gλ,γ (V , E , λ, γ): BPEL template

WSi : set of candidate services
for vi ∈VI ⊆V (i :=1,. . .,n)

OUTPUT
G′(V ′, E , γ): BPEL instance

MAIN_LOCAL
for each vi ∈VI do

v ′i :=best_candidate_local(WSi);
return G′

BEST_CANDIDATE_LOCAL(WS)
best_candidate←ws1∈WS;
for each wsj ∈WS do {

vtmp←wsj ;
if θ (best_candidate)<θ (vtmp)
best_candidate:=vtmp ;

}

return best_candidate;

MAIN_SBS
vr :=best_candidate_local(WSr);
vr .visited:=true;
instance_generation(children(vr));
return G′;

INSTANCE_GENERATION(V)

for each vi ∈V do
if vi .visited,true {
v ′i :=best_candidate_sbs(vi ,WSi);
vi .visited:=true;

}

for each vi ∈V do
if |children(vi) |>0

instance_generation(children(vi));

BEST_CANDIDATE_SBS(v,WS)
if |parent(v) |>1

v ′a :=
⋃
∀vi ∈parent (v) v

′
i ;

else if |parent(v) |=1
v ′a :=v

′
s.t. v ′ is the instance

of parent(v);
best_candidate←ws1∈WS;
for each wsj ∈WS do {

vtmp←wsj ;
if θ (parent(v ′a) ⊙ best_candidate)

<θ (parent(v ′a) ⊙ vtmp)
best_candidate:=vtmp ;

}

return best_candidate;

Fig. 6. Local Heuristic and Step-By-Step Heuristic

could include different operations of the same service) that covers the BPEL instance maximizing

its quality. The number of terms in the instance set is iteratively increased by one until a solution

to the problem is found or |W|=Cp. �

We now introduce two heuristics, local and step-by-step, balancing quality and efficiency of the

solution, which differs in the algorithm used for service selection. According to Problem 6.1, both

heuristics receive as input a BPEL template Gλ,γ (V , E, λ,γ) and a set WSi of candidate services for
each invocation vi∈VI⊆V , and returns as output a BPEL instanceG ′(V ′, E,γ). The local heuristic
selects for each invocation vi∈VI the best service wsi such that θ (v ′i) is maximum among all

candidate services. The step-by-step heuristic first selects a candidate service wsr for root vertex
v ′r of the BPEL instance such that θ (v ′r) is maximum among candidate services;

8
then it traverses

Gλ,γ
using a breadth-first search. At each invocation vi∈VI , a service wsi is selected such that it

maximizes the quality of the subgraph of G ′ that has been already traversed. We now describe in

detail our heuristic algorithms, which are shown in Figure 6.

6.1 Local Heuristic
Local heuristic selects each service to be integrated in G ′, independently. Let us consider WSi
as the set of candidate services for vertex vi∈VI of BPEL Template Gλ,γ

. The local approach can

be described as follows. We iteratively consider all invocation vertices vi∈VI (for each cycle in

function main_local) and instantiate (denoted with←) each of them using wsi∈WSi such that

θ (v ′i) is maximized (function best_candidate_local). In case more than one service have maximum

θ (v ′i), the first one is selected.

6.2 Step-By-Step Heuristic
The step-by-step heuristic first starts from root vertex vr of the BPEL and selects wsr such that

θ (v ′r) is maximized (first instruction in function main_sbs). The rest of the BPEL graph is then

traversed using a breadth-first search (function instance_generation) to select services for all

8
We remark that, in a general case, the root vertex has only one candidate that represents the BPEL orchestrator.

, Vol. 1, No. 1, Article . Publication date: August 2018.

Test-Based Security Certification of Composite Services 23

invocations as follows. For each vi∈VI , candidate services wsj∈WSi are evaluated with respect to

the services already selected for vi ’s parents (function best_candidate_sbs) as follows:

• In case vi has only one parent v in Gλ,γ
(|parent(v)|=1), we consider composition ws⊙wsj

wherews is the service selected for the parent’s vertexv ′a inG
′
and wsj∈WSi is one candidate

service for vertex v ′i in G ′. The best candidate service wsi∈WSi is then selected such that

θ (v ′a ⊙v
′
i) is maximized, and corresponding nodevi in the BPEL template is marked as visited.

• In case vi has multiple parents in Gλ,γ
(|parent(v)|>1), first the corresponding vertices in G ′

are logically collapsed into a single parent vertex v ′a , with a single logical service wsa and
virtual certificate C∗a , where the virtual test cases computed for each parent are merged in a

single set of virtual test cases tc(e∗a). We then consider compositionwsa⊙wsj , wherewsj∈WSi
is one candidate service for vertex v ′i . The best candidate service wsi∈WSi is selected such

that θ (v ′a ⊙ v
′
i) is maximized and corresponding node vi in the BPEL template is marked as

visited.

Finally, a third heuristic (hybrid heuristic) is defined as an hybridization of the two heuristics

described in this section. The hybrid heuristic takes as input the services selected by local and

step-by-step heuristics in their executions, and applies an exhaustive search of the optimal solution

over them.

An overview of our experimental results is presented in Section 7, where performance and quality

of the three heuristics are discussed and compared.

7 EXPERIMENTAL EVALUATION
We experimentally evaluated our certification approach for composite services. In the following of

this section, we first present the testing infrastructure adopted in our experiments (Section 7.1).

We then discuss the performance (execution time) of our heuristic algorithms and of the whole

certification process (Section 7.2). We finally evaluate the quality of the virtual certificates generated

according to our heuristics based on quality metric Θ (Section 7.3).

7.1 Testing Infrastructure
We designed and developed a Java-based testing infrastructure that implements the certification-

aware service composition approach in Section 5, by extending our prototype described in [7]

with the heuristics for the generation of virtual certificates. Our infrastructure implements local,

step-by-step, and hybrid heuristics to assess their effectiveness and efficiency, in terms of both

qualityΘ of the generated virtual certificate (see Definition 6.2) and the execution time performance

for its computation. To better evaluate the performance and quality of our heuristic algorithms, it

also implements the exhaustive algorithm that computes the optimum solution by calculating all

possible certificates given the BPEL template and all candidate services (Problem 6.1). Finally, to

support complete and automatic experiments, the testing infrastructure provides i) a BPEL template
generator that given a configuration file produces a BPEL template and ii) a certificate generator that,
according to a BPEL template, generates a set of security certificates C(p ,m,e) for each invocation

vi∈VI . We note that each certificate is logically associated with a service. We also note that each pair

of service/certificate is a candidate for vi , that is, it satisfies conditions (1) and (2) in Definition 5.2.

BPEL template and certificate generators work as follows.

BPEL template generator produces BPEL templates Gλ,γ
with a sequential structure (worst case

scenario) annotated with security requirements λ and equivalence classes γ . It receives as input a
configuration file specifying an interval on the number of invocations (|VI |) and an interval on the

number of equivalence classes for each invocation. We note that the number of input parameters,

requirements on attack equivalence classes, and special equivalence classes have less impact on

, Vol. 1, No. 1, Article . Publication date: August 2018.

24 Marco Anisetti, Claudio Ardagna, Ernesto Damiani, and Gianluca Polegri

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 1e+009

 1e+010

 1e+011

 1e+012

 1e+013

 1e+014

 1e+015

 1e+016

 1e+017

 1e+018

3 6 9 12 15 18 21

ti
m

e
 (

s
)

Number of invocations

Exhaustive (3 candidates)
Exhaustive (5 candidates)

Exhaustive (10 candidates)
Exhaustive (15 candidates)
Exhaustive (30 candidates)
Exhaustive (50 candidates)

Local heuristic
Step-by-step heuristic

Hybrid heuristic
y=600

(a)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 1e+009

 1e+010

 1e+011

 1e+012

 1e+013

 1e+014

 1e+015

 1e+016

 1e+017

 1e+018

5 10 15 20 25 30 35 40 45 50

ti
m

e
 (

s
)

Number of candidate services

Exhaustive (3 invocations)
Exhaustive (6 invocations)
Exhaustive (9 invocations)

Exhaustive (15 invocations)
Exhaustive (21 invocations)

Local heuristic
Step-by-step heuristic

Hybrid heuristic
y=600

(b)

Fig. 7. Execution time (log scale) varying (a) the number of invocations and (b) the number of candidate
services

our experiments and therefore are randomly generated. It then selects a random number n of

invocations, and generates the corresponding nodes vi with random security annotation λ(vi) and
equivalence classes annotation γ (vi) for vi according to the configuration file. The equivalence

classes of each node vi are randomly connected to one or more classes of child node vi+1, with
i=1,. . .,n−1, to represent the relationship between inputs/outputs of services (see Figure 4).

Certificate generator considers each invocation vi in G
λ,γ

independently and produces a set of

certificates, each referring to a service, that address the security annotation λ(vi). In particular, for

each certificate, it first generates a property p and a model m that satisfy λ(vi). It then provides an

evidence e whose category and type satisfy λ(vi), and with a random set of test cases generated as

discussed in Section 4.4.

All our experiments have been run on a workstation equipped with an Intel Core 2 Duo CPU 2.4

GHz, 4GB RAM, 1TB disk, 7200RPM, 32MB cache, and Mac OS X 10.7.4, and installing the complete

testing infrastructure. All experiments have been repeated 10 times and the results shown here are

the average over the 10 executions.

7.2 Performance Evaluation
We evaluated the performance of our approach on different system configurations, varying the

number of invocation nodes between 3 and 21, and the number of candidate services for each

invocation between 5 and 50. For all configurations, we considered the hierarchies in Figure 1, 20

ad hoc rules, a rate of 100% of candidates (worst case) that satisfy the security annotation of the

corresponding invocation, and a number of input equivalence classes varying between 3 and 30.

Recalling that the results discussed in the following have been computed as the average of the

values obtained with 10 runs for each configuration, we note that each run generated a new BPEL

template and corresponding service certificates from scratch.

Let us first consider the performance of the three heuristics and the exhaustive algorithm

evaluating their execution time. Figure 7(a) compares their execution time increasing the number of

invocations from 3 to 21 (step 3). The exhaustive algorithm has been evaluated in 6 settings varying

the number of candidate services for each invocation in 3, 5, 10, 15, 30, 50, while the heuristics

considered the worst case of 50 candidates. Figure 7(b) compares the execution time increasing the

number of candidate services from 5 to 50 (step 5). The exhaustive algorithm has been evaluated in

5 settings varying the number of invocations in 3, 6, 9, 15, 21, while the heuristics considered the

, Vol. 1, No. 1, Article . Publication date: August 2018.

Test-Based Security Certification of Composite Services 25

 6
 8

 10
 12

 14
 16

 18
 20 21

Number of invocations 10

 20

 30

 40

 50

Number of candidates

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

G
e

n
e

ra
ti

o
n

 t
im

e
 (

m
s

)

(a)

 6
 8

 10
 12

 14
 16

 18
 20 21

Number of invocations 10

 20

 30

 40

 50

Number of candidates

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

G
e

n
e

ra
ti

o
n

 t
im

e
 (

m
s

)

(b)

Fig. 8. Certification process execution time with (a) local and (b) step-by-step heuristics

worst case of 21 invocations. We note that the execution time of the exhaustive algorithm is reported

only for configurations requiring less than 10 minutes, and estimated for configurations over that

threshold. In general, all heuristics considerably outperformed the exhaustive algorithm, which

required exponential time in the number of invocations and candidate services, with a stronger

dependence on the number of invocations. The execution time of local heuristic remained below

1.3 ms, the one of the step-by-step heuristic below 3.38 ms, and the one of the hybrid heuristic

below 1566.83 ms. The total execution time of the hybrid heuristic is given by the execution time

of local and step-by-step heuristics plus an additional overhead given by the application of the

exhaustive algorithm to the set of candidate services derived from local and step-by-step heuristic

execution. Although hybrid heuristic is exponential in the worst case, our experiments showed low

overhead due to the fact that the set of selected services for local and step-by-step heuristics were

very similar and overlapped in average of the 64.2%.

Figure 8(a) and Figure 8(b) present the execution time of the whole certification process, from

BPEL instance to certificate generation, on the basis of local and step-by-step heuristics, respectively.

The generation time is pseudo-linear in the number of invocations and candidates, and requires

71.989s for local heuristic and 74.678s for step-by-step heuristic in the worst case with 21 invocations

and 50 candidates for each invocation. Taking the average of all measurements in our experiments,

93.33% of the time is devoted to BPEL instance generation (of which 0.32% is devoted to heuristic

execution), while the remaining 6.67% to virtual certificate production. Our results show that i)
the number of candidates has the highest impact on performance and ii) the overhead given by a

security certification-aware service composition is manageable in practice. Also, it is important to

note that we considered a very challenging and unusual case as our worst case, in which we have 21

invocations in the BPEL instance and 50 candidates for each invocation that are far greater than real

composition scenarios. Moreover, since the greatest part of the certification process execution time

is devoted to BPEL instance generation, it can be technically reduced by implementing optimized

algorithms or by simply deploying our process on a more powerful workstation. To conclude,

these results show that the performance of our approach is suitable to certify service compositions

generated at runtime, and can accomplish the dynamics and runtime requirements of a service-based

infrastructure.

, Vol. 1, No. 1, Article . Publication date: August 2018.

26 Marco Anisetti, Claudio Ardagna, Ernesto Damiani, and Gianluca Polegri

7.3 Quality Evaluation
Quality evaluation aims to verify the quality of the virtual certificate produced by our heuristics,

and in turn of our process, with respect to the best certificate that would have been achieved by

using the exhaustive search. Our goal is to show how many times the heuristics reach the optimum,

and when the optimum is not reached the amount of preserved quality. We consider optimum

quality Θ(G ′) as the quality achieved by our exhaustive algorithm when all possible combinations

of services and corresponding certificates are considered (see Definition 6.2). The quality of an

heuristic can then be informally defined as the rate
Θh (G′)
Θ(G′)

, where Θh(G
′) is the quality achieved by

the heuristic itself. We evaluated the certificate quality guaranteed by our three heuristics for BPEL

instance G ′ on all configurations discussed in the previous sections.

Summarizing our results, all heuristics showed a good quality close to the optimum obtained with

the exhaustive search. As expected, hybrid heuristic achieved the best results, while the local one

the worst. More in detail, the local heuristic was able to produce BPEL instances with an average

quality of 67.9% with respect to the optimum; it was able to produce the optimum in 15.6% of the

cases, and when the optimum was not identified, the quality was on average 62% of the optimum.

The step-by-step heuristic was able to produce BPEL instances with an average quality of 82.8%

with respect to the optimum; it was able to produce the optimum in 33% of the cases, and when the

optimum was not identified, the quality was on average 74.3% of the optimum. The hybrid heuristic

was able to produce BPEL instances with an average quality of 84.3% with respect to the optimum;

it was able to produce the optimum in 42.2% of the cases, and when the optimum was not identified,

the quality was on average 72.8% of the optimum. The results achieved by the hybrid heuristic are

due to the fact that the union of the candidates selected by local and step-by-step heuristics is often

a super-set of the candidates selected by the exhaustive algorithm. These results together with

corresponding performance results show that the hybrid heuristic could be a viable approach in

cases where there are stronger requirements on quality and weaker requirements on performance.

8 A REAL-WORLD INDUSTRIAL SCENARIO: ENGPAY ONLINE PAYMENT SYSTEM
We further evaluated our approach in a real-world industrial scenario based on the ENGpay payment

system of Engineering Ingegneria Informatica S.p.A. The evaluation in this section has a threefold

value: i) it demonstrates the applicability of our approach to a real industrial scenario; ii) it shows
the utility of the proposed approach by discussing how certification evidence can be used as a basis

to establish a semi-automatic and dynamic solution for compliance verification; iii) it proves the
generality of the approach and its suitability for certifying complex systems which mix services

and traditional software components. We considered a specific deployment of ENGpay composite

system, where the certified component services were available and already composed at evaluation

time, and focused on the virtual certification process. We started from the definition of the BPEL

graph of the Engineering system to the generation of the virtual certificate used for supporting

compliance verification against Payment Card Industry Data Security Standard (PCI DSS) [1]. We

note that the discussion in this section is valid independently by how the services are selected to

produce a BPEL instance, either according to our heuristics in Section 6 or by manually selecting

them as assumed in this section. In the following, we first describe PCI DSS standard (Section 8.1)

and the ENGPay system architecture (Section 8.2). We then discuss the virtual certification process

and its support to PCI DSS compliance verification (Section 8.3). We finally discuss the utility of

our approach with respect to traditional compliance approaches and its applicability to real-world

software (Section 8.4).

, Vol. 1, No. 1, Article . Publication date: August 2018.

Test-Based Security Certification of Composite Services 27

Table 2. PCI DSS Requirements [78].

Build and maintain a secure network 1. Install and maintain a firewall configuration to protect cardholder data

2. Do not use vendor-supplied defaults for system passwords and other security parameters

Protect cardholder data 3. Protect stored cardholder data

4. Encrypt transmission of cardholder data across open, public networks

Maintain a vulnerability management program 5. Use and regularly update anti-virus software on all systems commonly affected by malware

6. Develop and maintain secure systems and applications

Implement strong access control measures 7. Restrict access to cardholder data by business need-to-know

8. Assign a unique ID to each person with computer access

9. Restrict physical access to cardholder data

Regularly monitor and test networks 10. Track and monitor all access to network resources and cardholder data

11. Regularly test security systems and processes

Maintain an information security policy 12. Maintain a policy that addresses information security

8.1 PCI DSS
PCI DSS is a global standard established by financial organizations to protect cardholder data and

information linked to users’ personal data. According to requirements of PCI DSS, all enterprises and

operators who store, process, or transmit cardholder data should meet stringent security standards.

In a nutshell, meeting the PCI DSS requirements means that data, such as credit card details and PIN

numbers, are processed, managed, transmitted, and stored by data controllers/processors following

the appropriate procedures and standards. Thisminimizes the risks of frauds, both for the card holder

and for the point of sale where a payment is accepted. The PCI DSS requirements are summarized

in Table 2. PCI DSS requirements in Table 2 can be classified in three classes: environmental/generic

requirements (requirements 1, 2, 5, 10, 12), development process requirements (requirements 6, 11),

and functional requirements (requirements 3, 4, 7, 8, 9).

8.2 ENGPay payment system
ENGPay is an ePayment system built around a payment hub that provides support for managing

any merchants, back-end systems, and innovative payment services. It provides the merchants

with a flexible instrument that adapts to the type of product and to the considered users. ENGPay

system is composed of the following set of components/services: i) Auth (AU) is a service providing

authentication functionality to merchants, ii) Payment Hub (PH) is the core service of ENGPay,

managing a variety of credit sources to satisfy all users’ needs concerning the settlement of their

accounts, iii) Acquirer (AC) is a third party service associated with Merchant responsible for credit

card payment authorization, credit card plafond management (on behalf of authorized merchants),

and interactions with card issuer bank, iv) Issuer (IS) is a third party service provided by the card

issuer bank responsible for managing card holder bank account, v) Selfcare Data Storage (SD) is a
service providing CRM/self-care interface supporting merchants’ CRM and customers. We note

that, in the original ENGPay specifications, AU and SD were part of service PH and specified

as traditional software components. We also note that Acquirer and Issuer together manage the

post-trading Cleaning & Settlement process. For simplicity and without loss of generality, we made

the following assumption on ENGPay specifications.

(1) ENGPay system: we consider a specific ENGPay business process related to payment autho-

rization, modeled as a BPEL composition.

(2) ENGPay components: to test the generality of our approach and its applicability to real-

world software components, our model of ENGPay specifies AU and SD as being services

themselves. This is achieved in practice by defining a proper interface around them and by

adding operations for network message management, leaving their implementation almost

unchanged. BPEL modeling and service interface are just auxiliary structures which do not

impact on compliance verification.

, Vol. 1, No. 1, Article . Publication date: August 2018.

28 Marco Anisetti, Claudio Ardagna, Ernesto Damiani, and Gianluca Polegri

Table 3. ENGPay component services and corresponding operations for payment authorization.

Service Operation Description
Auth (AU) MerchantToken merchantAuth(usr, pwd) Authenticates the merchant webstore

PaymentHUB (PH) OrderId receiveTransReq(MerchantToken,OrderD) Allows customers to send payment requests for an order

TotalPrice paymentReg(PaymentD, OrderId) Allows to collect customers’ payment data (e.g. card info)

AcquirerIssuer (AS) TransResult transAuth(PaymentD,TotalPrice) Authorizes and executes the transaction request

SelfcareSD (SD) SDRes write(MerchantToken, OrderId, TransResult) Securely stores personal transaction information

Parameter/output Description Format
(usr, pwd) Merchant credentials obtained upon registration Strings with constraints

MerchantToken Merchant authentication token String of 256 characters

OrderD Order details including products and prices Structured data with items of multiple types

OrderId Order identification number Unique numeric id

PaymentD Payment details (e.g., credit card number) Structured data with items of multiple types

TotalPrice Total cost for the transaction (including fees) Number

TransResult Transaction result String of 256 characters specifying the success/error details

SDRes The result of selfcare storing Number (error code)

(3) ENGPay Cleaning & Settlement process: we unify Acquirer AC and Issuer IS in a single service

AcquirerIssuer (AS) dealing with all the aspects of the Cleaning & Settlement process.

Table 3 describes the set of operations of the payment authorization process, which includes a

description of the input/output parameters and corresponding data format. Figure 9 shows the BPEL

model of the payment authorization process.
9
Let us consider a Client (e.g., the customer of eFlight

service in Section 3) that starts a transaction at a Merchant website (e.g., the Airline in Section 3

registered to ENGPay). Upon receiving the payment order by the Client, the Merchant interacts
with the ENGPay system for payment authorization (Auth.merchantAuth) providing its authenti-

cation credentials. In the case of positive authentication, ENGPay starts the payment authorization

process by executing PaymentHUB.receiveTransReq. The latter is responsible for communicating

the order id (OrderId) and the available payment options (e.g., credit card, paypal, bank transfer)

back to the Merchant website. ENGPay collects the client’s payment details (PaymentD) using
PaymentHUB.paymentReg for the authorized order and, depending on the Merchant, selects the
correct AcquirerIssuer. AcquirerIssuer receives the payment details and total price (TotalPrice), and
proceeds with the transaction authorization (AcquirerIssuer.transAuth). Finally, ENGPay stores

the results of the transaction (TransResult) in a secure data storage (SelfcareSD.write) and forwards
the final response to Client via Merchant.

8.3 Certification-based compliance verification
We show how our certification process can be adopted as the basis to verify compliance of ENGPay

payment authorization process against PCI DSS standard. For simplicity and without loss of

generality, we made the following assumptions on compliance verification.

(1) PCI DSS: we consider PCI DSS requirements 3 and 4 in Table 2 (protect card holder data),

which impacts on ENGPay payment authorization process. According to the Engineering

security guideline, the requirement 3 has been extended with a check on the integrity of data

in transit.

(2) Compliance verification: we describe a certification-based compliance verification for PCI

DSS requirements 3 and 4, while providing the details of virtual certificate generation for

just one specific security annotation related to requirement 3.

9
We note that, although this BPEL has been defined on the basis of ENGPay specifications, it can be considered as a

representative of a generic payment system.

, Vol. 1, No. 1, Article . Publication date: August 2018.

Test-Based Security Certification of Composite Services 29

ENGPay invocation⇒ Auth.merchantAuthAU

PHr PaymentHUB.receiveTransReq

PHp PaymentHUB.paymentReg

alternative ⊗

AS1 . . . AcquirerIssuer.transAuthAS2 ASn

AcquirerIssuer.transAuth results

SD SelfcareSD.writeENGPay results⇐

Fig. 9. BPEL graph of ENGPay payment authorization based on operations in Table 3.

Table 4. Mapping between PCI DSS Requirements, security property annotation on the BPEL graph of
ENGPay, and target virtual property.

Req Security property BPEL operations Virtual property
3 Integrity of data All operations Integrity of data

in transit in transit

3 Integrity of data SelfcareSD.Write Integrity of data

in storage in storage

4 Confidentiality All operations Confidentiality

of data in transit of data in transit

4 Confidentiality SelfcareSD.Write Confidentiality

of data in storage of data in storage

(3) Virtual certificate generation: we provide some concrete examples of virtual evidence genera-

tion focusing on a subset of representative test equivalence classes. For the sake of conciseness,

we privileged the description of a realistic certification, sacrificing the description of a full

certification process.

In the following, we discuss in detail the virtual certification of ENGPay for the verification

of requirement 3, including the evidence generation process, and summarized the verification of

requirement 4.

Verification of requirement 3. The first step of our compliance verification process is the defini-

tion of the security annotation (see Section 5.1) for the BPEL graph in Figure 9. Table 4 provides

simplified security annotations where, for each of the considered requirements, it is specified

a subset of BPEL operations in Table 3 with the security property they must support and the

virtual property produced as a result of a successful certification process. Security annotations

have been inspired by existing work on PCI DSS compliance verification of Assuria Log Manager

(ALM) and CyberSense Enterprise Scanner (http://www.assuria.com/). We note that, since PCI DSS

, Vol. 1, No. 1, Article . Publication date: August 2018.

http://www.assuria.com/

30 Marco Anisetti, Claudio Ardagna, Ernesto Damiani, and Gianluca Polegri

requirements are more abstract than security annotations, multiple security annotations (and BPEL

template) can be defined for each requirement.

Being focused on requirement 3, our compliance verification process configures and executes two

virtual certification processes focusing on the certification of two different properties as follows.

, Vol. 1, No. 1, Article . Publication date: August 2018.

Test-B
ased

Security
C
ertification

ofC
om

posite
Services

31
Table 5. Equivalence class annotation for BPEL graph of ENGPay authorization system. (a) Legenda, (b) equivalence classes for property Integrity of data in
transit, (c) certificates of ENGPay component services. Equivalence classes denoted with “-” are unused, gray cells represent special equivalence classes for
intermediate test case generation.

Legenda

[< val >]=parameter value val s=valid and correct signature s′=valid but incorrect signature s̃=invalid signature any_s=any signature

5y=5 years n=CC plafond sw=signature wrapping attack reply=reply attack ACL=access control list
(a)

Integrity of data in transit
PPPPPParameter

ec Functional

1 2 3 4 5 6

1 (usr, pwd) [∈ ACL]s [∈ ACL]
s′,s

[< ACL]s [< ACL]
s′,s

- -

2 MerchantToken [∈ ∃]s [∈ ∃]
s′,s

[∈ expired]s [∈ expired]
s′,s

[∈ @]s [∈ @]
s′,s

3 OrderD.TotalCost [= [0 − 9]∗ .[0 − 9]2]s [= [0 − 9]∗ .[0 − 9]2]
s′,s

- - - -

4 OrderId [= [0 − 9]5]s [= [0 − 9]5]
s′,s

- - - -

5 PaymentD.CC [∈ V isa]s [∈ V isa]
s′,s

[∈ MC]s [∈ MC]
s′,s

[∈ AE]s [∈ AE]s
6 PaymentD.ExpDate [> Today + 5y]s [> Today + 5y]

s′,s
[< Today]s [< Today]

s′,s
[< Today ∧ > Today + 5y]s [< Today ∧ > Today + 5y]

s′,s
7 TotalPrice [> 0 ∧ < n]s [> 0 ∧ < n]

s′,s
[> n]s [> n]

s′,s
− −

8 TransResult [= [A − Za − z0 − 9]256]s [= [A − Za − z0 − 9]256]
s′,s

- - - -

PPPPPParameter

ec Robustness Penetration

7 8 9 10 11 12

1 (usr, pwd) [∈ (∅, any) ∨ (any, ∅)]any_s [∈ invalid]any_s [any value]s̃ - sw -

2 MerchantToken [= ∅]any_s [, [A − Za − z0 − 9]256]any_s [any value]s̃ - sw reply
3 OrderD.TotalCost [= ∅]any_s [< 0]any_s [= [0 − 9]∗ .[0 − 9]2]any_s [any value]s̃ sw -

4 OrderId [< 0]any_s [, [0 − 9]5]any_s [any value]s̃ - sw reply
5 PaymentD.CC [= ∅]any_s [< {V isa,MC , AE }]any_s [any value]s̃ - sw -

6 PaymentD.ExpDate [= ∅]any_s [, dd/mm/aaaa]any_s [any value]s̃ - sw -

7 TotalPrice [< 0]any_s [any value]s̃ - - sw -

8 TransResult.Descr [, [A − Za − z0 − 9]256]any_s [any value]s̃ - - sw -

(b)

Simplified Certificate related to Integrity of data in transit annotation

1 CAU (MerchantAuth)
p=(Inteдr ity, {ctx = in − transit , alдo = MD5})

cat()=Functional t1 =(ec111 ,ec221) t2 = (ec111 ,ec223) t3 =(ec112 ,ec227)
cat()=Robustness t4 =(ec118 ,ec227) t5 =(ec119 ,ec227) -

2 CPHr (ReceiveTransReq)

p=(Inteдr ity, {ctx = in − transit , alдo = MD5})

cat()=Functional t6 =((ec221 ,ec231),ec341) t7 = ((ec223 ,ec231),ec347)
cat()=Robustness t8 =((ec221

m
❀ec228 ,ec231),ec347) - -

cat()=Penetration t9 =((ec221
m
❀ec2212 ,ec231),ec347) - -

3 CPHp (PaymentReg)

p=(Inteдr ity, {ctx = in − transit , alдo = MD5})

cat()=Functional t10 =((ec341 ,ec351),ec471) t11 = ((ec341 ,ec352),ec477) -

cat()=Robustness t12 =((ec347 ,ec351),ec477) - -

cat()=Penetration t13 =((ec3412 ,ec351),ec477) - -

4 CAI
1
and CAI

2
(FwdTransAuth)

p=(Inteдr ity, {ctx = in − transit , alдo = MD5})

cat()=Functional t14 =((ec471 ,ec451),ec591) t15 =((ec473 ,ec451),ec591) -

cat()=Penetration t16 =((ec471 ,ec4511),ec581) - -

5 CSS (write)
p=(Inteдr ity, {ctx = in − transit , alдo = SHA1})
cat()=Functional t17 =((ec581 ,ec521 ,ec541),∗) t18 = ((ec581 ,ec522 ,ec541),∗) -

cat()=Robustness t19 =((ec581
m
❀ec587 ,ec521 ,ec541),∗) - -

cat()=Penetration t20 =((ec581 ,ec5211 ,ec541),∗) - -

(c)

,
V
o
l
.
1
,
N
o
.
1
,
A
r
t
i
c
l
e
.
P
u
b
l
i
c
a
t
i
o
n
d
a
t
e
:
A
u
g
u
s
t
2
0
1
8
.

32 Marco Anisetti, Claudio Ardagna, Ernesto Damiani, and Gianluca Polegri

• Property integrity of data in transit. Upon the definition of the security annotation (row 1 in

Table 4), we define the equivalence class annotation that associates a set of equivalence classes

with each input parameter of the involved BPEL invocation. Table 5(b) shows equivalence class

annotation. Each equivalence class is defined as the range of values that can be assumed by

the corresponding parameter, and belongs to either functionality, robustness, or penetration

category. Each class in Table 5(b) is denoted with ec<par><par t> , where <par> refers to the

specific input parameter and <part> to the partition number. For instance, ec65 refers to the

fifth equivalence class of input parameter PaymentD.ExpDate that collects credit cards with a

valid-format expiration date, which is either lower than today or greater that 5 years. We note

that, since we are testing property integrity of data in transit, equivalence classes also consider

signatures associated with each parameter. For instance, let us consider the equivalence class

of existing tokens for parameter MerchantToken (ec21). This equivalence class results in two

equivalence classes when the signature is considered, that is, an existing token with valid

and correct signature s (ec21=[∈ ∃]s) and an existing token with valid but incorrect signature

s
′

,s (ec22=[∈ ∃]s ′,s). The same discussion holds for equivalence classes representing expired

(ec23, ec24) and not-existing (ec25, ec26) tokens. Equivalence classes of category robustness

include invalid values which can be rejected before executing the operation. For instance,

robustness equivalence classes for MerchantToken specify an empty (ec27=[= ∅]any) and
invalid (ec28=[, [A−Za−z0−9]256]any) token with any signature and any token with invalid

signature (ec29). Finally, each equivalence class of type Penetration contains a pointer to a

type of attack, which must then be represented with a complete attack flow [13]. For instance,

the penetration equivalence class reply on MerchantToken abstracts all operations needed to

implement a reply attack such as the operations to guess or stole a valid token.

A BPEL instance (see Section 5.2) is then generated according to the BPEL template. In our

case, we have a possible instantiation only (see Figure 9), which integrates the fixed set of

ENGPay component services. Table 5(c) shows an overview of the certificates of component

services including: i) security property p , ii) a subset of test cases t specified as a pair of

input and output equivalence classes in Table 3(b). We denote each equivalence class as

ec<op><par><par t> where <op> is the operation id (row number) in Table 5(c), <par> is the

parameter id (row number) in Table 5(b), and <part> is the partition id (column number) in

Table 5(b). For instance, ec5211 refers to the equivalence class sw (signature wrapping) for pa-

rameterMerchantToken parameter of operation write of service SD.We note that, in Table 5(c),

all test cases associated with cat()=Functional belong to type()=Input Partitioning.Random
input, all test cases associated with cat()=Robustness belong to type()=Invalid.Random input,
and all test cases associated with cat()=Penetration belong to type()=Attack.
Certification-based compliance verification then starts following the approach presented in

Section 5.3 and aims to produce a virtual certificate according to the security annotation in

row 1 of Table 4. The virtual certificate is generated by composing certificates of component

services according to our algebra as follows: CAU ⊙ CPHr ⊙ CPHp ⊙ CAS ⊙ CSD , assuming for

conciseness a single service AS. Virtual property integrity of data in transit is first generated,
because the properties of the component services in Table 5(c) satisfy the security annotation

in Table 4. Virtual model is then generated as the composition of the single service models

in corresponding certificates, according to the methodology in Section 4.3. Finally, virtual

evidence is produced by composing the test cases of single certificates in Table 5(c), following

equivalence class annotation in Table 5(b) (see Section 4.4). Figure 10 shows the output of

the virtual test case generation process in terms of i) testing flows virtually executed on the

composition (Figure 10(a)) and ii) corresponding virtual test cases (Figure 10(b)). Each testing

, Vol. 1, No. 1, Article . Publication date: August 2018.

Test-Based Security Certification of Composite Services 33

ec111 ec112

AU

ec221 ec223 ec231

PHr

ec341 ec351 ec352

PHp

ec471 ec451

AS

ec581 ec521 ec522 ec541

SD

ec118 ec119

ec227 ec228

ec347

ec477

ec588

ec2112

ec3412

1,4,5,

8,9,10,

11,12

2

3 6 7

1,4,5,

9,11

2

2,8,10,12

1,4,5,

9,11

8,12 10

1,4,

5,9

1,4,

5,9

11,12 4 12
11

1,5,9 1,5,9

1,5 1,5,9 5 1,9 9

8,12 10

11

9

Functional Robustness Penetration

(a)

t∗
1
=t1⊙t6⊙t10⊙t14⊙t17 t∗

2
=t2⊙t7 t∗

3
=t3

t∗
4
=t1⊙t6⊙t11 t∗

5
=t1⊙t6⊙t10⊙t14⊙t18 t∗

6
=t4

t∗
7
=t5 t∗

8
=t1⊙t8 t∗

9
=t1⊙t6⊙t10⊙t14⊙t19

t∗
10
=t1⊙t9 t∗

11
=t1⊙t6⊙t13 t∗

12
=t1⊙t8⊙t12

(b)

Fig. 10. Virtual evidence generation for PCI DSS compliance verification of ENGPay: (a) testing flows, (b)
virtual test cases

flow is a path connecting equivalence classes of operation calls in the BPEL graph; each path

can be retrieved by following annotations on arrows connecting two equivalence classes. We

note that some arrows have multiple annotations since they are involved in multiple virtual

testing flows. Virtual testing flows represent an overview of testing activities that must be

done, either physically or virtually, to certify ENGPay implementation.

As an example, let us consider the virtual flow labeled with 1, resulting in the virtual test

case t∗
1
of category functionality. According to Figure 10(b), virtual test case t∗

1
integrates

test cases t1, t6, t10, t14, and t17 in a sequence on the basis of the specified equivalence classes.

For instance, test case t1=(ec111,ec221) is integrated with test case t6=((ec221,ec231),ec341) on
the basis of equivalence class ec221. Two interesting examples involve testing flows 8 and

12 of category robustness, resulting in virtual test cases t∗
8
and t∗

12
, respectively. Test case

t∗
8
integrates t1 and t8, through a mutation between ec221 and ec228, and is generated thanks

to ec347, an equivalence class triggering generation of virtual test cases covering a subpath

, Vol. 1, No. 1, Article . Publication date: August 2018.

34 Marco Anisetti, Claudio Ardagna, Ernesto Damiani, and Gianluca Polegri

of the composition that starts from its root. Test case t∗
12
extends t∗

8
with t12, includes ec347

treated as a normal equivalence class, and is generated thanks to ec377.
• Property integrity of data in storage. Based on the security annotation in Table 4 (row 2), the

verification process is reduced to a simple check on the availability of a certificate proving

property integrity of data in storage for operation write of service SD. Assuming such

certificate exists for SD.write, all security annotations related to requirement 3 in Table 4

are satisfied and the compliance to PCI DSS requirement 3 verified.

Verification to requirement 4. Similarly to the above process, compliance verification of re-

quirement 4 requires two virtual certification processes. The first process aims to prove property

confidentiality of data in transit. Based on the security annotation in Table 4 (row 3), the process is

very similar to the one discussed for property integrity of data in transit with the main difference

that test cases verify the correctness of the encryption mechanism, rather than the one of the sig-

nature mechanism. The second process aims to prove property confidentiality of data at rest. Based
on the security annotation in Table 4 (row 4), the verification process is reduced to a simple check

on the availability of a certificate proving property confidentiality of data in storage for operation
write of service SD. Assuming both certification processes are successful, all security annotations

related to requirement 4 in Table 4 are satisfied and the compliance to PCI DSS requirement 4

verified.

The satisfaction of requirements 3 and 4 allows to prove the PCI DSS high-level requirement

“Protect Cardholder Data”.

8.4 Discussion
The experimental evaluation of our security certification scheme has been conducted along three

main lines.

The first line (Section 7), considering a simulation-based approach, evaluated the scalability,

performance, and quality of the proposed heuristics. It provided the diversity in terms of services

and their composition that can be given only by processes specifically designed for testing purposes.

This evaluation in fact considered huge scenarios with composite services orchestrating up to 21

component services and 50 alternative candidate services for each component service, making

the evaluation of our solution and heuristics stronger. These numbers are clearly not possible

with real-world runtime compositions. Also, a simulation approach with random generation of all

experimental building blocks provides an independent, objective, and impartial evaluation.

The second line (in this section) evaluated the applicability of our approach to a real industrial

scenario, which mixes traditional software components and services. The experiments proved the

suitability of our approach for the certification of the ENGPay payment system, and showed that the

certification of systems involving traditional software components can be achieved with a simple

adaptation process. This process consists of the definition of a proper interface around software

components and by adding operations for network message management. The modeling effort

requested to adapt ENGpay system specifications towards a BPEL workflow required standard

competences to Engineering employees and completed in few days. The main effort was spent

in the labeling of the BPEL template with equivalence class and security annotations, while the

modeling effort was less demanding. In particular, we spent 3 days to analyze the interactions

between components and label the interfaces accordingly. Then, after a first evaluation, we spent

additional 2 days in the refinement of our labeling to make it finer-grained.

, Vol. 1, No. 1, Article . Publication date: August 2018.

Test-Based Security Certification of Composite Services 35

The third line evaluated the utility of our solution by showing how our certification-based

approach can be used to provide verifiable evidence of a service behavior at the basis of exist-

ing compliance and certification standards. In particular, we implemented a certification-based

compliance verification process, verifying ENGPay payment system against PCI DSS standard.

9 RELATEDWORK
The problem of certifying that a given system has some properties and behaves as expected is a

time-honored research topic, which has been considered well before the advent of IT and distributed

systems. Today, people live in certified houses, drive certified cars, and trade goods with certified

retailers. With the advent of IT, distributed systems, and cloud infrastructures, people realized that

they interact with previously unknown IT services on which they have little or no information. In

this context, certification can increase the confidence of the users that their life, processes, and

data are treated safely and as expected.

9.1 Service certification
Early certification schemes focused on non-functional properties (e.g., security) of software and

provided powerful, while static and rigid, solutions that well adapted to software-based systems.

The most important example of such certification schemes, which today is widely adopted, is

Common Criteria (ISO 15408) [46]. Common Criteria provides a framework to specify, design,

and evaluate security properties, and is used in many critical scenarios as for instance to certify

products for the US Army and US Government. With the advent of service-based and cloud-based

systems, certification schemes are entering a new phase, and new solutions have been presented to

support the dynamic nature of services and runtime processes (e.g., service discovery and selection)

at the basis of such systems. Existing approaches to service certification have focused on non-

functional properties of single services (e.g., [6, 8, 13, 36, 43, 52, 55, 70]), also considering service

evolution [8, 36, 55]. Some works (e.g., [10, 11, 87]) also addressed the problem of trustworthy

service certification in cloud environments providing test-based approaches similar to the one in

this paper. For instance, Anisetti at al. [10] proposed a test-based certification scheme driven by

requirements defined by the certification authority and the model of the service under certification.

To increase certification trustworthiness, the proposed solution implemented an automatic approach

to the verification of consistency between models and requirements. It also provided a solution to

certificate life cycle management including an automatic and incremental approach to certificate

adaptation, addressing the multi-layer and dynamics nature of the cloud. To further strengthen

certification trustworthiness, the correctness of the corresponding certification model must be

carefully verified. Anisetti at al. [11] proposed a certiïňĄcation scheme where the verification of

the system model correctness is based on real and synthetic service execution traces in operational

environments, according to time, probability, and conïňĄguration constraints, and attack ïňĆows.

In this paper, we consider and extend the above approaches towards composite service certification.

The first approach to composite service certification has been proposed by Anisetti at al. [13], which

considered the certification of composite services in a containment relationship, where a service

can inherit part of the security properties certified on its container. However, further analysis

is required when more complex compositions like orchestrations in this paper or choreography

in [80] are taken into account.

9.2 Service composition
A recent survey on service composition by Lemos et al. [58] underlines the impact of service

compositions in everyday computing tasks, providing a comprehensive composition taxonomy

with a particular emphasis on the role of composition languages. A composition language is

, Vol. 1, No. 1, Article . Publication date: August 2018.

36 Marco Anisetti, Claudio Ardagna, Ernesto Damiani, and Gianluca Polegri

responsible to define the components and the composition logic, and to execute the composite

services. Among the languages presented in [58], BPEL stands out as a language covering SOAP

services, for which it has been originally designed, as well as RESTful services via “BPEL for REST”

in [77]. Being designed for BPEL, our approach is suitable for both design-time and deployment-

time component selection, and is generic enough to be easily adapted to any BPM description

languages (e.g., BPMN v2) or automata-based description of compositions like the one based on

State Transition System used by Zhao et al. [44] for RESTful services. Furthermore, our approach

partially covers the gaps in the engineering of component services pointed out by Lemos et al. [58],

providing transparency of non-functional properties of heterogeneous component services by

means of certification, and a suitable way for generating testing plans for composite services.

Other works specifically focused on providing solutions to verify service compatibility in terms

of functionalities and interfaces (e.g., [48, 88, 89]). In the work of Hwang et al. [48], a composi-

tion approach that preserves system functionalities is extended with the notion of reliability of

component services. Similar to our approach, the authors adopt a Finite State Machine model

for Web services to map constraints on sequences of operation invocations and a BPEL-based

model for the composition of web services. They focus on dynamically and incrementally selecting

a web service to maximize the likelihood of successful execution in a failure-prone operating

environment. In this context, they introduce the concept of aggregated reliability, which is a metric

to measure the probability that a given state in the composite web service will lead to successful

execution in an error-prone environment. Najafi et al. [72] propose to add a Service Composition

Certify (SCC) component directly into the SOA model. The scope is to certify client-defined service

composition models. The SCC-based certification is mainly focused on compatibility checking

of component services, and on policy-based verification of clients’ expectations. The proposed

policies are not suitable for security specification, while they allow to check functional behavior of

a given composition. Bennara et al. [18] focus on RESTful linked services composition and propose

a composition engine with a unified method for service discovering enriched with semantics.

Much in line with the work presented in this paper, research has focused on checking and

verifying non-functional properties of composite services and on security annotations for service

compositions (e.g., [15, 17, 51, 81, 94]). Souza et al. [15] first express a composition as a BPMN

annotated with non-functional requirements, and then translate it into a BPEL satisfying the

annotations. The work in [81], instead, provides a solution based on patterns and logical rules for

building and maintaining secure compositions at runtime. Our approach differs from all the above

ones since it does not rely on external components, expresses XML-based security annotations

directly in the BPEL file, and implements a test-based security certification scheme for composite

services exploiting the test-based evidence included in the certificates of the component services.

Vo et al. [94] propose a framework targeting web service compositions with the specific scope of

securing data. Using this framework, composite service developers specify security policies for

received data, which are applied and updated during the BPEL execution. The approach in [94]

considers non-functional properties of compositions from a developer point of view, supporting

developers in the design and deployment of security-aware compositions. She at al. [86] provide an

access control solution supporting composition-time validation. The paper develops a three-step

composition protocol that includes information flow control. Historical information is used to

identify candidate compositions and execute policy evaluation on selected candidates only, thus

reducing evaluation costs.

9.3 Automatical test of composition
Another line of research has analyzed the problem of modeling and automatically testing service

compositions. Mateescu and Rampacek [67] define an approach to model BPEL-based business

, Vol. 1, No. 1, Article . Publication date: August 2018.

Test-Based Security Certification of Composite Services 37

processes and web services, and to analyze them using standard verification tools for concurrent

systems. Bentakauk et al. [19] propose a solution using STS-based testing and STM solver to check

the functional conformance of the composite service with respect to its specifications and/or client

requirements. Gao et al. [40] study the problem of testing service composition adopting an extended

BPEL4WS model named probabilistic timed interface automata for Web service (PTIA4WS). Yu et

al. [95] present a framework for the definition and test-based verification of dependencies between

processes under test and their partner services. Many works (e.g., [24, 56, 59, 73]) have proposed

solutions to select and generate test cases for service compositions. Differently from these works,

our solution provides an approach that automatically generates a security certificate with virtual

test-based evidence for runtime compositions, starting from the certificates of the component

services. In other words, no runtime testing is needed.

9.4 Formal model -based certification
Many approaches exist for formal verification of systems and satisfaction of security properties,

ranging from logic such as BAN [23] or Temporal Logic [82] to formal languages and automaton

analysis such as AVISPA [14] and AVANTSSAR [16]. This latter category typically uses the concept

of Safety/Lifeness and Hypersafety/Hyperlifeness [29] to describe properties within a dynamic

system. These properties however have a behavioral background, rather than a security-related

motivation.

Another widely acknowledged approach for the specification of security properties in terms

of a formal model is non-interference. Mantel [66] gave a good insight into this topic. Yet, non-

interference uses the concepts of local view and initial knowledge implicitly, while within SeMF

these are specified separately for each agent, thus enabling to differentiate between agents with

different capacities. Furthermore, SeMF includes the notion of trust to capture mechanisms based

on Trusted Third Parties (i.e., in particular trust establishment by way of certification). The model

based composition of systems is a field of growing research activity in the last decade. Tout et

al. [90] developed a methodology for the composition of web services with security. They use

BPEL language for the specification of web service compositions and extend it to the specification

of security properties, which are independent from the business logic. However, their approach

does not address verification of security properties in such compositions. Rossi [84] presented a

logic-based technique for verifying both security and correctness properties of multilevel service

compositions. Service compositions are specified in terms of behavioral contracts, which provide

abstract descriptions of system behaviors by means of terms of a process algebra. Multi-party

service compositions are modeled as the parallel composition of such contracts. Modal mu-calculus

formulae are used to characterize non-interference and compliance (i.e., deadlock and livelock

free) properties. With this approach it can be proven that data transmitted to a web service

remains confidential in case this service is part of a composition. The approach is further able to

reveal confidentiality breaches caused by dependencies of actions within different components

of a composition. Fuchs and Gürgens [39] introduced an approach for the composition of system

models. It derives security proofs from specific conditions concerning the component interface.

Another line of research is based on rely-guarantee reasoning. Approaches in this line are mainly

applied to functional verification of concurrent/distributed programs compositions [42, 45, 60, 85].

Some of the rely-guarantee reasoning approaches addressed the security of the compositions specif-

ically for few well-defined situations like safety in shared-memory, information flows, protocols

of key exchanges, to name but a few. Garg et al. [41] proposed a formal framework for compo-

sitional reasoning about secure systems based on an extension of rely-guarantee reasoning for

system correctness. This approach considers interface-confined adversaries, addresses the problem

considering a multi-thread scenario, and shows its applicability to a very specific security property

, Vol. 1, No. 1, Article . Publication date: August 2018.

38 Marco Anisetti, Claudio Ardagna, Ernesto Damiani, and Gianluca Polegri

related to authorization at file system level. Datta et al. [33] focused on safety properties, which are

presented as possibly amenable to compositional reasoning. The authors pointed out the need of

local interface and global reasoning. While local interface reasoning can be applied in cloud service

environment, global reasoning cannot as also pointed out by Dustdar et al. [35].

To the best of our knowledge, the generality, dynamics, and adaptability required by a certifica-

tion framework for the cloud, make any holistic global assumptions unfeasible and the practical

applicability of formal methods limited. In addition, some of the rely-guarantee approaches are

based on white-box or code-level inspection of the composition, which is not always possible.

Rely-guarantee reasoning is then applicable for some static service compositions in a controlled

environment and for specific properties, but do not scale and generalize to a dynamic composition.

9.5 QoS-aware composition
Other approaches have focused on QoS-aware composition ofWeb Services [2, 3, 20, 53, 65] showing

a level of similarity with security-aware composition. Aggarwal et al. [2] present a semantic web-

based approach for achieving constraint-driven Web service composition. The authors present a

Constraint-Driven Web Service Composition tool developed in the METEOR-S project. The tool

allows process designers to bind Web Services to an abstract process described as BPEL4WS, based

on business and process constraints, and generate an executable process. Berbner et al. [20] present

an heuristic approach with the goal of selecting Web Services so that the overall QoS and cost

requirements of the composition are satisfied. More recently, Alrifai et al. [3] propose a hybrid

solution that combines global optimization with local selection techniques, to produce composite

services addressing user constraints on end-to-end QoS. Although the proposed approach to service

selection is similar to the one used in this paper, the optimization strategy in [3] is not suitable

for a scenario that considers security requirements and service certificates. Ma et al. [65] deal

with more complex contexts where compositions involve reconfigurable services (increasing the

decision space). To find the optimal composition, they adopt a Compositional Decision-making

Process (CDP) and combine it with multi-objective evolutionary algorithm (MOEA), obtaining

the compositional MOEA (CMOEA). CMOEA explores optimal solutions of individual component

services and uses this knowledge to derive optimal QoS-driven composition solutions.

Recently, some effort has been done on optimal QoS-aware selection of services [25, 34, 97]. Chen

et al. [25] study the problem of QoS-aware service composition from a general Pareto optimal angle,

and propose a parallel approach for improving the performance of the multi-objective optimal

searching algorithm. Deng at al. [34] propose the correlation-aware service pruning (CASP), a

method for service selection. CASP manages QoS correlations by accounting for all services that

may be integrated, and by pruning services that are not the optimal candidates based on the QoS

metrics and the correlation with adjacent tasks. These approaches consider just simple compositions

made by sequences of services and simple QoS metrics mainly based on response time and service

price. Zheng et al. [97] present an approach to QoS evaluation for composite services handling any

QoS probability distributions and basic compositional patterns (i.e., sequence, conditional, parallel

and loop).

As far as cloud computing is concerned, the testing notion at the basis of our certification

evidence generation becomes fundamental to achieve optimum composite services [32, 64, 91].

Dastjerdi et al. [32] focus on functional and QoS aspects of cloud service composition with particular

emphasis on usability, from users point of view, in terms of definition of compositional requirements.

The paper presents a semantic-aware framework and algorithms aimed to simplify cloud service

composition for non-expert users. The framework adopts a repository of cloud services defined

usingWeb Service Modeling Language (WSML) and enriched with expert knowledge as the basis for

cloud service compatibility checking. In addition, to minimize the users’ effort in expressing their

, Vol. 1, No. 1, Article . Publication date: August 2018.

Test-Based Security Certification of Composite Services 39

preferences, the framework adopts a combination of evolutionary algorithms and fuzzy logic for

composition optimization. Tsai et al. [91] propose an approach to facilitate service composition and

testing in the cloud. Composition and testing activities are mainly focused on functional aspects,

while non-functional aspects are not considered. The service composition is supported by service

injection mechanisms allowing users to define interfaces and dependencies at design time, and

inject service implementation later. The selection of component services is left to the cloud provider,

which is responsible to execute testing activities at runtime for discovering a composition suitable

for the client. Lu et al. [64] propose a global trust service composition approach based on random

QoS and trust evaluation, considering the multi-criteria assessment of service quality. The paper

considers a cloud scenario and is aimed at ensuring the stability and reliability of QoS attributes

for satisfying the need of customers, providers, and third-parties.

The approach in this paper implements a certificate-aware service composition, where testing

evidence is taken from existing certificates of single services without requiring real testing activities

on the composition. It supports fully dynamic composition without a priori knowledge on the

candidate services. Our approach is complementary to other solutions described in this section

that rely on just-in-time composition evaluation. In fact, these approaches can be applied after a

BPEL instance is created and certified using the technique put forward in this paper, to evaluate

and confirm the quality of the composition by means of testing and/or monitoring.

10 CONCLUSIONS
When critical business processes are implemented as dynamic composite services in cloud- and

SOA-based environments, it is important to be able to guarantee an adequate level of security

assurance for these services. Composite services are implemented by orchestrating single services

provided by different suppliers, which are often not under the control of business process owners.

This scenario provides several advantages in terms of flexibility, costs, and interoperability, but it

increases the risk of new security threats that might prevent customers from using such “untrusted”

services.

The assurance solution presented in this paper allows to evaluate the security properties of

BPEL-based service compositions, managing the intrinsic dynamics of services. It provides an

accurate, low-cost, and robust test-based security certification scheme that supports process owners

in the certification of composite services. Our scheme is based on the idea to produce a virtual

test-based security certificate for the composition, where the test-based evidence proving a property

is inferred from the evidence used to certify the individual components.

Although we focused on BPEL-based processes, our scheme can be easily integrated with any

orchestration approach, thus supporting dynamic and certification-aware selection and composition

of services. The high level of automation and the low certification effort provided/required by our

virtual certification process makes it a viable approach for highly-dynamic service composition

scenarios. Also, it can be used as a tool for producing verifiable evidence of a service behavior

supporting existing compliance and certification standards.

ACKNOWLEDGMENTS
This work was partly supported by the program “Piano sostegno alla ricerca” funded by Università

degli Studi di Milano. We would also like to thank Domenico Presenza (Engineering Ingegneria

Informatica S.p.A.) for its continuous support towards the compliance verification of ENGPay

system.

, Vol. 1, No. 1, Article . Publication date: August 2018.

40 Marco Anisetti, Claudio Ardagna, Ernesto Damiani, and Gianluca Polegri

REFERENCES
[1] R. Accorsi, L. Lowis, and Y. Sato. 2011. Automated certification for compliant cloud-based business processes. Business

& Information Systems Engineering 3, 3 (2011), 145–154.

[2] R. Aggarwal, K. Verma, J. Miller, and W. Milnor. 2004. Constraint Driven Web Service Composition in METEOR-S. In

Proc. of the 2004 IEEE International Conference on Services Computing (SCC 2004). Shangai, China.
[3] M. Alrifai, T. Risse, and W. Nejdl. 2012. A hybrid approach for efficient Web service composition with end-to-end QoS

constraints. ACM Transactions on the Web (TWEB) 6, 2 (June 2012), 1–31.
[4] A. Alves et al. 2007. Web Services Business Process Execution Language Version 2.0. OASIS. http://docs.oasis-open.org/

wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[5] J.H. Andrews, L.C. Briand, Y. Labiche, and A.S. Namin. 2006. Using Mutation Analysis for Assessing and Comparing

Testing Coverage Criteria. IEEE Transactions on Software Engineering 32, 8 (August 2006), 608–624.

[6] M. Anisetti, C.A. Ardagna, and E. Damiani. 2011. Fine-Grained Modeling of Web Services for Test-Based Security

Certification. In Proc. of the IEEE International Conference on Services Computing (SCC 2011). Washington, DC, USA.

[7] M. Anisetti, C.A. Ardagna, and E. Damiani. 2013. Security Certification of Composite Services: A Test-Based Approach.

In Proc. of the 20th IEEE International Conference on Web Services (ICWS 2013). San Francisco, CA, USA.

[8] M. Anisetti, C.A. Ardagna, and E. Damiani. 2015. A Test-Based Incremental Security Certification Scheme for Cloud-

Based Systems. In Proc. of the 12th IEEE International Conference on Services Computing (SCC 2015). New York, NY, USA.

short paper.

[9] M. Anisetti, C. Ardagna, E. Damiani, and F. Gaudenzi. 2016. A certification framework for cloud-based services. In

Proc. of the ACM Symposium on Applied Computing (SAC 2016). Pisa, Italy.
[10] M. Anisetti, C.A. Ardagna, E. Damiani, and F. Gaudenzi. 2017. A semi-automatic and trustworthy scheme for continuous

cloud service certification. IEEE Transactions on Services Computing (2017).

[11] M. Anisetti, C.A. Ardagna, E. Damiani, N. El Ioini, and F. Gaudenzi. 2018. Modeling time, probability, and configuration

constraints for continuous cloud service certification. Computers & Security (COSE) 72, Supplement C (2018), 234–254.

[12] M. Anisetti, C.A. Ardagna, E. Damiani, and J. Maggesi. 2012. Security Certification-Aware Service Discovery and

Selection. In Proc. of 5th IEEE International Conference on Service-Oriented Computing and Applications (SOCA 2012).
Taipei, Taiwan.

[13] M. Anisetti, C.A. Ardagna, E. Damiani, and F. Saonara. 2013. A Test-based Security Certification Scheme for Web

Services. ACM Transactions on the Web (TWEB) 7, 2 (May 2013), 1–41.

[14] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuéllar, P. Drielsma, P. Héam, O. Kouchnarenko, and

et al. J. Mantovani. 2005. The AVISPA tool for the automated validation of internet security protocols and applications.

In Proc. of the 17th International Conference on Computer Aided Verification (CAV-2005). Edinburgh, Scotland.
[15] A.R.R. Souza et al. 2009. Incorporating Security Requirements into Service Composition: From Modelling to Execution.

In Proc. of the 7th International Joint Conference on Service Oriented Computing (ICSOC-ServiceWave 2009). Stockholm,

Sweden.

[16] AVANTSSAR project. 2018. The AVANTSSAR project IST-2001-39252. http://www.avantssar.eu/.

[17] Y. Bai, Y. Zhang, Y. Zhou, and L.T. Yang. 2011. A non-functional property based service selection and service verification

model. In Proc. of the 8th International Conference on Ubiquitous Intelligence and Computing (UIC 2011). Banff, Canada.
[18] M. Bennara, M. Mrissa, and Y. Amghar. 2014. An approach for composing RESTful linked services on the web. In Proc.

of the 23rd International Conference on World Wide Web (WWW 2014). Seoul, Republic of Korea.
[19] L. Bentakouk, P. Poizat, and F. Zaïdi. 2009. A Formal Framework for Service Orchestration Testing Based on Symbolic

Transition Systems. In Proc. of the 21th IFIP Internation Conference on Testing of Communicating Systems (TESTCOM
2009) and the 9th International Workshop on Formal Approaches to Testing of Software (FATES 2009). Eindhoven, The
Netherlands.

[20] R. Berbner, M. Spahn, N. Repp, O. Heckmann, and R. Steinmetz. 2006. Heuristics for QoS-aware Web Service Composi-

tion. In Proc. of the IEEE International Conference on Web Services (ICWS 2006). Chicago, IL, USA.
[21] B. Bernhard. 2003. Web services container. http://www.google.com/patents/US20030033369 US Patent App. 10/215,722.

[22] B. Bertholon, S. Varrette, and P. Bouvry. 2011. Certicloud: A Novel TPM-based Approach to Ensure Cloud IaaS Security.

In Proc. of the 4th IEEE International Conference on Cloud Computing (CLOUD 2011). Washington, DC, USA.

[23] M. Burrows, M. Abadi, and R. Needham. 1990. A Logic of Authentication. ACM Transactions on Computer Systems 8, 1
(February 1990), 18–36.

[24] A. Cavalli, T.-D. Cao, W. Mallouli, E. Martins, A. Sadovykh, S. Salva, and F. Zaïdi. 2010. WebMov: A Dedicated

Framework for the Modelling and Testing of Web Services Composition. In Proc. of the 8th IEEE International Conference
on Web Services (ICWS 2010). Miami, FL, USA.

[25] Y. Chen, J. Huang, C. Lin, and J. Hu. 2015. A partial selection methodology for efficient qos-aware service composition.

IEEE Transactions on Services Computing 8, 3 (2015), 384–397.

, Vol. 1, No. 1, Article . Publication date: August 2018.

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.avantssar.eu/
http://www.google.com/patents/US20030033369

Test-Based Security Certification of Composite Services 41

[26] T.S. Chow. 1978. Testing Software Design Modeled by Finite-State Machines. IEEE Transactions on Software Engineering
4, 3 (May 1978), 178–187.

[27] L. Chung and J.C.P. Leite. 2009. ConceptualModeling: Foundations andApplications. InOnNon-Functional Requirements
in Software Engineering, A.T. Borgida, V.K. Chaudhri, P. Giorgini, and E.S. Yu (Eds.). Springer-Verlag, Berlin, Heidelberg,

363–379.

[28] L. Chung, B.A. Nixon, E. Yu, and J. Mylopoulos. 2000. Non-Functional Requirements in Software Engineering, vol. 5.
Springer, Heidelberg.

[29] M.R. Clarkson and F.B. Schneider. 2010. Hyperproperties. Journal of Computer Security 18, 6 (2010), 1157–1210.

[30] E. Damiani, C.A. Ardagna, and N. El Ioini. 2009. Open source systems security certification. Springer, New York, NY,

USA.

[31] A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D. Kuebler, H. Ludwig, M. Polan, M. Spreitzer, and A. Youssef. 2004.

Web Services on Demand: WSLA-driven Automated Management. IBM Systems Journal 43, 1 (January 2004), 136–158.

[32] A.V. Dastjerdi and R. Buyya. 2014. Compatibility-aware Cloud Service Composition Under Fuzzy Preferences of Users.

IEEE Transactions on Cloud Computing 2, 1 (January 2014), 1–13.

[33] A. Datta, J. Franklin, D. Garg, L. Jia, and D. Kaynar. 2011. On adversary models and compositional security. IEEE
Security & Privacy 9, 3 (2011), 26–32.

[34] S. Deng, H. Wu, D. Hu, and J.L. Zhao. 2016. Service selection for composition with QoS correlations. IEEE Transactions
on Services Computing 9, 2 (2016), 291–303.

[35] S. Dustdar and P. Fenkam. 2004. Formally designing web services for mobile team collaboration. In Proc. of the 30th
Euromicro Conference 2004. Rennes, France.

[36] M. Egea, K. Mahbub, G. Spanoudakis, and M.R. Vieira. 2015. A certification framework for cloud security properties:

the monitoring path. In Accountability and Security in the Cloud, M. Felici and C. Fernandez-Gago (Eds.). Springer,

63–77.

[37] R. Focardi and R. Gorrieri. 2004. Classification of Security Properties (Part II: Network Security). In Foundations of
Security Analysis and Design, R. Focardi and R. Gorrieri (Eds.). Springer Berlin / Heidelberg.

[38] L. Frantzen, J. Tretmans, and T.A.C. Willemse. 2006. A Symbolic Framework for Model-Based Testing. In Proc. of the
6th International Workshop on Formal Approaches to Testing and Runtime Verification (FATES/RV 2006). Seattle, WA,

USA.

[39] A. Fuchs and S. Gürgens. 2013. Preserving confidentiality in component compositions. In Proc. of the International
Conference on Software Composition (SC 2013). Budapest, Hungary.

[40] H. Gao and Y. Li. 2011. Generating Quantitative Test Cases for Probabilistic Timed Web Service Composition. In Proc.
of the IEEE Asia-Pacific Services Computing Conference (APSCC 2011). Jeju, Korea.

[41] D. Garg, J. Franklin, D. Kaynar, and A. Datta. 2010. Compositional system security with interface-confined adversaries.

Electronic Notes in Theoretical Computer Science 265 (September 2010), 49–71.

[42] C.S. Gordon, M.D. Ernst, D. Grossman, and M.J. Parkinson. 2017. Verifying Invariants of Lock-Free Data Structures

with Rely-Guarantee and Refinement Types. ACM Transactions on Programming Languages and Systems 39, 3, Article
11 (May 2017), 54 pages.

[43] B. Grobauer, T. Walloschek, and E. Stocker. 2011. Understanding Cloud Computing Vulnerabilities. IEEE Security &
Privacy 9, 2 (March-April 2011), 50–57.

[44] Z. Haibo and D. Prashant. 2009. Towards Automated RESTfulWeb Service Composition. In Proc. of the IEEE International
Conference on Web Services (ICWS 2009). Los Angeles, CA, USA.

[45] I.J. Hayes, C.B. Jones, and R.J. Colvin. 2013. Reasoning about concurrent programs: Refining rely-guarantee thinking.
Computing Science, Newcastle University.

[46] D.S. Herrmann. 2002. Using the Common Criteria for IT security evaluation. Auerbach Publications.

[47] W. Hummer, P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar. 2011. VRESCo–Vienna Runtime Environment for

Service-oriented Computing. In Service Engineering, S. Dustdar and F. Li (Eds.). Springer, 299–324.

[48] S.-Y. Hwang, E.-P. Lim, C.-H. Lee, and C.-H. Chen. 2008. Dynamic Web Service Selection for Reliable Web Service

Composition. IEEE Transactions on Services Computing 1, 2 (April 2008), 104–116.

[49] C. Irvine and T. Levin. 1999. Toward a taxonomy and costing method for security services. In Proc. of the 15th Annual
Conference on Computer Security Applications (ACSAC 1999). Phoenix, AZ, USA.

[50] F. Kerschbaum and P. Robinson. 2009. Security architecture for virtual organizations of business web services. Journal
of Systems Architecture (JSA) 55, 4 (April 2009), 224–232.

[51] K.M. Khan, A. Erradi, S. Alhazbi, and J. Han. 2012. Security oriented service composition: A framework. In Proc. of the
8th International Conference on Innovations in Information Technology (IIT 2012). Al Ain, UAE.

[52] K.M. Khan and Q. Malluhi. 2010. Establishing Trust in Cloud Computing. IT Professional 12, 5 (September-October

2010), 20–27.

, Vol. 1, No. 1, Article . Publication date: August 2018.

42 Marco Anisetti, Claudio Ardagna, Ernesto Damiani, and Gianluca Polegri

[53] J.M. Ko, C.O. Kim, and I.-H. Kwon. 2008. Quality-of-service OrientedWeb Service Composition Algorithm and Planning

Architecture. Journal of Systems Software 81, 11 (November 2008), 2079–2090.

[54] D. Kourtesis, E. Ramollari, D. Dranidis, and I. Paraskakis. 2010. Increased reliability in SOA environments through

registry-based conformance testing of Web services. Production Planning & Control 21, 2 (June 2010), 130–144.
[55] M. Krotsiani, G. Spanoudakis, and C. Kloukinas. 2015. Monitoring-Based Certification of Cloud Service Security. In

Proc. of the International Symposium on Secure Virtual Infrastructures, Cloud and Trusted Computing 2016 (C&TC 2015).
Rhodes, Greece.

[56] M. Lallali, F. Zaidi, A. Cavalli, and I. Hwang. 2008. Automatic Timed Test Case Generation forWeb Services Composition.

In Proc. of the 6th IEEE European Conference on Web Services (ECOWS 2008). Dublin, Ireland.
[57] A. Landro. 2013. The benefits of cloud-based BPM. http://tinyurl.com/hk9jy9g.

[58] A.L. Lemos, F. Daniel, and B. Benatallah. 2016. Web Service Composition: A Survey of Techniques and Tools. Comput.
Surveys 48, 3 (February 2016), 33:1–33:41.

[59] B. Li, D. Qiu, H. Leung, and D. Wang. 2012. Automatic Test Case Selection for Regression Testing of Composite Service

Based on Extensible BPEL Flow Graph. Journal of Systems Software 85, 6 (June 2012), 1300–1324.
[60] H. Liang, X. Feng, and M. Fu. 2014. Rely-Guarantee-Based Simulation for Compositional Verification of Concurrent

Program Transformations. ACM Transactions on Programming Languages and Systems 36, 1, Article 3 (March 2014),

3:1–3:55 pages.

[61] Sebastian Lins, Pascal Grochol, Stephan Schneider, and Ali Sunyaev. 2016. Dynamic Certification of Cloud Services:

Trust, but Verify! IEEE Security & Privacy 14, 2 (2016), 66–71.

[62] S. Lins, S. Schneider, and A. Sunyaev. 2016. Trust is Good, Control is Better: Creating Secure Clouds by Continuous

Auditing. IEEE Transactions on Cloud Computing PP, 99 (2016), 1–1.

[63] Yutu Liu, Anne H. Ngu, and Liang Z. Zeng. 2004. QoS Computation and Policing in Dynamic Web Service Selection. In

Proc. of the 13th International World Wide Web Conference on Alternate Track Papers & Posters (WWW Alt. 2004). New
York, NY, USA.

[64] W. Lu, X. Hu, S. Wang, and X. Li. 2014. A Multi-Criteria QoS-aware Trust Service Composition Algorithm in Cloud

Computing Environments. International Journal of Grid & Distributed Computing 7, 1 (2014), 77–88.

[65] H. Ma, F. Bastani, I.-L. Yen, and H. Mei. 2013. QoS-driven service composition with reconfigurable services. IEEE
Transactions on Services Computing 6, 1 (April 2013), 20–34.

[66] H. Mantel. 2000. Possibilistic definitions of security-an assembly kit. In Proc. of the 13th IEEE Computer Security
Foundations Workshop (CSFW 2000). Cambridge, UK.

[67] R. Mateescu and S. Rampacek. 2008. Formal Modeling and Discrete-Time Analysis of BPEL Web Services. In Advances
in Enterprise Engineering I, J.L.G. Dietz (Ed.). Lecture Notes in Business Information Processing, Vol. 10. Springer Berlin

Heidelberg, 179–193.

[68] B. Medjahed, A. Bouguettaya, and A.K. Elmagarmid. 2003. Composing Web services on the Semantic Web. The VLDB
Journal 12, 4 (November 2003), 333–351.

[69] S. Mouchawrab, L.C. Briand, Y. Labiche, and M. Di Penta. 2011. Assessing, Comparing, and Combining State Machine-

Based Testing and Structural Testing: A Series of Experiments. IEEE Transactions on Software Engineering 37, 2 (March

2011), 161–187.

[70] A. Munoz and A. Mana. 2013. Bridging the GAP between Software Certification and Trusted Computing for Securing

Cloud Computing. In Proc. of the 9th IEEE World Congress on Services (SERVICES 2013). Santa Clara, CA, USA.
[71] A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-Baker. 2006. Web Services Security: SOAP Message Security 1.1. OASIS.

http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf.

[72] M. Najafi, K. Sartipi, and N. Archer. 2018. Formal Verification and Validation of Web Service Composition Certifier.
http://www.cas.mcmaster.ca/~najafm/journal4.pdf, Accessed in date August 2018.

[73] Y. Ni, S.-S. Hou, L. Zhang, J. Zhu, Z.J. Li, Q. Lan, H. Mei, and J.-S. Sun. 2013. Effective Message-Sequence Generation

for Testing BPEL Programs. IEEE Transactions on Services Computing 6, 1 (April 2013), 7–19.

[74] OMG 2011. Business Process Model and Notation (BPMN) – Version 2.0. OMG. http://www.omg.org/spec/BPMN/2.0/PDF/.

[75] OpenText 2016. BPM in the Cloud. OpenText. http://tinyurl.com/jfx4pn5, Accessed in date October 2016.

[76] Oracle 2015. Oracle Process Cloud Service. Oracle. http://tinyurl.com/jj3skoa.

[77] C. Pautasso. 2009. RESTful Web service composition with BPEL for REST. Data & Knowledge Engineering 68, 9 (2009),

851–866.

[78] PCI Security Standards Council 2015. Payment Card Industry (PCI) Data Security Standard – Requirements and Security
Assessment Procedures – Version 3.1. PCI Security Standards Council. http://csrc.nist.gov/publications/secpubs/rainbow/
std001.txt.

[79] S. Pearson. 2011. Toward Accountability in the Cloud. IEEE Internet Computing 15, 4 (July-August 2011), 64–69.

[80] C. Peltz. 2003. Web services orchestration and choreography. Computer 36, 10 (October 2003), 46–52.

, Vol. 1, No. 1, Article . Publication date: August 2018.

http://tinyurl.com/hk9jy9g
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.cas.mcmaster.ca/~najafm/journal4.pdf
http://www.omg.org/spec/BPMN/2.0/PDF/
http://tinyurl.com/jfx4pn5
http://tinyurl.com/jj3skoa
http://csrc.nist.gov/publications/secpubs/rainbow/std001.txt
http://csrc.nist.gov/publications/secpubs/rainbow/std001.txt

Test-Based Security Certification of Composite Services 43

[81] L. Pino and G. Spanoudakis. 2012. Finding Secure Compositions of Software Services: Towards A Pattern Based

Approach. In Proc. of the 5th IFIP Internation Conference on New Technologies, Mobility & Security (NTMS 2012). Istanbul,
Turkey.

[82] A. Pnueli. 1977. The temporal logic of programs. In Proc. of the 18th Annual Symposium on Foundations of Computer
Science (SFCS 1977. Washington, DC, USA.

[83] H. Rasheed. 2014. Data and Infrastructure Security Auditing in Cloud Computing Environments. International Journal
of Information Management 34, 3 (June 2014), 364–368.

[84] S. Rossi. 2010. Model Checking Adaptive Multilevel Service Compositions. In Proc. of the International Conference on
Formal Aspects of Component Software (FACS 2010).

[85] D. Sanán, Y. Zhao, Z. Hou, F. Zhang, A. Tiu, and Y. Liu. 2017. CSimpl: A Rely-Guarantee-Based Framework for Verifying

Concurrent Programs. In Proc. of the 23rd International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2017). Uppsala, Sweden.

[86] W. She, I.-L. Yen, B. Thuraisingham, and E. Bertino. 2013. Security-Aware Service Composition with Fine-Grained

Information Flow Control. IEEE Transactions on Services Computing 6, 3 (July 2013), 330–343.

[87] P. Stephanow, G. Srivastava, and J. Schutte. 2016. Test-based cloud service certification of opportunistic providers. In

Proc. of the 9th IEEE International Conference on Cloud Computing (CLOUD 2016). San Francisco, CA, USA.

[88] H.N. Talantikitea, D. Aissanib, and N. Boudjlidac. 2009. Semantic Annotations for Web Services Discovery and

Composition. Computer Standards and Interfaces 31, 6 (November 2009), 1108–1117.

[89] W. Tan, Y. Fan, and M.C. Zhou. 2009. A Petri Net-Based Method for Compatibility Analysis and Composition of

Web Services in Business Process Execution Language. IEEE Transactions on Automation Science and Engineering 6, 1

(January 2009), 94–106.

[90] H. Tout, A. Mourad, H. Yahyaoui, C. Talhi, and H. Otrok. 2012. Towards a BPEL model-driven approach for Web

services security. In Proc. of the 10th Annual International Conference on Privacy, Security and Trust (PST 2012). Paris,
France.

[91] W.-T. Tsai, P. Zhong, J. Balasooriya, Y. Chen, X. Bai, and J. Elston. 2011. An approach for service composition and

testing for cloud computing. In Proc. of the 10th International Symposium on Autonomous Decentralized Systems (ISADS
2011). Kobe, Japan.

[92] USADepartment of Defence 1985. Department Of Defense Trusted Computer System Evaluation Criteria. USADepartment

of Defence. http://csrc.nist.gov/publications/secpubs/rainbow/std001.txt.

[93] E. van Veenendaal. 2018. Standard glossary of terms used in Software Testing Version 2.2. International Software Testing
Qualifications Board. http://www.astqb.org/educational-resources/glossary.php, Accessed in date August 2018.

[94] H.D. Vo, D.C. Phung, V.Q. Dung, and V.-H. Nguyen. 2012. Securing Data in Composite Web Services. In Proc. of the 4th
International Conference on Knowledge and Systems Engineering (KSE 2012). Danang, Vietnam.

[95] J. Yu, J. Han, S.O. Gunarso, and S. Versteeg. 2013. A Business Protocol Unit Testing Framework for Web Service

Composition. In Proc. of the 25th International Conference on Advanced Information Systems Engineering (CAiSE 2013).
Valencia, Spain.

[96] L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang. 2004. QoS-aware middleware for Web

services composition. IEEE Transactions on Software Engineering 30, 5 (May 2004), 311–327.

[97] H. Zheng, J. Yang, and W. Zhao. 2016. Probabilistic QoS Aggregations for Service Composition. ACM Transactions on
the Web 10, 2, Article 12 (May 2016), 12:1–12:36 pages.

, Vol. 1, No. 1, Article . Publication date: August 2018.

http://csrc.nist.gov/publications/secpubs/rainbow/std001.txt
http://www.astqb.org/educational-resources/glossary.php

	Abstract
	1 Introduction
	2 Security Certification of Single Services
	3 BPEL-Based Service Composition
	4 Virtual Certificate of Composite Services
	4.1 Algebra for certificate composition
	4.2 Virtual Properties
	4.3 Virtual Model
	4.4 Virtual Evidence

	5 Certification-Aware Service Selection and Composition
	5.1 BPEL Template
	5.2 BPEL Instance
	5.3 Virtual Certificate Generation

	6 Heuristic Approaches to BPEL Instance Generation
	6.1 Local Heuristic
	6.2 Step-By-Step Heuristic

	7 Experimental Evaluation
	7.1 Testing Infrastructure
	7.2 Performance Evaluation
	7.3 Quality Evaluation

	8 A real-world industrial scenario: ENGPay online payment system
	8.1 PCI DSS
	8.2 ENGPay payment system
	8.3 Certification-based compliance verification
	8.4 Discussion

	9 Related Work
	9.1 Service certification
	9.2 Service composition
	9.3 Automatical test of composition
	9.4 Formal model -based certification
	9.5 QoS-aware composition

	10 Conclusions
	Acknowledgments
	References

