1805.05152v1 [cs.DC] 14 May 2018

arxXiv

Early Scheduling in Parallel State Machine Replication

Eduardo Alchieri', Fernando Dotti? and Fernando Pedone?

! Departamento de Ciéncia da Computagdo — Universidade de Brasilia, Brazil

2Escola Politécnica — Pontificia Universidade Catdlica do Rio Grande do Sul, Brazil

3 Universitd della Svizzera italiana (USI), Switzerland

Abstract

State machine replication is standard approach to fault
tolerance. One of the key assumptions of state machine
replication is that replicas must execute operations deter-
ministically and thus serially. To benefit from multi-core
servers, some techniques allow concurrent execution of
operations in state machine replication. Invariably, these
techniques exploit the fact that independent operations
(those that do not share any common state or do not up-
date shared state) can execute concurrently. A promising
category of solutions trades scheduling freedom for sim-
plicity. This paper generalizes this category of scheduling
solutions. In doing so, it proposes an automated mecha-
nism to schedule operations on worker threads at replicas.
We integrate our contributions to a popular state machine
replication framework and experimentally compare the re-
sulting system to more classic approaches.

1 Introduction

This paper investigates a new class of scheduling proto-
cols for high performance parallel state machine repli-
cation. State machine replication (SMR) is a well-
established approach to fault tolerance [21} 29]. The ba-
sic idea is quite simple: server replicas execute client re-
quests deterministically and in the same order. Conse-
quently, replicas transition through the same sequence of
states and produce the same sequence of outputs. State
machine replication can tolerate a configurable number of
faulty replicas. Moreover, application programmers can
focus on the inherent complexity of the application, while
remaining oblivious to the difficulty of handling replica
failures [10]]. Not surprisingly, the approach has been suc-
cessfully used in many contexts (e.g., [4} 12} [16]]).
Modern multi-core servers, however, challenge the
state machine replication model since deterministic ex-
ecution of requests often translates into single-threaded
replicas. In search of solutions to this performance limi-
tation, a number of techniques have been proposed to al-
low multi-threaded execution of requests at replicas (e.g.,

[[13} 18} 19} 26]]). Techniques that introduce concurrency
in state machine replication build on the observation that
independent requests can execute concurrently while con-
flicting requests must be serialized and executed in the
same order by the replicas. Two requests conflict if they
access common state and at least one of them updates the
state, otherwise the requests are independent.

An important aspect in the design of multi-threaded
state machine replication is how to schedule requests for
execution on worker threads. Proposed solutions fall in
two categories. With late scheduling, requests are sched-
uled for execution after they are ordered across replicas.
Besides the aforementioned requirement on conflicting
requests, there are no further restrictions on scheduling.
With early scheduling, part of the scheduling decisions
are made before requests are ordered. After requests are
ordered, their scheduling must respect these restrictions.

Since late scheduling has fewer restrictions, it allows
more concurrency than early scheduling. Hence, a natu-
ral question is why would one resort to an early schedul-
ing algorithm instead of a late scheduling algorithm? The
answer 1is that the cost of tracking dependencies among
requests in late scheduling may outweigh its gains in con-
currency. In [20]], for example, each replica has a directed
dependency graph that stores not-yet-executed requests
and the order in which conflicting requests must be ex-
ecuted. A scheduler at the replica delivers requests in or-
der and includes them in the dependency graph. Worker
threads remove requests from the graph and execute them
respecting their dependencies. Therefore, scheduler and
workers contend for access to the shared graph.

By restricting concurrency, scheduling can be done
more efficiently. Consider a service based on the typical
readers-and-writers concurrency model. Scheduling be-
comes simpler if reads are scheduled on any one worker
thread and writes are scheduled on all worker threads. To
execute a write, all worker threads must coordinate (e.g.,
using a barrier) so that no read is ongoing and only one
worker executes the write. This scheme is more restrictive
than the one using the dependency graph because it does
not allow concurrent writes, even if they are independent.
Previous research has shown that early scheduling can

outperform late scheduling by a large margin, specially
in workloads dominated by read requests [24} 26]. These
works assume a simple form of early scheduling that fo-
cuses on the readers-and-writers concurrency model.

This paper generalizes early scheduling in state ma-
chine replication. We follow a three-step approach. First,
by using the notion of classes of requests we show how
a programmer can express concurrency in an application.
In brief, the idea is to group service requests in classes
and then specify how classes must be synchronized. For
example, we can model readers-and-writers with a class
of read requests and a class of write requests. The class
of write requests conflicts with itself and with the class of
read requests. This ensures that a write is serialized with
reads and with other writes. We also consider more elab-
orate concurrency models that assume sharded applica-
tion state with read and write operations within and across
shards. These models allow concurrent reads and writes.

Second, we show how one can automatically map re-
quest classes to worker threads. The crux of our technique
is the formulation of the classes-to-threads mapping as an
optimization problem. Mapping classes to threads and
deciding how to synchronize worker threads within and
across classes is a non-trivial problem. One interesting
finding is that it may be advantageous to serialize an in-
herently concurrent class (i.e., with read requests only) to
capitalize on more significant gains from increased con-
currency in other classes, as we explain in detail in the
paper. Finally, our optimization formulation accounts for
skews in the workload.

Third, we have fully implemented our techniques and
conducted a number of experiments with different ser-
vices and workloads, and compared the performance of
our early scheduling technique to a late scheduling algo-
rithm.

The paper continues as follows. Section [2] introduces
the system model and consistency criteria. Section [3|pro-
vides some background on parallel approaches to state
machine replication. Section {4 generalizes early schedul-
ing. Section [5| describes our optimization model. Sec-
tion [6] reports on our experimental evaluation. Section
surveys related work and Section [§|concludes the paper.

2 System model and consistency

We assume a distributed system composed of intercon-
nected processes that communicate by exchanging mes-
sages. There is an unbounded set of client processes and
a bounded set of replica processes. The system is asyn-
chronous: there is no bound on message delays and on rel-
ative process speeds. We assume the crash failure model
and exclude arbitrary behavior. A process is correct if it
does not fail, or faulty otherwise. There are up to f faulty

replicas, out of 2f + 1 replicas.

Processes have access to an atomic broadcast commu-
nication abstraction, defined by primitives broadcast(m)
and deliver(m), where m is a message. Atomic broad-
cast ensures the following properties [9, 14

e Validity: If a correct process broadcasts a message
m, then it eventually delivers m.

o Uniform Agreement: If a process delivers a message
m, then all correct processes eventually deliver m.

e Uniform Integrity: For any message m, every pro-
cess delivers m at most once, and only if m was pre-
viously broadcast by a process.

e Uniform Total Order: If both processes p and ¢ de-
liver messages m and m/, then p delivers m before
m/, if and only if g delivers m before m/.

Our consistency criterion is linearizability. A lineariz-
able execution satisfies the following requirements [[15]:

e It respects the real-time ordering of operations across
all clients. There exists a real-time order among any
two operations if one operation finishes at a client
before the other operation starts at a client.

e It respects the semantics of the operations as defined
in their sequential execution.

3 Background

Parallel SMR exploits the fact that strong consistency
does not always require all operations to be executed in
the same order at all replicas. In this section, we formal-
ize this idea and present two categories of SMR systems
that exploit parallelism.

3.1 The notion of conflict

State machine replication determines how service oper-
ations must be propagated to and executed by the repli-
cas. Typically, (i) every correct replica must receive every
operation; (ii) no two replicas can disagree on the order
of received and executed operations; and (iii) operation
execution must be deterministic: replicas must reach the
same state and produce the same output upon executing
the same sequence of operations. Even though executing
operations in the same order and serially at replicas is suf-
ficient to ensure consistency, it is not always necessary, as
we now explain.

! Atomic broadcast needs additional synchrony assumptions to be im-
plemented [6}|10]. These assumptions are not explicitly used by the pro-
tocols proposed in this paper.

Let R be the set of requests available in a service (i.e.,
all the requests that a client can issue). A request can be
any deterministic computation involving objects that are
part of the application state. We denote the sets of appli-
cation objects that replicas read and write when executing
r as 1’s readset and writeset, or RS(r) and WS(r), re-
spectively. We define the notion of conflicting requests as
follows.

Definition 1 (Request conflict). The conflict relation
#r C R x R among requests is defined as

RS(ri)nWS(r;) #0
\%

(7”1',7"]') € #piff WS(?Q)QRS(T&)#@
\%

WS(r;) NWS(r;) #0

Requests r; and r; conflict if (r;,7;) € #r. We refer
to pairs of requests not in # g as non-conflicting or inde-
pendent. Consequently, if two requests are independent
(i.e., they do not share any objects or only read shared ob-
jects), then the requests can be executed concurrently at
replicas (e.g., by different worker threads at each replica).
Concurrent execution of requests raises the issue of how
requests are scheduled for execution on worker threads.
We distinguish between two categories of protocols.

3.2 Late scheduling

In this category of protocols, replicas deliver requests in
total order and then a scheduler at each replica assigns
requests to worker threads for execution. The scheduler
must respect dependencies between requests. More pre-
cisely, if requests r; and r; conflict and r; is delivered
before 7, then r; must execute before r;. If r; and r; are
independent, then there are no restrictions on how they
should be scheduled (e.g., the scheduler can assign each
request to a different worker thread).

CBASE [20] is a protocol in this category. In CBASE,
a deterministic scheduler (or parallelizer) at each replica
delivers requests in total order and includes them in a de-
pendency graph. In the dependency graph, vertices repre-
sent delivered but not yet executed requests and directed
edges represent dependencies between requests. Request
r; depends on 7; (i.e., 7; — r; is an edge in the graph) if
r; is delivered after r;, and r; and r; conflict.

The dependency graph is shared with a pool of worker
threads. The worker threads choose requests for execu-
tion from the dependency graph respecting their interde-
pendencies: a worker thread can execute a request if the
request is not under execution and it does not depend on
any requests in the graph. After the worker thread exe-
cutes the request, it removes the request from the graph
and chooses another one.

3.3 Early scheduling

With early scheduling, a request is assigned to a worker
thread (or to a pool of worker threads, from which one
thread will execute the request) before it is ordered. For
example, one could establish that all requests that access
object = are executed by thread ¢y and all requests that
access object y are executed by thread ¢;; requests that
access both objects require threads ¢y and ¢; to coordi-
nate so that only one thread executes the request (we detail
this execution model in the next section). The advantage
of early scheduling is that since scheduling decisions are
simple (e.g., there is no dependency graph), the scheduler
is less likely to become a performance bottleneck.

Two variants of early scheduling in state machine repli-
cation have been proposed. In both cases, clients tag re-
quests with the ids of the worker threads that will execute
the requests. In [1]], a scheduler thread delivers requests
in total order and assigns each request to the worker re-
sponsible for the execution of the request. In [24], there
is no scheduler involved; the atomic broadcast primitive
uses the request tag to deliver requests directly to worker
threads at the replicas. Neither proposal explains how
clients must tag requests to maximize concurrency.

4 Parallelism with request classes

In this section, we introduce the notion of classes of re-
quests and illustrate how they can be used to represent
concurrency in three prototypical applications.

4.1 Classes of requests

Classes of requests group requests and their interdepen-
dencies. Each class has a descriptor and conflict informa-
tion, as defined next.

Definition 2 (Request classes). Recall that R is the set
of requests available in a service (c.f. §3.1I). Let C' =
{e1,¢2, ..., Cne} be the set of class descriptors, where nc
is the number of classes. We define request classes as
R = C — P(C) x P(R)P|that is, any class in C' may
conflict with any subset of classes in C, and is associated
to a subset of requests in R. Moreover, we introduce the
restriction that each request is associated to one and only
one class.

A request class set R is correct with respect to a request
conflict # g if every conflict in #p is in R:

Definition 3 (Correct request classes). Given a request
conflict relation # r, a request class set R is correct with
respect to #p if for all (r;,r;) € #g, with ¢ # 7,

2We denote the power set of set S as P(S).

it follows that 3C; — (CC;,CR;) € R and 3C; —
(CCj,CRj) € R such that: (a) r; € CR;, (b) T; € CR]‘,
©) Cj € CC;,and (d) C; € COJ

Intuitively, requests that belong to conflicting classes
have to be serialized according to the total order in-
duced by atomic broadcast. Requests that belong to non-
conflicting classes can be executed concurrently. We
differentiate between two types of conflicts involving
classes.

e Internal conflicts: We say that class ¢ has internal
conflicts if c contains requests that conflict. Requests
in a class with internal conflict must be serialized and
executed in the same order across replicas. If a class
does not have internal conflicts, its requests can be
processed concurrently.

o External conflict: If classes c; and c;, ¢ # j, conflict,
then requests in ¢; and c¢; have to be serialized and
executed in the same order by the replicas. If ¢; and
¢j, ¢ # j, do not conflict, then requests in ¢; and c;
can execute concurrently.

4.2 Applications and request classes

We illustrate request classes with three applications.

e Readers and writers. In this case (Fig. [I] (a)), we
have a class of operations Cr that only read the ap-
plication state and a class of operations Cyy that read
and update the state. Requests in C'r do not conflict
with each other (i.e., no internal conflict) but conflict
with requests in Cy. Cyy also has internal conflicts.

e Sharded state with local readers, local writers, and
global readers (snapshots). By sharding the service
state (Fig. [T] (b)), we allow concurrency within and
across shards for operations that only read the state
(Cgr1 and Cgo) and concurrency across shards for
operations that read and write the application state
(Cw1 and Cy2). Global reads or snapshots (Clg)
can execute concurrently with other read operations
but must be synchronized with write operations.

e Sharded state with local readers and writers and
global readers and writers. This model (Fig. [I] (c))
extends the previous one and allows both read re-
quests (Cry) and write requests (Cyyg4) that span
multiple shards.

4.3 Replica execution model

We adopt the following replica execution model, which
extends the more restrictive model proposed in [[L]:

o All the replicas have n + 1 threads: one scheduler
thread and n worker threads.

e Each worker thread (in a replica) has a separate input
queue and removes requests from the queue in FIFO
order.

e The scheduler delivers requests in total order and dis-
patches each request to one or more input queues,
according to a mapping of classes to worker threads,
which we define below.

o If arequest is scheduled to one worker only, then the
request can be processed concurrently with requests
enqueued in other worker threads.

e If two or more worker threads have the same request
r enqueued, it is because r depends on preceding
requests assigned to these workers. Therefore, all
workers involved in r must synchronize before one
worker, among the ones involved, executes 7.

The mapping of classes to threads must respect all in-
terdependencies between classes. Intuitively, (a) if a class
has internal conflicts, then the synchronization mode of
the class must be sequential; and (b) if two classes con-
flict, then they must be assigned to at least one thread in
common. The mapping of classes to threads is defined
below and detailed in

Definition 4 (Classes to threads, CtoT). If T =
{to,..,tn—1} is the set of worker thread identifiers at a
replica, where n is the number of worker threads, 7 =
{Seq, Cnc} is the synchronization mode of the class (i.e.,
sequential or concurrent), and C' is the set of class names
as in Def. 2] then CtoT = C — T x P(T).

Algorithms [I|and [2| present the execution model for the
scheduler and worker threads, respectively.

Algorithm 1 Scheduler.

1: variables:

2: queues[0,...,n—1] « 0

: on deliver(req):

if req.class.smode = Seq then
vVt € CtoT (reg.classId) // for each conflicting thread

queues(t]. fifoPut(req) // synchronize to exec req

else /I else assign req to one thread in round-robin

queuesnext(CtoT (req.classId))]. fifoPut(req)

// one queue per worker thread

/1 if execution is sequential

3
4
5:
6:
7
8

Whenever a request is delivered by the atomic broad-
cast protocol, the scheduler (Algorithm [I)) assigns it to
one or more worker threads. If a class is sequential, then
all threads associated with the class receive the request
to synchronize the execution (lines 4—6). Otherwise, re-
quests are associated to a unique thread (line 7-8), fol-
lowing a round-robin policy (function next).

Cw__)

@

c c /
1@0

WQ\Q

CR2

W / WZQ

Rg

©

Figure 1: Classes of requests for three applications: (a) readers (Cr) and writers (Cyy); (b) sharded with local readers
(Cgr1 and Cgs), local writers (Cyy1 and Cyyz), and global snapshots (C's); and (c) sharded with local readers and
writers (Cr1, Cra, Cw1 and Cw), and global readers and writers C'ry and Cyy4. Edges in the graphs represent
external conflicts between classes; loops represent internal conflicts.

Algorithm 2 Worker threads.

1: variables:

2 myld < id € {0,...,n — 1} // thread id, out of n threads
3 queue[myld] < (0 // the queue with requests for this thread
4 barrier[C)] /I one barrier per request class
5: while true do

6 req < queue.fifoGet() // wait until a request is available
7 if req.class.smode = Seq then /I sequential execution:
8 if myld = min(CtoT (req.classId)) then // smallest id:

9: barrier[req.classld].await() /I wait for signal
10: exec(req) /I execute request
11: barrier|req.classId].await() /I resume workers
12: else
13: barrier[req.classId].await() /I signal worker
14: barrier|req.classld].await() /I wait execution
15: else // concurrent execution:
16: exec(req) // execute the request

Each worker thread (Algorithm [2)) takes one request at
a time from its queue in FIFO order (line 6) and then
proceeds depending on the synchronization mode of the
class. If the class is sequential, then the thread synchro-
nizes with the other threads in the class using barriers be-
fore the request is executed (lines 8—14). In the case of
a sequential class, only one thread executes the request.
If the class is concurrent, then the thread simply executes
the request (lines 15-16).

4.4 Mapping classes to worker threads

Assuming the execution model described in the previous
section, the mapping of classes to worker threads must
satisfy the following rules:

e R.I: Every class is associated with at least one
worker thread. This is an obvious requirement,
needed to ensure that requests in every class are
eventually executed.

e R2: If a class has internal conflicts, then it must
be sequential. In this case, all workers associated to
the class must be synchronized so that each request
is executed by one worker in the same order across
replicas. Associating multiple workers to a sequen-
tial class does not help performance, but it induces
important synchronization across classes.

e R.3: Iftwo classes conflict, at least one of them must
be sequential. Requirement R.2 may help decide
which class, between two conflicting classes, must
be sequential.

e R4: If classes c1 and co conflict, c1 is sequential,
and csy is concurrent, then the set of workers asso-
ciated to co must be included in the set of workers
associated to c1. This requirement ensures that re-
quests in ¢; are serialized with requests in cs.

e R.5: If classes ¢y and co conflict and both c¢i and
co are sequential, it suffices that c¢1 and co have at
least one worker in common. The common worker
ensures that requests in the classes are serialized.

The previous rules ensure linearizable executions, the
correctness proofs are in Appendix A.

S Optimizing scheduling

In this section, we formulate the problem of mapping a
class of requests to a set of worker threads. The mapping
assumes the execution model described in and satis-
fies the rules presented in

5.1 The optimization model

The mapping of threads to classes is shaped as an opti-
mization problem that must produce a solution that sat-
isfies a number of constraints and is optimized for a few
conditions (see Algorithm 3).

Input and output (lines[IH8). The input is the request
classes definition, a set of available worker threads, the
conflicts among classes, and the relative weight of classes.

e The set of classes C' = {cy, .., Cpe }, as in Def.

e The set of worker threads T' = {to, .., ts—1} that
will be mapped to classes.

e The class conflict relation # C C x C, derived
from R in Def. |3 where (c1,c2) € # iff (¢ —
(cseh rset)) € R and ¢y € cget.

e The weight of classes W C C x R, used to represent
the work imposed by each class. We assign weights
to classes based on the frequency of requests in the
class in the workload. (If such information is not
available, we assume equal weight to all classes.)

The optimization of this model has as output the map-
ping of worker threads to classes and the choice of
whether a class is sequential or concurrent.

e The mapping uses C C x T of worker threads to
classes; where uses(c,t) means that worker thread ¢
is mapped to class c.

e The synchronization mode of each class, either se-
quential or concurrent.

Constraints (lines[I5H20). The output of the optimizer
must follow the set of restrictions R.1-R.5, as defined in

@

Objective function (lines 2TH26). The restrictions im-
posed by the constraints may be satisfied by several as-
sociations of threads to classes. Among those, we aim at
solutions that minimize the “cost of execution”, as defined
below.

e 0.1: Minimize threads in sequential classes and
maximize threads in concurrent classes. We account
for this by penalizing sequential classes proportion-
ally to the number of threads assigned to the class
(0.1a), and rewarding (i.e., negative cost) concur-
rent classes proportionally to the number of threads
assigned to the class (O.1b). In both cases, we also
take into account the weight of the class with respect
to other classes with the same synchronization mode.

e 0.2: Assign threads to concurrent classes in pro-
portion to their relative weight. More concretely,
we minimize the difference between the normalized
weight of each concurrent class ¢ (i.e., w[c|/wc)
and the number of threads assigned to c relative
to the total number of threads (i.e., |[{V¢ € T
uses|c, t]}|/nt).

e (0.3: Minimize unnecessary synchronization among
sequential classes. We penalize solutions that in-
troduce common threads in independent sequential
classes. Since the classes are sequential, a single
thread in common would make the classes mutually
exclusive. Moreover, we give this objective higher
priority than the others.

Algorithm 3 Optimization model.
1: input:
2: set C
3 setT
4 #{C;,C;} € {0,1}
5 w{C} eR
6: output:
7
8
9

/I set of request classes

/I set of worker threads

Il #[ci, ¢j] = 1: ¢; and ¢ conflict
// weight of each class

uses{C, T} € {0,1}
Seq{C} € {0,1}
: auxiliary definitions:
10 nc=|C|
11: nt=|T| // number of worker threads
122 Cnc{C} = ~Seq{C} € {0,1} // Cnc(c)=1:cis concurrent
130 we=73"yeeo: onelgwlel // weights of concurrent classes
14 ws = y.cc . Seq[e] w]c]
15: constraints:

// uses[c,t] =1 : class c uses thread ¢
/I Seq(c) = 1: cis sequential

// number of classes

// weights of sequential classes

16: Vee C : \yep uses(c,t) /IR.1
17 Ve e C : #[c1,c1] = Seq|ei] //R2
18: Vei,co € C ot #[er, c2] = Seqlei] V Seg|ez] //R.3

19: Ver,co € CiteT
#lc1, c2] A Seqle1] A Cnclea] A uses|ca, t| = uses|ci, t]

/IR.4
20: Vei,co € C : #er, c2] A Seglei] A Seqlez] =
3t €T : useslci,t] Auses[ca,t] /IR.5
21: objective:
22: minimize cost:
23t 4 X vieT, veeC : Seqle USeS[e, t] X wlc] /ws //0.1a
24t =3 vier veec: Cneld] uses|c, t| X wlc] /we /1 0.1b
250 43 veec: onele lwle/we — ({Vt € T : uses|c, t]}| /nt)|
110.2
26: +EVC1,02€C:Seq[cl]/\Seq[cz]/\ﬁ#[Cl7C2]
{Vt € T : uses[ci,t] A uses[ca,t]}| x nt x nc //0.3

We described the optimization problem in the AMPL
language [11] and solved it with the KNitro solver [3].
The problem description in AMPL is roughly similar to
Algorithm 3]

6 Experimental evaluation

In order to compare the performance of the two schedul-
ing methods for parallel state machine replication, we im-
plemented the CBASE late scheduler [20] and the early
scheduling technique proposed in this paper and con-
ducted several experiments.

6.1 Environment

We implemented both early and late scheduling in BFT-
SMART [2]]. BFT-SMART can be configured to use pro-
tocols optimized to tolerate crash failures only or Byzan-
tine failures. In all the experiments, we configured BFT-
SMART to tolerate crash failures. BFT-SMART was de-
veloped in Java and its atomic broadcast protocol executes
a sequence of consensus instances, where each instance
orders a batch of requests. To further improve the per-
formance of the BFT-SMART ordering protocol, we im-
plemented interfaces to enable clients to send a batch of
requests inside the same message.

In late scheduling, scheduler and workers synchronize
access to the graph using a lock on the entire graph, as
suggested in [20]. As a consequence, the performance of
late scheduling is impacted by the size of the dependency
graph since scheduler and workers traverse the graph to
include and remove edges (dependencies), respectively.
Providing efficient concurrent access to a graph is an open
problem [17,128]. In the experiments, we carefully config-
ured the size of the dependency graph so that late schedul-
ing produces its best performance in our setup: at most 50
entries in the graph for workloads with writes only and
150 entries otherwise.

The experimental environment was configured with
9 machines connected in a 1Gbps switched network.
The software installed on the machines was CentOS
Linux 7.2.1511 and a 64-bit Java virtual machine version
1.8.0-131. BFT-SMART was configured with 3 replicas
hosted in separate machines (Dell PowerEdge R815 nodes
equipped with four 16-core AMD Opteron 6366HE pro-
cessors running at 1,8 GHz and 128 GB of RAM) to toler-
ate up to 1 replica crash, while up to 200 clients were dis-
tributed uniformly across another 4 machines (HP SE1102
nodes equipped with two quad-core Intel Xeon 15420
processors running at 2.5 GHz and 8 GB of RAM).

6.2 Application

The application consists of a set of linked lists. Each list
stored integers and represented one shard (partition). For
single-shard reads and writes, we support operations to
verify if a list contains some entry and to add an item
to a list: contains(i) returns true if 4 is in the list, oth-
erwise returns false; add(i) includes ¢ in the list and re-

turns true if i is not in the list, otherwise returns false.
Parameter ¢ in these operations was a randomly chosen
position in the list. For multi-shard reads and writes, we
implemented operations containsAll and addAll to exe-
cute the respective operations involving all shards. Lists
were initialized with 1, 1%k and 10k entries at each replica,
representing operations with light, moderate, and heavy
execution costs, respectively.

6.3 Goals of the evaluation

The main goal of our experimental evaluation is to com-
pare the two scheduling techniques and identify in which
configurations one outperforms the other. We consider
a parameter space containing (a) two prototypical appli-
cations with one or more shards, single-shard and multi-
shard read and write operations (i.e., cases 1 and 3 pre-
sented in Fig. ; (b) three execution costs, comprising
light, moderate and heavy operations; and (c) uniform and
skewed workloads (i.e., the three cases depicted in Fig. 4.
We evaluated the throughput of the system at the servers
and the latency perceived by the clients, a warm-up phase
preceded each experiment.

6.4 Single-sharded systems

The first set of experiments considers reads and writes
in a single shard. Fig. [2|shows the throughput presented
by each scheduling approach for different execution costs
and number of workers threads, considering two work-
loads: a workload with read operations only and a mixed
workload composed of 15% of writes and 85% of reads
uniformly distributed among clients.

Considering the read operations only workload
(Figs. and 2(c)), in general the early sched-
uler presented more than twice the performance of the late
scheduler. The late scheduler uses one data structure (de-
pendency graph) that is accessed by the scheduler to in-
sert requests and by the workers to remove requests, lead-
ing to contention. The shared dependency graph rapidly
becomes a bottleneck and performance does not increase
with additional workers. Another important aspect is
that the late scheduler presented similar performance for
all execution costs, indicating that its performance was
bounded by the synchronization and contention in the de-
pendency graph and not by the time the workers spent to
execute a request.

Following a different approach, the early scheduler
employs one data structure (queue) per worker. Con-
sequently, workers do not content with one another, al-
though the scheduler and each worker share a data struc-
ture. For each execution cost the system reached peak
throughput with a different number of threads: for light,
moderate and heavy requests it was necessary 8, 10 and

350 F i~ » S 350 F rly‘ T L e e e a0 F - r‘y‘ — 3
g 300 late EZ7 A g 300 late 2T] ‘g 300 late EZ70 1
‘\El 250 - 1 é_ 250 é_ 250 - ,
< 200 8 < 200 q < 200 B
5 5 5
2 150 1 2 150 B 2 150 ,
[=2] [=2] [=2)
3 100 8 3 100 - q 3 100 - q
= 1 1H (K = =
= 50—m { F 50—"h 1 F sof mm g
10 £ EIEIE 10 b lb E 10 [T m E|
1 2 4 6 8 10 12 14 16 18 20 22 24 1 2 4 6 8 10 12 14 16 18 20 22 24 1 2 4 6 8 10 12 14 16 18 20 22 24
Number of Workers Number of Workers Number of Workers
(a) Read - Light (b) Read - Moderate (c) Read - Heavy
g0 F T T T T oy —— 80 F . e;”y —— 80 F T T e;”y —
g or late F270 g or late 2] g or late [Z]
2 60 1 2 60 1 2 60 1
Q Q Q
g sor 1 g sor 1 g sor —
5 40 1 5 40F 5 40 —
o Q Qo
5 30+ 1 5, 30+] 1 S, 30+ ,
3 =3 >
e 20 1 e 20 . 1 e 20 :
= = =
o1k 1 =10+] 1 RTINS m ,
1 2 4 6 8 10 12 14 16 18 20 22 24 1 4 6 8 10 12 14 16 18 20 22 24 1 2 4 6 8 10 12 14 16 18 20 22 24
Number of Workers Number of Workers Number of Workers
(d) Mixed - Light (e) Mixed - Moderate (f) Mixed - Heavy
Figure 2: Throughput in readers-and-writers service (single shard) for different workloads and execution costs.
25 T T T T T T 25 1 . . . T . T T T T
early, read, 2 workers —&— early, read, 2 workers —&— _early, read, 4 workers —S—
20k early, write, 2 workers —+— | 20 | early, write, 2 workers —+— | ’early, write, 4 workers —+—
- < late, read, 8 workers - late, read, 8 workers —><— - late, read, 14 workers —<—|
g 15 T late, write, 8 workers —4— | g 15 late, write, 8 workers —4&— | E’ “late, write, 14 workers —4&—|
= = = B
2 2 2
2 g 2 1 2 1
© © ©
— - p
4 T 1] A Il L i 1 L L] 1 S 1 1 1 1 1 |
1 10 20 30 40 50 60 70 80 90 1 10 20 30 40 50 60 70 80 90 1 10 20 30 40 50 60 70 80 90
Throughput (kops/sec) Throughput (kops/sec) Throughput (kops/sec)
(a) Mixed - Light (b) Mixed - Moderate (c) Mixed - Heavy
Figure 3: Latency in readers-and-writers service (single shard) for a mixed workload and different execution cost.

22 workers, respectively. Early scheduling largely out-
performs late scheduling since in the former there is no
synchronization among workers.

A final remark about these experiments is that after
the peak throughput is reached, increasing the number
of workers hampers performance. Considering the early
scheduler, this happens for the following reason. After
executing a request, a worker thread checks its queue for
requests and if no request is found it blocks until one is
available. As the number of threads increases, there are
fewer requests enqueued per worker, which finds its queue
empty more often. Considering a run of the experiment
with light execution cost (Fig.2(a))), 201.543 system calls
to sleep (block) are executed when the system is config-
ured with 8 workers (an average of 25.192 system calls
per worker) and 31.016.088 such calls are executed in the

configuration with 24 workers (an average of 1.292.337
system calls per worker). Although presenting a lower
impact, this phenomenon also occur in the late scheduler.

Figs. [2(e)|and 2(H)| show throughput results for the
mixed workload. For each execution cost, Fig. El also

shows latency versus throughput results for the thread
configuration that presented the best performance in each
scheduling approach. The early scheduler technique again
presented the best peak throughput, which was achieved
with 2, 2 and 4 workers for light, moderante and heavy op-
erations costs, respectively. This configuration represents
an equilibrium between the synchronization needed to ex-
ecute writes and the number of workers available to exe-
cute parallel reads. Reads and writes have similar latency
because they have similar execution costs and the syn-
chronization of writes impacts the performance of reads

ordered after a write.

In workloads with predominance of write operations,
sequential execution presents best performance [, 24].
For example, considering a workload with only write op-
erations of moderante costs, the early scheduling pre-
sented a throughput of 53 Kops/sec with 1 worker that
dropped down to 24 kops/sec with 2 workers. Notice
this is the worst case for this approach, where all workers
need to synchronize for each request execution. The late
scheduling presented a throughput of 31 Kops/sec with 1
worker and 23 kops/sec with 2 workers. For an interme-
diary workload composed of 50% of reads and 50% of
writes, the early scheduling presented a throughput of 55
kops/sec with 1 worker and 41 kops/sec with 2 workers.
The late scheduling presented a throughput of 39 Kops/sec
with 1 worker and 36 kops/sec with 2 workers.

6.5 Optimizing multi-sharded systems

We now evaluate our optimization model. We consider
the generalized sharded service depicted in Fig. [T{c) with
2 shards, 4 worker threads, and three workloads, as de-
scribed below. For each workload, Fig. E] shows the result-
ing proportion of local reads, local writes, global reads,
and global writes.

e Workload 1: Balanced load. This workload is com-
posed by 85% of reads and 15% of writes, from
which 95% are single-shard (local), equally dis-
tributed between the two shards, and 5% are multi-
shard (global).

o Workload 2: Skewed load, shard 1 receives more re-
quests than shard 2. Similar to Workload 1, but lo-
cal requests are unbalanced with 67% to shard 1 and
33% to shard 2.

o Workload 3: Skewed load, shard 1 receives more
writes and fewer reads than shard 2. Similar to
Workload 1, but local requests are unbalanced with
67% of writes and 33% of reads to shard 1, and 33%
of writes and 67% of reads to shard 2.

Fig. 4| shows the results produced by the optimizer for
each workload and by a naive assignment of threads. In
the naive assignment, we first configure read-only classes
to be concurrent and assign workers more or less propor-
tionally to the percentage of commands in the workload.
We then assign workers to write classes to ensure the cor-
rectness of the model.

For all workloads, our optimization model establishes
that reads and writes in shards 1 and 2 use disjoint sets
of threads, and threads are distributed in proportion to
the class weights. Since single-shard reads are concur-
rent but conflict with writes in the shard, the single-shard

write class has all threads associated to the respective
read class. Multi-shard writes must be synchronized with
all other operations, therefore all threads are assigned to
multi-shard writes. According to the conflict definition,
multi-shard reads are concurrent. Nevertheless, the opti-
mizer sets the class Cry as sequential. The reason is that
since C'r, conflicts with Cyy1 and Cyyo, if Cry is con-
figured as concurrent all threads assigned to C'r, would
have to be included in Cyy; and Cyy2. Doing so would
synchronize C'yy1 and Cyyo since their threads would not
be disjoint. A more efficient solution is to define C'r, as
sequential and assign to it one thread from Cyyq and one
thread from CYyy 5. As a result, multi-shard reads synchro-
nize with local-shard writes, but local writes to different
shards can execute concurrently.

Cri Cwi Cro Cwe Cpg Cuyg
Workload 1] balanced 0.4 0.075 04 0.075 0.04 0.01
Workload 2| ~ skewed 053 0.1 027 005 004 0.01
Workload 1 Seq tO 4
Workload 2 m— Naive
Cnc : 10, t1 / \ Cnc 12,13
1
[Cne 1o, t1, t2][Cne : 1o, t1] m ne : 12, t3
Seq : 10, t1) (Seq: 12 t3
[seq: 10, t1, t2[[Seq : t0, t1, t2] \ / [seq: t3[seq: 10, t2, 13
eq 10, t2
Seq 10, t3 Cnc tO t2

Figure 4: Thread assignment in sharded application.

6.6 Multi-sharded systems

The first set of experiments showed that the early sched-
uler outperforms the late scheduler in a single-sharded
system. A natural question is whether this is also true
for a multi-sharded system since the early scheduler stati-
cally allocates workers to shards while the late scheduler
allocates workers to shards dynamically. Fig. [5] answers
this question positively and shows the advantage of early
scheduling over late scheduling for a mixed workload in
systems with 1, 2, 4, 6 and 8 shards and moderate opera-
tion costs. The workload is similar to the balanced Work-
load 1 introduced at extrapolated for systems with
more shards, i.e., the single-shard operations are equally
distributed among all shards. Moreover, operations are
uniformly distributed among the clients.

Fig.[5also presents results for the naive threads assign-
ment in the early scheduler in order to assess the impact

25 T

25 T

T T T T T T T T
early 1 early, read —6— early, read —S—
g early-naive 20 L early, write —+— | 20 L early, write —+— |
% late (=50 — early-naive, read g early-naive, read
g 100 - g early-naive, write 8 early-naive, write
2 E 15¢ ’ B E 15f { i
= > late, read —%— 3 late, read —%—
5 70k . N N
_8' &L § 10 late, write —&— ,“:2 ol late, write —&— |
=) i K] q S
3 40r i ¢
< s
= B 3t 74 3t) 1
54 5 2 & 1 4 T G B B 1 2 T i |
1 2 4 6 1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 80 90 100
umber of Shards roughput (kops/sec; roughput (kops/sec
Number of Shard Th hput (kops/sec) Th hput (kops/sec)
(a) Throughput (b) 4 shards - single-shard - 8 workers (c) 4 shards - multi-shard - 8 workers
Figure 5: Multi-sharded system for a mixed workload composed of operations of moderate execution cost.
T T T T T T T T T T T T T
early + weight 1 early + weight, shard 1 —6— early + weight, read —6—
T 120 early - weight early + weight, shard 2 —+— early + weight, write —+—
g late B0 o5} early - weight, shard 1 — 25| early - weight, read |
3 100 + E early - weight, shard 2 E early - weight, write
2 > 20+ late, shard 1 —=—1 = 20 late, read —<—7
£3) [9) ;
;_31 70 F § 15 1 late, shard 2 —&— | }13 15 b late, write —&— |
= © © q
2 = 10+ = 10 &1
o 40t
=
= 3r - 4 3 0 4
1 1 T e L 1 e e] M | L |
1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 80 90 100

workload 1 workload 2 workload 3

(a) Throughput - 4 workers

Throughput (kops/sec)
(b) Workload 2 - single-shard - 4 workers

Throughput (kops/sec)
(c) Workload 2 - multi-shard - 4 workers

Figure 6: System with 2 shards and skewed mixed workloads composed of operations of moderate execution cost.

of the proposed optimization model. Based on the results
reported in Fig. we configured the early scheduler
with a number of threads twice the number of shards (also
for the naive configuration) and the late scheduler with 8
workers in all cases.

In general, the early scheduler outperforms the late
scheduler in all configurations. Moreover, the early sched-
uler configured with the output of the optimization model
outperforms the naive configuration since the last does
not allow parallel execution of writes assigned to differ-
ent shards. The best performance was achieved with 4
shards, suggesting that this is the best sharding for this
application and workload, i.e., it is better to use 4 shards
even if the application allows the state division in more
shards. This happens because multi-shards operations
need to synchronize all threads and increasing the number
of shards also increases the number of threads involved
in the synchronization. The same thread can execute op-
erations assigned to two different shards, but the effect
is the same as if the two shards are merged in just one.
The latency evolves similarly for single- and multi-shards
operations, presenting some difference only near system
saturation.

6.7 Skewed workloads

We now consider workloads in which some shards receive
more requests than others. We account for skews in the
workload by assigning weights to classes of requests (see
§5.1). The weight of a class represents the frequency of
class requests. The result is that the optimizer will attempt
to assign threads to classes in proportion to their weights.

Fig.[6] presents performance results for the three mixed
workloads introduced at §6.3] considering a system with
two shards and moderate operation costs. Fig. [] shows
these workloads and how the optimizer mapped worker
threads to classes. Fig.[6|also presents results for the early
scheduler without accounting for class weights in order
to better understand the effects of the technique. In gen-
eral, the early scheduler outperforms the late scheduler
even without accounting for weights. However, by tak-
ing into account the weights of classes performance im-
proves since workers are mapped to classes according to
the workload.

Considering Workload 2, Fig. [6(b)| presents the latency
per shard since operations in the same shard behave sim-
ilarly (see Fig.3) and Fig. presents the latency for
multi-shards operations. For early scheduling, in Fig. [6(b)]
it is possible to notice a different latency for operations
addressed to different shards, mainly near system satura-
tion. In the late scheduler the latency evolves similarly

10

for both shards since the dependency graph becomes full
of operations addressed to shard 1 also impacting the per-
formance of operations in shard 2. Increasing the size
of the dependency graph does not help since (1) larger
graphs have more overhead due to the addition and re-
moval of requests in the graph (e.g., for a graph with 500
entries, the write throughput is approximately 7 kops/sec)
and (2) given enough time and requests, the graph will
become full of such requests anyway. This is a serious
drawback of late scheduling: given enough requests, the
overall performance is bounded by operations with worst
performance.

Building on the observation above, we conducted an
additional experiment in a system with 4 workers, where
50 clients read from shard 1 and another 50 clients write in
shard 2. While early scheduler used one thread for shard
2 and the others for shard 1, executing 179 kops/sec, the
late scheduler achieved only 22 kops/sec.

6.8 Lessons learned

This section presents a few observations about the exper-
imental evaluation.

1. Early scheduling outperforms late scheduling. De-
spite the fact that early scheduling is more restrictive
than late scheduling, it delivers superior performance
in almost all cases we considered. This happens for
two reasons: (1) the early scheduler can make simple
and fast decisions, and (2) by using one data struc-
ture per worker thread, worker threads do not con-
tent of a single data structure, as with late schedul-
ing. As we could notice, in high throughput systems
there is room to discuss the tradeoff of fast versus
accurate runtime decisions. Although CBASE does
not hinder the concurrency level (since the depen-
dencies followed are the needed and sufficient ones
given by service semantics), better throughput re-
sults can be achieved with a solution trading concur-
rency for fast runtime decision. The main reason for
this is related to contention due to the graph struc-
ture but it is also relevant to observe that since the
number of threads (cores) for an application is typi-
cally bounded in concrete implementations, adopting
strategies that limit the achievable concurrency level
may still not hinder the concurrency level in concrete
settings.

. Choosing the right data structures is fundamental to
performance. Since all requests must go through the
same data structure, the performance of late sched-
uler is bounded by requests with worst performance.
The early scheduler uses a queue per worker and
does not force workers to synchronize in the pres-
ence of independent requests. Moreover, requests of

11

one class do not impact performance of requests in
other classes.

The number of workers matters for performance, but
not equally for the two scheduling techniques. For
both schedulers, the ideal number of worker threads
depends on the application and workload. However,
the performance impact caused by the number of
workers is lower in the late than in the early sched-
uler. This observation suggests that both scheduling
techniques can benefit from a reconfiguration proto-
col [1] to adapt the number of workers on-the-fly.

Class to thread assignment needs information about
all classes. A local view of related classes was not
sufficient to reach good (in terms of the optimiza-
tion objective) assignments. The naive thread assign-
ment shows this. While it may seem acceptable to
configure concurrent classes distributing threads pro-
portionally to their demands and then assure that se-
quential classes synchronize with the other classes as
needed, it has been observed that analysing the whole
conflict relation could be worthy to consider a class
as sequential (even it could be concurrent) to avoid
further inducing synchronization with other classes.
Whether this assignment problem can be partitioned
(according to the class conflict topology) is still to be
analysed.

7 Related Work

This paper is at the intersection of two areas of research:
scheduling and state machine replication.

7.1 Scheduling

The area of scheduling has been active for several
decades, with a rich body of contributions. According to
[23]], one classification of scheduling algorithms regards a
priori knowledge of the complete instance (i.e., set of jobs
to schedule): while with offline algorithms scheduling de-
cisions are made based on the knowledge of the entire in-
put instance that is to be scheduled, with online algorithms
scheduling decisions are taken while jobs arrive. Online
scheduling may be further considered stochastic or deter-
ministic. The first arises when problem variables such as
the release times of jobs and their processing times are as-
sumed from known distributions. Processing times may
also be correlated or independent. Deterministic schedul-
ing does not consider such information. Several algo-
rithms of interest are called nonclairvoyant in the sense
that further information about the behavior of jobs (such
as their processing times) are not known even upon their

arrival (but only after completion). Another known classi-
fication is whether the scheduling is real-time or not. The
primary concern of real-time scheduling is to meet hard
deadline application constraints, that have to be clearly
stated, while non-real-time have no such constraints.

In this context, our scheduling problem can be clas-
sified as online, deterministic (non-stochastic), and non-
realtime. Moreover, our scheduling problem imposes de-
pendencies among jobs that have to be respected. This
aspect has also been regarded in the scheduling literature,
where we can find early discussions on how to process
jobs whose interdependencies assume the topology of a
directed acyclic graph, which is also the case here. How-
ever, as far as we could survey, there is no discussion
in the scheduling literature on the costs or techniques to
detect and represent dependencies among jobs (i.e., the
job dependency graph is typically given). Also, there is
no discussion on synchronization costs to enforce job de-
pendencies upon execution. While this is valid to several
scheduling problems, these aspects matter when schedul-
ing computational jobs. This is important in our work, as
well as in related work in the area of parallel approaches to
state machine replication. In modern computational sys-
tems, due to high throughput and concurrency, the over-
head to manage dependencies gains in importance and
may become a bottleneck in the system.

7.2 State machine replication

State machine replication (SMR) is a well studied and
central approach to the provision of fault-tolerant ser-
vices. As current and emerging applications require both
high availability and performance, the seminal, sequential
design of SMR is challenged in a number of ways.

The sequential execution approach is followed by most
SMR systems to ensure deterministic execution and thus
replica consistency, but creates an important bottleneck
for applications with increasing throughput demands. The
proliferation of multi-core systems also calls for new de-
signs to allow concurrent execution. As it has been early
observed [29]], independent requests can be executed con-
currently in SMR. Moreover, previous works have shown
that many workloads are dominated by independent re-
quests, which justifies strategies for concurrent request
execution (e.g., [3} 22} 8} 20l 24, 25]]). As we briefly sur-
vey existing proposals, we observe that they differ in the
strategy and architecture to detect and handle conflicts on
the request processing path.

In [20], the authors present CBASE, a parallel SMR
where replicas are augmented with a deterministic sched-
uler. Based on application semantics, the scheduler serial-
izes the execution of conflicting requests according to the
delivery order and dispatches non-conflicting requests to
be processed in parallel by a pool of worker threads. Con-

12

flict detection is done at the replica side, based on pair-
wise comparison of requests in different levels of detail.
Requests are then organized in a dependency graph and
processed as soon as possible (i.e., whenever dependen-
cies have been executed). CBASE is an example of late
scheduling and studied in detail in the previous sections.

While CBASE centralizes the conflict detection and
handling at the scheduler, after ordering and before ex-
ecuting requests, a distinct approach is followed by
Rex [13]] and CRANE [7], which add complexity to the
execution phase. Instead of processing conflict infor-
mation to allow concurrent execution of independent re-
quests, and synchronize conflicting requests, both Rex
and CRANE solve the non-determinism due to concur-
rency during request execution. Rex logs dependencies
among requests during execution, based on shared vari-
ables locked by each request. This creates a trace of de-
pendencies which is proposed for agreement with other
follower replicas. After agreement replicas replay the ex-
ecution restricted to the trace of the first executing server.
CRANE [7] implements a parallel SMR and solves non-
determinism first by relying on Paxos and then enforcing
deterministic logical times across replicas that combined
with deterministic multi-threading [27] allow to determin-
istically order requests consistently among replicas.

While CBASE handles conflicts before execution, Rex
and CRANE during execution, Eve [19] handles conflicts
after execution. According to this approach, replicas opti-
mistically execute requests as they arrive and check after
execution if consistency is violated. In such case, syn-
chronization measures are taken to circumvent this prob-
lem. In Eve replicas speculatively execute batched com-
mands in parallel. After the execution of a batch, the ver-
ification stage checks the validity of replica’s state. If too
many replicas diverge, replicas roll back to the last veri-
fied state and re-execute the commands sequentially.

In Storyboard [18]], a forecasting mechanism predicts
the same ordered sequence of locks across replicas. While
forecasts are correct, requests can be executed in parallel.
If the forecast made by the predictor does not match the
execution path of a request, then the replica has to estab-
lish a deterministic execution order in cooperation with
the other replicas.

P-SMR [24] avoids a central parallelizer or scheduler,
to keep request execution free from additional overhead
and without need for a posteriori checking of the exe-
cution. This is achieved by mapping requests to differ-
ent multicast groups. Non-conflicting requests are sent
through different multiple multicast groups that partially
order requests across replicas. Requests are delivered by
multiple worker threads according to the multicast group.
This approach imposes a choice of destination group at
the client side, based on request information which is ap-
plication specific. Non-conflicting requests can be sent to

distinct groups, while conflicting ones are sent to the same
group(s). At replica side each worker thread is associated
to a multicast group and processes requests as they arrive.

More than proposing a strategy for parallel SMR, our
approach formalizes an abstraction to represent classes of
conflicts among requests. This abstraction allows to ex-
press the conflict semantics of an application with sim-
ple and common elements. Nodes are classes, edges
are conflicts and requests are grouped in disjoint classes.
This representation of conflicts and their interdependen-
cies could be used in other contexts. For example, in
CBASE [20] to improve the request conflict checking or
in P-SMR [24] to help the decision at client side of which
multicast group to use.

8 Conclusions

This paper reports on our efforts to increase the per-
formance of parallel state machine replication through a
scheduling approach that simplifies the work done by the
scheduler. The main idea is that by assigning requests to a
worker thread (or a set of them) prior to their ordering, the
scheduler is less likely to become a performance bottle-
neck. This work also proposed an optimization model for
efficiently mapping of request classes to worker threads.
A comprehensive set of experiments showed that early
scheduling improves the overall system performance.

It is important to observe that the early scheduler does
not provide the best degree of concurrency, but since deci-
sions are simple and fast it outperforms other approaches
that need a more complex processing to allow more par-
allelism in the execution. The existence (or not) of an
optimization model that combines early scheduling and
unrestricted concurrency is an open problem.

References

[1] E. Alchieri, F. Dotti, O. M. Mendizabal, and F. Pe-
done. Reconfiguring parallel state machine replica-
tion. In Symposium on Reliable Distributed Systems,
2017.

[2] A. Bessani, J. Sousa, and E. Alchieri. State ma-
chine replication for the masses with BFT-SMaRt.
In IEEE/IFIP International Conference on Depend-

able Systems and Networks, 2014.

[3] C. E. Bezerra, F. Pedone, and R. V. Renesse. Scal-
able state-machine replication. In IEEE/IFIP In-
ternational Conference on Dependable Systems and

Networks, 2014.
[4]

M. Burrows. The chubby lock service for loosely
coupled distributed systems. In Proceedings of the

13

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

7th Symposium on Operating Systems Design and
Implementation, 2006.

R. H. Byrd, J. Nocedal, and R. A. Waltz. Kanitro:
An integrated package for nonlinear optimization.
In Large Scale Nonlinear Optimization, 2006, pages
35-59. Springer Verlag, 2006.

T. D. Chandra and S. Toueg. Unreliable failure de-
tectors for reliable distributed systems. Journal of
ACM, 43(2):225-267, 1996.

H. Cui, R. Gu, C. Liu, T. Chen, and J. Yang. Paxos
made transparent. In ACM Symposium on Operating
Systems Principles, 2015.

D. da Silva Boger, J. da Silva Fraga, and E. Alchieri.
Reconfigurable scalable state machine replication.
In Latin-American Symposium on Dependable Com-
puting, 2016.

X. Défago, A. Schiper, and P. Urban. Total order
broadcast and multicast algorithms: Taxonomy and
survey. ACM Computing Surveys, 36(4):372-421,
Dec. 2004.

M. J. Fischer, N. A. Lynch, and M. S. Paterson. Im-
possibility of distributed consensus with one faulty
process. Journal of the ACM, 32(2):374-382, Apr.
1985.

R. Fourer, D. Gay, and B. Kernighan. AMPL:
A Modeling Language for Mathematical Program-
ming. Scientific Press, 1993.

L. Glendenning, I. Beschastnikh, A. Krishnamurthy,
and T. Anderson. Scalable consistency in scatter. In
Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles, 2011.

Z. Guo, C. Hong, M. Yang, L. Zhou, L. Zhuang, and
D. Zhou. Rex: Replication at the speed of multi-
core. In European Conference on Computer Sys-
tems, 2014.

V. Hadzilacos and S. Toueg. Fault-tolerant broad-
casts and related problems. In S. Mullender,
editor, Distributed Systems, pages 97-145. ACM
Press/Addison-Wesley Publishing Co., New York,
NY, USA, 1993.

M. Herlihy and J. M. Wing. Linearizability: A
correctness condition for concurrent objects. ACM
Transactions on Programing Languages and Sys-
tems, 12(3):463—492, July 1990.

J.D.J. C. Corbett and M. E. et al. Spanner: Google’s
globally distributed database. In Prooceedings of the

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

10th Symposium on Operating Systems Design and
Implementation, 2012.

N. D. Kallimanis and E. Kanellou. Wait-Free Con-
current Graph Objects with Dynamic Traversals. In
OPODIS, 2016.

R. Kapitza, M. Schunter, C. Cachin, K. Stengel,
and T. Distler. Storyboard: Optimistic determinis-
tic multithreading. In Workshop on Hot Topics in
System Dependability, 2010.

M. Kapritsos, Y. Wang, V. Quema, A. Clement,
L. Alvisi, and M. Dahlin. All about Eve: execute-
verify replication for multi-core servers. In Sympo-
sium on Operating Systems Design and Implementa-
tion, 2012.

R. Kotla and M. Dahlin. High throughput byzan-
tine fault tolerance. In IEEE/IFIP Int. Conference
on Dependable Systems and Networks, 2004.

L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the
ACM, 21(7):558-565, 1978.

L. H. Le, C. E. Bezerra, and F. Pedone. Dynamic
scalable state machine replication. In IEEE/IFIP In-
ternational Conference on Dependable Systems and
Networks, 2016.

J. Leung, L. Kelly, and J. H. Anderson. Handbook of
Scheduling: Algorithms, Models, and Performance
Analysis. CRC Press, Inc., Boca Raton, FL, USA,
2004.

P.J. Marandi, C. E. Bezerra, and F. Pedone. Rethink-
ing state-machine replication for parallelism. In
IEEE International Conference on Distributed Com-
puting Systems, 2014.

P. J. Marandi and F. Pedone. Optimistic parallel
state-machine replication. In IEEE Int. Symposium
on Reliable Distributed Systems, 2014.

O. M. Mendizabal, R. T. S. Moura, F. L. Dotti, and
F. Pedone. Efficient and deterministic scheduling for
parallel state machine replication. In /EEE Inter-
national Parallel & Distributed Processing Sympo-
sium, 2017.

M. Olszewski, J. Ansel, and S. Amarasinghe.
Kendo: efficient deterministic multithreading in
software. ACM Sigplan Notices, 44(3):97-108,
2009.

S. Peri, M. Sa, and N. Singhal. Maintaining acyclic-
ity of concurrent graphs. CoRR, 2016.

14

[29] F. B. Schneider. Implementing fault-tolerant service
using the state machine aproach: A tutorial. ACM
Computing Surveys, 22(4):299-319, Dec. 1990.

A - Appendix - Correctness

We argue that any mapping that follows the rules pre-
sented in § [4.4] generates correct executions. We substan-
tiate our claim with a case analysis, starting with classes
without external conflicts.

1. Class c has no internal and no external conflicts.
Then any request r € c is independent of any other
requests and can be dispatched to the input queue of
any thread (assigned to c¢). According to R.1, such a
thread exists. According to line 6 of Algorithm 2] re-
quests are dequeued in FIFO order. Since the class is
Cnec, lines 15-16 execute the request without further
synchronizing with other threads.

2. Class c has internal conflicts but no external con-
flicts. Then, by rule R.2, request r € cis scheduled to
be executed in all threads associated to c. According
to Algorithm [I] requests are enqueued to threads in
the order they are delivered. According to Algorithm
E], lines 814, these threads synchronize to execute r,
i.e., conflicting requests are executed respecting the
delivery order.

Now we consider two conflicting classes.

3. Class c1 has no internal conflicts, but conflicts with
co. In such a case, by rule R.3, one of the classes
must be sequential. Without loss of generality, as-
sume c» is sequential and c; is concurrent. Since (i)
the scheduler handles one request at a time (see Al-
gorithm I} line 3); (ii) it dispatches the request to all
threads of cy (see lines 5-6); (iii) threads synchro-
nize to execute (as already discussed in case[2); and
(iv) the threads that implement c; are contained in
the set of threads that implement co (from R.4), it
follows that every request from ¢; is executed before
or after any co’s request, according to the delivery
order. Due to the total order of atomic broadcast, all
replicas impose the same order among c;’s and c2’s
requests. Notice that this holds even though requests
in ¢; are concurrent.

4. Classes c1 and co have internal conflicts and conflict
with each other. According to restriction R.5, these
classes have at least one common thread ¢,. As in
Algorithm [2] lines 5-14: (i) the input queue of ¢,
has requests from both classes preserving the deliv-
ery order; (ii) according to R.2 and lines 7-14, ¢,
will synchronize with all threads implementing c; to

execute ¢ ’s requests and with all threads implement-
ing co to execute co’s requests. This implies that ¢,
imposes c1’s and co’s requests to be executed in the
replica sequentially, according to their delivery oder.
Due to the total order of atomic broadcast, all repli-
cas impose the same order of c¢;’s and co’s requests.

Now we generalize to consider a system with an arbi-
trary request classes definition. From Def. [2] each request
is associated to one class c only.

Let c be a concurrent class that conflicts with a num-
ber of other classes, the mapping imposes that all other
classes are sequential (R.3) and include c’s threads (R.4).
As already discussed in case [3| ¢’s requests are ordered
w.r.t. requests from each of the other classes.

Let ¢ be a sequential class that conflicts with a number
of other classes. The mapping states that each of these
conflicting classes may be both sequential or concurrent
(R.3). From cases[3|and[d] requests from different classes,
respectively concurrent and sequential, are processed ac-
cording to the delivery order w.r.t. ¢’s requests.

Since (i) the delivery order has no dependency cycles
(i.e., arequest r,, can only depend on previously enqueued
requests 7,,, m < n); (i) the request queue of each of the
worker threads preserves this order; and (iii) each thread
processes its requests sequentially, then request depen-
dencies among worker threads is acyclic. With this it is
always possible to find a lowest element that does not de-
pend on any other to be executed, and there is no dead-
lock.

We now show that any execution of early scheduling
ensures linearizability. From §2] an execution is lineariz-
able if there is a way to reorder the client requests in a
sequence that (i) respects the semantics of the requests, as
defined in their sequential specifications, and (ii) respects
the real-time ordering of requests across all clients.

(i.a) Consider two independent requests r, and 7. The
execution of one does not affect the other and thus they
can be executed in any relative order. As already dis-
cussed (cases [I] and), either 7, and r, belong to a
same concurrent class or they belong to different non-
conflicting classes. In either case, these requests will
be scheduled to execute without any synchronization be-
tween them.

(i.b) Consider two dependent requests r, and 7,. As
already discussed, either r, and r, belong to a same in-
ternally conflicting class or they belong to different, con-
flicting classes. In any of those, there are common threads
that synchronize to serialize the execution of the requests
according to the order provided by the atomic broadcast.
Thus, the execution is sequential and respects the order
provided by the atomic broadcast across replicas. Since
their execution is sequential, their semantics is satisfied.
The order across replicas ensures consistent states.

15

(i1) Concerning the real-time constraints among r, and
ry, consider r, precedes r,, i.e. 1, finishes before r,
starts. Since before 7, executes it must have been broad-
cast, this means that r, was delivered before r,. There-
fore the delivery order satisfies the real-time constraints
among the requests.

	1 Introduction
	2 System model and consistency
	3 Background
	3.1 The notion of conflict
	3.2 Late scheduling
	3.3 Early scheduling

	4 Parallelism with request classes
	4.1 Classes of requests
	4.2 Applications and request classes
	4.3 Replica execution model
	4.4 Mapping classes to worker threads

	5 Optimizing scheduling
	5.1 The optimization model

	6 Experimental evaluation
	6.1 Environment
	6.2 Application
	6.3 Goals of the evaluation
	6.4 Single-sharded systems
	6.5 Optimizing multi-sharded systems
	6.6 Multi-sharded systems
	6.7 Skewed workloads
	6.8 Lessons learned

	7 Related Work
	7.1 Scheduling
	7.2 State machine replication

	8 Conclusions

