
I Heard It through the Firewall: Exploiting Cloud Management
Services as an Information Leakage Channel
Hyunwook Baek

∗

baekhw@cs.utah.edu

University of Utah

Salt Lake City, UT, USA

Eric Eide

eeide@cs.utah.edu

University of Utah

Salt Lake City, UT, USA

Robert Ricci

ricci@cs.utah.edu

University of Utah

Salt Lake City, UT, USA

Jacobus Van der Merwe

kobus@cs.utah.edu

University of Utah

Salt Lake City, UT, USA

ABSTRACT

Though there has been much study of information leakage chan-

nels exploiting shared hardware resources (memory, cache, and

disk) in cloud environments, there has been less study of the ex-

ploitability of shared software resources. In this paper, we analyze

the exploitability of cloud networking services (which are shared

among cloud tenants) and introduce a practical method for build-

ing information leakage channels by monitoring workloads on the

cloud networking services through the virtual firewall. We also

demonstrate the practicality of this attack by implementing two

different covert channels in OpenStack as well as a new class of

side channels that can eavesdrop on infrastructure-level events.

By utilizing a Long Short-Term Memory (LSTM) neural network

model, our side channel attack could detect infrastructure level VM

creation/termination events with 93.3% accuracy.

CCS CONCEPTS

• Security and privacy → Distributed systems security; Fire-

walls; •Computer systems organization→Cloud computing;

• Networks → Cloud computing;

KEYWORDS

cloud management, cloud security, side channel, OpenStack

1 INTRODUCTION

Resource sharing is a fundamental part of cloud computing. By mul-

tiplexing virtual resources (e.g., virtual machines, virtual networks,

virtual firewalls, etc.) across an infrastructure, a cloud provider max-

imizes resource utilization of the infrastructure and offers cloud

users flexible scaling of virtual environments with minimal costs.

∗
Currently at Google. Work done at the University of Utah.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6011-1/18/10. . . $15.00

https://doi.org/10.1145/3267809.3267843

Figure 1: Resource sharing of two requests

However, shared resources also cause interference among cloud

tenants and can even be exploited as information leakage channels

by malicious users to make critical security breaches. For example,

if an attacker’s virtual machine (VM) can be successfully placed in a

physical machine hosting victim VMs, the attacker VM can exploit

such information leakage channels to detect if it is co-resident with

a victim [17, 21, 26], to degrade the performance of a victim [20], or

to break the virtual isolation and steal confidential information from

compromised and non-compromised victims [14, 22, 24, 25, 27–29].

These side/covert-channel attacks are still being actively studied

and becoming more feasible and practical.

The underlying mechanisms exploited by the previously studied

information leakage channels were mostly limited to hardware

architecture-level mechanisms managing a specific set of hard-

ware resources: CPU, L2/L3 caches, memory, and network devices.

However, under the hood of a cloud platform, cloud tenants share

resources not only at the hardware level but also at the software

level: the processes, threads, kernel modules, and networks that

361

https://doi.org/10.1145/3267809.3267843
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3267809.3267843&domain=pdf&date_stamp=2018-10-11

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA Hyunwook Baek, Eric Eide, Robert Ricci, and Jacobus Van der Merwe

form cloud management systems. Especially in cloud management

planes, it is commonplace for a single software instance to process

multiple requests from different tenants, both at the central cloud

controllers and at the distributed cloud management components.

For instance, for two co-resident VMs, if each of their users makes

a request to connect each instantiated VM connected to a virtual

network, the two requests will go through the same virtual network

management software instances such as a local cloud management

service, a local OpenVSwitch service, and a netfilter kernel module,

as illustrated in Figure 1. More importantly, these requests may

share some parts of their execution paths as illustrated in steps 5,

6, and 7 of Figure 1 (e.g., due to batch-processing mechanisms for

performance optimization). Therefore, the processing times of the

two requests may mutually influence each other.

Our key insight is that if a user can keep track of the processing

times of his/her own infrastructure-level requests, the user can

obtain footprints of infrastructure-level information—e.g., virtual

firewall update times or start/end times of other users’ VMs. Since

this type of information is not obtainable by previously known side

channels, the potential impact of this new type of side channel can

be significant.

It is challenging to monitor the infrastructure-level activities

from a cloud user’s side because a user does not have visibility into

the cloud infrastructure-level events. One may wonder if the user

can utilize the data provided by cloud providers such as APIs for the

current virtual resources or event logs [1]. Though it might be pos-

sible for some cases, resource-state information offered by the cloud

providers is not always based on the actual event times at the edge,

so the states of virtual resources provided by the cloud provider

may not be consistent with their actual states at the edge [5].

In this paper, we introduce a novel technique to exploit cloud

networking services (CNS) as an information leakage channel. We

manipulate the timing of infrastructure events by requesting, via

the cloud provider’s API, specific types of modifications to a ten-

ant’s virtual firewall rules (often called “Security Groups”). We

detect these effects using specially crafted probe packets that mon-

itor changes to firewall state. To demonstrate the utility of this

approach, we implement two different classes of CNS-based covert

channels for communication between otherwise-isolated tenants

and an Infrastructure Event Tracker by exploiting the CNS as a side

channel in OpenStack. By deploying a deep neural network model

utilizing Long Short-TermMemory (LSTM), the infrastructure event

snooper detects VM creation/termination events in its host with

93.3% accuracy and predicts their numbers of virtual interfaces with

83.1% accuracy.

To summarize, our contributions include the following:

• We illustrate that the software architecture processing re-

quests from different tenants is exploitable as an information leak-

age channel through a measurement study in OpenStack’s network

management stack. To the best of our knowledge, this is the first

work that shows the exploitability of shared software resources in

cloud management planes as an information leakage channel (§3).

• We devise a novel CNS monitoring mechanism to exploit CNS

as an information leakage channel (§4).

• We demonstrate the exploitability of the cloud management

services by implementing two different CNS-based covert channels

between two isolated VMs (§5.1, §5.2).

• We demonstrate a proof-of-concept of a CNS-based side chan-

nel by implementing an infrastructure event snooper to eavesdrop

on infrastructure-level events (§5.3).

• We discuss mitigation strategies for these attacks (§7).

2 BACKGROUND

In this section, we briefly introduce the internal architecture of

OpenStack to show the fundamental mechanism of the CNS-based

information leakage channel.

In OpenStack, a VM has a virtual firewall, which consists of a

list of rules specified in the security groups that the VM belongs to.

The “security group rules” of a security group are instantiated into

firewall rules when the security group is applied to a specific VM.

OpenStack implements the virtual firewall using Linux Iptables in

each host machine. Specifically, in each host machine, there is an

OpenStack component called Neutron-OpenVSwitch-agent that is

a key CNS component managing most of the host-side network

resources, including the iptables. When a user requests the appli-

cation of a security group to a VM, the cloud controller sends this

request to the machine hosting the VM, and the agent in the host

retrieves the request and correspondingly updates the iptables.

The main part of the Neutron-OpenVSwitch-agent is an infinite

loop that processes RPC requests. The agent does not immediately

process a request when the request is received. Instead, it collects

requests and periodically iterates over the RPC loop to process the

collected requests at once, which is a general strategy for service-

oriented architectures [8] to improve throughput and end-to-end

latency [7]. The loop iteration period can be configured by changing

the value of the variable polling_interval, for which the default

value is two seconds. (In the rest of this paper, we will assume

polling_interval is set to be two seconds.) However, this variable
does not guarantee that the RPC loop takes exactly two seconds:

instead, the system guarantees that each iteration takes at least

two seconds. This is internally implemented by making the process

sleep at the end of each iteration if the iteration took less than two

seconds, as shown in the following code:

while True:
start = now()
... # process the enqueued tasks
elapsed = now() - start
if elapsed < polling_interval:

sleep(polling_interval - elapsed)

Therefore, when a user makes a request to update a VM’s firewall,

the actual update of the corresponding iptables is unlikely to happen

immediately. If the request arrives just before the next iteration

starts, the corresponding iptables rule will be created very soon, but

it may take a very long time if the previous iteration is not finished.

Naturally, if two or more users make requests within the same

period and their VMs are hosted by the same physical machine,

the requests will be processed together as illustrated in Figure 1,

and the latency of the requests will be influenced by each other.

Under this situation, if a VM can know the execution duration of

the current iteration (i.e., elapsed in the code above
1
), it can detect

1
To avoid confusion, in the rest of this paper, we use the term elapsed time only to

refer the value of the variable elapsed.

362

I Heard It through the Firewall SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

Figure 2: Time line of the RPC loop and Epochs. before/
after refer the elapsed times before/after the iptables are

updated. Note that the k-th Epoch is the Epoch between the

k − 1-th iteration and the k-th iteration.

when that duration is affected by a high request load. Of course,

in reality, a VM cannot directly know the execution durations of

the process running in the host. However, as explained earlier,

since updating the VM’s firewall also happens at some point of the

iteration, if the VM can know an interval between two consecutive

firewall-updating events, the VM may utilize this as an alternative

to the execution duration of the process. We call this interval from

an iptables update to the very next iptables update an “Epoch.” As

illustrated in Figure 2, an Epoch may or may not be close to the

actual execution duration.

In Section 3, we assess the magnitude of impact of user requests

on the execution duration of the shared RPC loop and show the

feasibility of exploiting Epoch as an information leakage channel.

3 MEASUREMENT STUDY

Since every request received by the Neutron-OpenVSwitch-agent

is processed at some point of the RPC loop, it is obvious that every

single request has some impact on the execution duration of an

iteration of the RPC loop. However, the impacts of requests may

appear in various patterns of Epochs as shown in Figure 3. For

example, in the case of the second iteration in the figure, the request

increased the elapsed time after updating the iptables, but was

counter-balanced by the sleep time, so the impact could not be

observed between Epochs. In contrast, in the case of the seventh

iteration, the request increased the elapsed time before updating

the iptables, and it made Epochs oscillate noticeably. In addition,

as one can see from the next three requests (the 12th, 17th, and

22nd iterations), the impacts of requests on Epochs may appear

differently from the impacts on the total execution duration of

the iterations. The impact of a request on the elapsed time before

updating the iptables can influence the size of the current Epoch,

but the impact on the elapsed time after updating may influence

on the size of the next Epoch only if the total execution time of the

current iteration exceeds the polling_interval.
In this section, through measurement taken in a cloud running

OpenStack Mitaka, we show the impact of requests and their combi-

nations on the elapsed times before and after updating the iptables.

To measure the actual execution duration of the RPC loop, we mod-

ified the source code of Neutron-OpenVSwitch-agent and Iptables

4
Total Elapsed Sleep After Before Epoch

2

3

 (
se

c)

1

2

Ti
m

e

0
2 7 12 17 22

I d f RPC L It tiIndex of RPC Loop Iteration

Figure 3: Various impacts of requests on Epochs. Before and
After refer to the elapsed time before and after the iptables

are updated. Note that Before and After show up only if the

iptables are updated in that iteration. Total is the sum of

Elapsed and Sleep.

to print timestamps at several points in the RPC loop.
2
We first

analyze the general impact of different user-level requests on the

elapsed times in Section 3.1. In Section 3.2, we introduce some

specific ways to permanently increase the elapsed times.

3.1 One-time Impact

We first measured the change in the elapsed times as we made

different requests to the shared service. In particular, we measured

the elapsed times for four different firewall-related requests: adding

a rule, deleting a rule, attaching a security group, and detaching a

security group. For the case of adding and deleting a rule, we first

made a security group for a VM and measured the time taken to add

a rule to (or delete a rule from) the group. Note that, since the Epoch

can be properly monitored by a VM only if the VM makes some

changes in its own firewall at every iteration, understanding elapsed

times of these firewall-related requests is important to build CNS-

based information leakage channels. For the case of attaching and

detaching a group, we made a group with one rule and measured

the time for making the VM be attached to (or detached from) the

group. One of the interesting features of these requests is that the

adding-a-rule request and the attaching-a-group request yield the

same result in the iptables: i.e., for both cases, the iptables chain for

the VM will gain a new rule. Likewise, the deleting-a-rule request

and the detaching-a-group request also have the same result.

The first four bars in Figure 4 show the elapsed times for the

four different requests made by the receiver VM. (The sleep time is

not included.) For reference, without any requests, the elapsed time

was only around 130 milliseconds. As one can see from the figure,

each iteration took around 1,200 milliseconds for adding/deleting a

rule, but the elapsed time increased by 1,200 milliseconds for attach-

ing/detaching a group (400milliseconds for before and 800millisec-

onds for after). We also measured the change in elapsed time when

multiple requests are processed together within the same iteration.

Making two addition/deletion requests during the same Epoch was

not noticeably different from making a single request, as shown in

2
This modification helped our measurement study, but is not necessary to exploit the

side channel “in the wild.”

363

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA Hyunwook Baek, Eric Eide, Robert Ricci, and Jacobus Van der Merwe

Figure 4: Average and standard deviation of elapsed time for

requests (add, delete, attach, and detach) and their combina-

tions. Each experiment was repeated 100 times.

2

3

(s
e
c)

Total Elapsed Sleep After Before

0

1

50 60 70 80 90 100

Ti
m

e
 (

Index of RPC Loop Iteration

Figure 5: Execution durations of the RPC loop iterations

while add+atch and del+dtch requests are arriving. add+atch
and del+dtch requests were made repeatedly one after an-

other.

the next three bars in Figure 4. Likewise, when we combined one

addition/deletion request with one attachment/detachment request,

the elapsed time was similar to a single attachment/detachment re-

quest. However, when two security group attachment/detachment

requests were made in the same Epoch, the elapsed time was in-

creased by 1,100 milliseconds (250 milliseconds before and 850

milliseconds after). From this result, we can see that in order to

monitor other tenants’ activity (reading from the side channel), ad-

dition/deletion requests are more suitable, since their effects are

not cumulative with other activity. Likewise, in order tomanipulate

the elapsed time during Epochs (writing to the side channel), at-

tachment/detachment requests are more useful, since their impact

is greater and the effects of each individual request are still visible

even when combined with other requests.

However, the result also shows potential reliability problems

when using attach/detach requests to manipulate Epoch lengths,

because they showed high variance when combined with add/delete

requests (Figure 4 add/atch, add/dtch, del/atch and del/dtch).
We analyzed this problem by examining the functions invoked in-

ternally in the agent at each iteration. We found that those requests

showed high variance in elapsed times not because the elapsed

time of the requests themselves are erratic, but because the agent

sometimes postponed a portion of the work to the next iteration.

One can also see this effect in Figure 5, which shows the actual

Figure 6: Average and standard deviation (over 100 runs) of

elapsed time for add and del requests as the number of secu-

rity group rules is increased.

execution durations of the RPC loop while we were measuring the

elapsed times for add/atch and del/atch. Here, at the 78th and

81st iterations, one can see that the requests arrived during those

iterations (from the fact that the iptables were updated), but the

time-consuming tasks were postponed to the next iterations; the

execution durations of the 79th and 82nd iterations were increased

instead. Though this happens less frequently as we combine more

requests, we could not find a way to completely remove this phe-

nomenon, and thus have to account for it in the construction of our

side channel.

We also found the elapsed time for requests can be affected

by rules that are already in place. For the add/delete requests, as

we increased the number of existing rules in the security group

to/from which a rule would be added/deleted, the elapsed time

for the requests exponentially increased (linearly in the before
period but exponentially after). Figure 6 shows the result. We also

changed the number of rules present in the security groups targeted

for attach/detach requests. Surprisingly, for the detaching-a-group

request, the elapsed time saw little influence from the number of

rules (as shown in the right side of Figure 7). For group-attach

requests, only the elapsed time before updating the iptables was
increased as the number of rules in the group increases, and that

time only grows linearly.

From these results, we gained a few insights into exploiting

Epochs as an information leakage channel. First, a VMmay dynami-

cally manipulate Epochs with various combinations of requests and

rules. Second, a VM may extract infrastructure-level information

such as types of events (i.e., requests) and the environmental setup

regarding the event (e.g., the number of security group rules).

3.2 Long-term Impact

While measuring the impact of the number of rules on Epochs, we

found another interesting way to increase the size of Epochs: by

giving a VM a large number of rules in a specific way, we could

increase the elapsed times for requests against other co-resident

VMs belonging to different tenants. We originally observed this

phenomenon in an older version OpenStack, Icehouse. In Icehouse,

if we increased the number of security group rules for a VM, the

elapsed time for any firewall-related requests to the same host

were increased. In a newer version of OpenStack, Mitaka, it seemed

that this phenomenon had disappeared. Even in Mitaka, however,

when we attached a security group with many rules and added one

364

I Heard It through the Firewall SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

Figure 7: Average and standard deviation (over 100 runs) of

elapsed time for atch and dtch requests as the number of

security group rules is increased.

Figure 8: Average and standard deviation (over 100 runs)

of elapsed time for add requests as the number of security

group rules used by the long-term impact request increases.

additional rule to the group, it could increase the elapsed time as

we saw in Icehouse. Figure 8 shows the measurement result for

adding a rule in Mitaka. Other requests (deleting, attaching, and

detaching) also showed identical results.

According to our source code analysis of OpenStack Mitaka, this

phenomenon is due to poorly optimized code. When a new rule

is added to an existing security group, the Neutron-OpenVSwitch-

agent caches all rules in the group in a list. Later, when there is a

request, the cached list is unnecessarily retrieved, and this increases

execution duration.

Though this is obviously a bug that should be fixed, it is a very

useful feature for attackers, and it illustrates that unless cloud

software systems are specifically built to resist observable timing

effects, they can be powerful tools for side channels. For instance,

if the polling_interval is set to be very long, it becomes hard to

detect some requests impacting on elapsed time after the iptables

update (as we saw from the case of the second iteration in Figure 3).

In this case, if the attacker increases the overall elapsed time to

as much as polling_interval, there would be no sleep time for

any iteration and the signal from those requests becomes clearer.

In addition, the attacker may exploit this “feature” to intentionally

make the processing time for other requests slow. The attacker

does not even need to repeatedly make requests to conduct these

attacks—all the attacker needs to do is to attach a security group

with a large number of rules and add one more rule to it.

Figure 9: Monitoring update times of a virtual firewall

4 MONITORING EPOCHS

In this section, we present our techniques to measure the durations

of Epochs. Since the durations of Epochs inherently tell the execu-

tion times of the shared agent, it can be used as a side channel for

the infrastructure-level events in the host.

Figure 9 illustrates a basic architecture for monitoring the update

times of virtual firewalls, with which the durations of Epochs can

be trivially calculated. When a cloud controller receives a request

to add a firewall rule allowing a probing packet p, it forwards the

request to the local agent. The agent lets the iptables add the rule

correspondingly, and the rule is finally added to the iptables (at

time t). Meanwhile, a series of probing packets p is being sent to the

monitoring VM and, naturally, only the probing packets arriving at

the iptables after t can be successfully sent to the VM. Therefore,

the VM can estimate the update time of the iptables from the arrival

times of probe packets. Of course, there are still several questions

to be answered for this mechanism to work:

• When and how frequently should the requests and probe

packets be sent?

• Who sends the probe packets and who does the rule-updating

requests?

• What kind of packets/rules can be used for probing?

Since the answers vary depending on the environment and the

goal, we discuss different design options in the following subsec-

tions.

4.1 Update+Probe Technique

As we saw in Section 3, if a VM can know the time duration

of an Epoch, it can exploit this information to guess the cloud

management-level events that happened during the Epoch or to

send/receive a signal to co-resident VMs by intentionally making

a request to influence the Epoch. A precise measurement of fire-

wall update times is the key for this technique. In Section 3, we

could directly measure the update time, since we were operating

at the level of the cloud provider. Yet from a cloud user’s perspec-

tive (within an unprivileged VM), we can only “guess” the update

time—“somewhere after a firewall update request left my node.”

The open-ended probabilistic range of the update time can be

narrowed down if the VM can (1) generate a set of packets that

exclusively match the updated rule and (2) observe the exact time

when these packets start to be successfully passed through the

firewall. For example, if a VM had no rule to allow any ICMP packet

in, and if it received an ICMP packet (at t2) after it made a request

to add an ingress rule for ICMP packets (at t1), it can know there

365

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA Hyunwook Baek, Eric Eide, Robert Ricci, and Jacobus Van der Merwe

Figure 10: Time line of an Update+Probe step. t(p
j
i) refers

to the arrival time of j-th probe packet for the rule xi . tr eq (xi)
refers to the time when the VM sent the request for the rule

xi . tup (xi) refers to the update time of the iptables for the

requested rule xi . The prime sign means it is an estimated

value.

must have been an firewall update event between t1 and t2. Let
a probe packet pi be a packet that exclusively matches a rule xi .
Then, the closer to the actual update time the pi ’s firewall passing
time is, the tighter the upper bound of the update time estimation

the VM can get.

In practical terms, we can obtain such a tight upper bound by

continuously sending a series of probe packets (p1i . . .p
n
i) and pick-

ing the one that arrives first (say p
j
i). Furthermore, we can also

probabilistically tighten the lower bound of the update time by

estimating the arrival (and drop) time of the previous packet p
j−1
i .

Figure 10 summarizes the time line of this updating and probing

step, which we refer to as an Update+Probe step.

Recall that our goal is not just to know the update time of a fire-

wall rule but to perform continuous monitoring of Epochs. There-

fore, we should continuously repeat Update+Probe steps at least

once per iteration of the virtual networking service’s RPC loop. The

simplest way to do this is repeating Update+Probe every n sec-

onds, where n is smaller or equal to the minimum polling interval

of the RPC loop, as described in Algorithm 1. Here,GetNextRule()
is a function that returns a new rule that is disjoint from any ex-

isting rules; SendRequest() is a function that sends a firewall rule

update request to the cloud controller; MonitorFirstProbes() is a
function that monitors the arrival times of the target probe packets,

returning the first one that arrives (ignoring any subsequent ones,

which give us no more timing information); and ϵ is a parameter to

adjust the iteration period of Reqest(). (ϵ ≃ pollinд_interval − n
if the time spent for an iteration of Reqest() is negligible.)

Though it is harmless to perform Update+Probe more than

once per RPC loop iteration, doing so will increase the number of

API calls to the cloud controller and may increase the chance of

being detected or rate-limited by cloud administrators. Thus, an

ideal monitoring mechanism should perform an Update+Probe

step once per iteration of the RPC loop.

We can design an algorithm that performs Update+Probe ex-

actly once per RPC loop iteration by letting the nextUpdate+Probe

Algorithm 1 Iterative Update+Probe method

1: procedure Reqest(t)
2: while True do

3: rule← GetN extRule()
4: SendRequest (rule) ▷ non-blocking

5: SendProbes(rule) ▷ non-blocking

6: sleep(t)
7: Thread (Reqest, [poll inд_interval − ϵ]).star t ()
8: while True do

9: p ← Monitor F ir stProbe()
10: Repor tEvent (p)

Algorithm 2 Reactive Update+Probe method

1: do

2: rule← GetN extRule()
3: SendRequest (rule) ▷ non-blocking

4: SendProbes(rule) ▷ non-blocking

5: p ← Monitor F ir stProbe(rule)
6: Repor tEvent (p)
7: while True

Algorithm 3 n-Reactive Update+Probe method

1: procedure Reqest(t , n)
2: for i ∈ {1, . . . , n } do
3: rule← GetN extRule()
4: SendRequest (rule) ▷ non-blocking

5: SendProbes(rule) ▷ non-blocking

6: sleep(t)
7: rule← GetN extRule()
8: SendRequest (rule) ▷ non-blocking

9: SendProbes(rule) ▷ non-blocking

10: while True do

11: p ← Monitor F ir stProbe()
12: Repor tEvent (p)
13: if I sN ewEvent (p) then
14: Thread (Reqest, [poll inд_interval/n, n]).star t ()

start as soon as the updating event of the previous request is re-

ported, as described in Algorithm 2. We call this algorithm the

Reactive Update+Probe method.

The reactive Update+Probe method is based on the assumption

that the request of the next Update+Probe step arrives at the RPC

front end before the next iteration of the RPC loop begins. Accord-

ing to the measurement result shown in Section 3, the gap between

the iptables updating time of the current RPC loop iteration and

the start of the next RPC loop iteration was long enough (> 800ms

with the default polling interval setup) for a round-trip of an update

request. However, if the cloud controller is under a heavy load, the

round-trip time may increase, and the method may miss one or

more iptables update events and report a large single Epoch (that

actually consists of multiple Epochs). As a remedy to this problem,

we can modify the reactive Update+Probe algorithm to perform

the Update+Probe steps n times, with a gap of polling_interval/n
after the identification of iptables update, as shown in Algorithm 3.

Figure 11 illustrates a time line of the method.

366

I Heard It through the Firewall SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

Figure 11:n-ReactiveUpdate+Probemethod. tarr (xi) refers
to the time at which the request for the rule xi arrived at the

edge.

4.2 Deployment

In Section 4.1, we have assumed that the VM can send packets

through the firewall and observe if they are passed through. The

simplest way to do this is letting another VM (say a helper node)

send or receive the probe packets, though this can make precise

timing difficult. However, a helper node is not always necessary: in

many cases, the VM can send probe packets that pass through the

firewall and come back to itself. We call packets with this property

boomerang packets: we define a boomerang packet for a firewall

rule xi as an uniquely identifiable packet that (1) is sent by the

source node and (2) is delivered back to the source node (3) without

bypassing the firewall rule xi . In reality, there are various mecha-

nisms to generate boomerang packets that work in different net-

work environments. For instance, if a virtual gateway router of a

VM is allowed to forward packets through the interface that the

packets came from, the VM can manipulate the layer-3 address of

packets to generate boomerang packets without additional virtual

interfaces or helper nodes. Consider an ICMP boomerang packet as

an example. If we make a layer-3 boomerang packet with an ICMP

echo request header as follows:

<Egress Probe Packet>
srcMAC:A_MAC dstMAC:GW_MAC
srcIP:A_IP dstIP:A_IP proto:ICMP
type:8 code:0 id:123 seq:355

(where GW_MAC refers to the MAC address of the gateway), then the

gateway will forward this packet back to the source node after it

changes MAC addresses as follows:

<Ingress Probe Packet>
srcMAC:GW_MAC dstMAC:A_MAC
srcIP:A_IP dstIP:A_IP proto:ICMP
type:8 code:0 id:123 seq:355

This ingress probe packet does not bypass the ingress firewall,

because this does not match what the Connection Tracking System

(conntrack) [3] expects: the conntrack waits for the corresponding

ICMP echo reply. Therefore, as long as we do not send an ICMP

echo reply, the boomerang probe packet goes through the ingress-

firewall and is processed by the explicit rules; it may or may not be

Figure 12: Architecture of EpochMonitor

allowed through, depending on the rules that have been configured

in the security group. This feature allows one to utilize both the

ingress and egress rules for probing the iptables update time. In the

rest of this paper, we explain our work based on the single-interface

scenario with layer-3 ICMP boomerang packets. Further details

about boomerang packets are found in our technical report [4].

4.3 Practical Epoch Monitor

Figure 12 shows the architecture of our Epoch monitoring system,

called EpochMonitor. The EpochMonitor is designed as a stand-alone

system that can be applied to various environments including re-

stricted environments (e.g., monitoring with a single VM with a

single virtual interface). For a stand-alone system to monitor its

own Epochs, two conditions must be satisfied: (1) the monitoring

VM should be able to configure its own virtual firewalls, typically by

making API calls to the cloud infrastructure, and (2) the monitoring

VM should be able to generate probe packets that go through the

virtual firewall and come back to itself. In this paper, we will simply

assume the two conditions are met.
3

The EpochMonitor consists of five components: Epoch manager,

request sender, probe sender, probe monitor, and analyzer. The

Epoch manager orchestrates other modules to conduct the given

Epochmonitoring such as the iterativeUpdate+Probe and the reac-

tive Update+Probe algorithms. The request sender sends firewall

rule-updating requests through the cloud API. The probe sender

starts to generate a series of corresponding boomerang probes,

which can be monitored at the virtual interface of the VM. The

probe monitor keeps checking this virtual interface and reports

back to the Epoch manager once it has found a change of Epoch.

Once an Epoch change is detected, the Epoch manager immedi-

ately starts the next Epoch probing by repeating the previous steps,

3
For further discussion of the conditions and deployment environment, please see our

technical report [4].

367

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA Hyunwook Baek, Eric Eide, Robert Ricci, and Jacobus Van der Merwe

as we described in Algorithm 2. The analyzer receives collected

information from the Epoch manager, estimates every Epoch tran-

sition time, and exports the processed information. Note that, in

the iterative Update+Probe method, the request sender and the

probe sender do not need to be orchestrated by the Epoch manager

once they have started. This means we can place these components

outside of the system, in case the conditions for the stand-alone

monitoring are not met.

5 EXPLOITATION

To show the practicality of the CNS-based information leakage at-

tack, we implemented prototypes of two different covert channels

between isolated VMs: i.e., VMs that through cloud mechanisms

are supposed to be isolated so that communication is impossible.

The first is a classic covert channel between two VMs residing

in the same physical machine (§5.1). The second is a broadcast-

style covert channel, where the sender VM sends messages to mul-

tiple receiver VMs scattered across a data center (§5.2). In addi-

tion, we implemented an infrastructure event snooper that leverages

Epochs as a side channel for detecting VM creation and termination

events (§5.3).

Especially in a cloud environment, since many different role

players are involved, there can be various covert-channel attack

scenarios. One of the probable scenarios would be a covert channel

attack from an appliance seller. In cloud appliance markets [2, 16],

cloud users can purchase VM images from sellers. Once an appli-

ance user purchases an image, the cloud user can configure and

create an actual VM instance based on the image in his or her own

virtual data center. Since appliance sellers also want to protect their

software in the VMs, it is commonplace for sellers to prevent direct

access to the VMs through techniques such as allowing only SSH.

Under this environment, we can imagine a possible covert-channel

attack scenario: the image seller may try to obtain some sensitive

information in the user’s VM, based on the seller’s image, through

a covert-channel attack. Since the information is leaked through

a covert channel, the user cannot prevent this attack even if he or

she isolates the VM from the public network. In addition, since the

user cannot directly access the VM, it is not easy for the user to

determine if the VM leaks some sensitive information or not.

5.1 Single-node Covert Channel

ThreatModel:We assume that the sender and the receiver VMs are

co-resident in a physical machine, and the sender VM is completely

isolated from the external network so that it cannot directly leak

any confidential information through the network. We also assume

that the sender VM has access to the cloud API system and that it

has control over its own firewall rules through the API. Under this

setup, the sender and the receiver VMs can make use of a covert

channel based on the firewall to send a confidential message to the

receiver VM. Figure 13(a) illustrates the environmental setup of

this threat model.

Covert Channel Mechanism:We exploit the property of the

shared execution that any operation for one VM can influence the

execution time of operations for another VM for this covert channel.

To be more specific, the sender VM controls the durations of Epochs

by adjusting the amount of the load of the shared execution. The

message is encoded as a stream of bits. When the sender VM wants

to send a ‘1’ for the next Epoch, it makes firewall-related requests

that will be reflected during the next iptables update event. To

send a ‘0,’ it simply does nothing. Meanwhile, the receiver VM

keepsmonitoring the durations of Epochs using anyUpdate+Probe

method. In this way, the receiver can read a series of durations of

Epochs, which are either short for ‘0’ or long for ‘1.’

Note that the sender VM also needs to monitor the durations of

Epochs to time its sending of the firewall changemessages. Since the

sender needs to take action reactively to the iptables update event,

the reactive Update+Probe method is preferred to the iterative

Update+Probe for the sender VM.

Implementation: We have implemented a prototype of the

single-node covert channel for OpenStack Mitaka in Python. Since

both the sender and receiver VMs need to monitor the durations

of Epochs, both VMs used the EpochMonitor with add/delete-a-

rule requests. The sender additionally uses attach/detach-a-group

requests to send information on the channel. As we saw in Section 3,

there can be a task-postponing problem if we use add/delete requests

together with attach/detach requests. To address this, we have the

sender use two Epochs to send each bit: the sender sends the actual

bit in the first Epoch and is always idle in the second. Thus, the

receiver can get the bit either from the first Epoch or, if the task

was postponed, from the second. For the probes, we utilized ICMP

echo request boomerang packets with ingress rules.

When the receiver notices a change of Epoch, it decodes the

duration of the previous Epoch as one bit of the message. The

sender reacts to a change of Epoch by sending either an overhead-

introducing request or not depending on the next message bit. This

is implemented in the message sender module, which receives push

notifications from the EpochMonitor.

5.2 Multi-node Covert Channel

Threat Model: In contrast to the single-node scenario, we do not

assume the sender and the receiver necessarily co-reside for the

multi-node covert channel. We also do not assume that the sender

VM has control over its own firewall rules. Instead, we assume

that the sender VM has control over firewall rules for some other

VMs scattered across the data center. Of course, the sender VM is

also assumed to be isolated from the external network so that it

cannot send confidential messages directly to the receivers through

the network. In addition, we assume that the receiver VMs are co-

resident with one or more of the VMs whose firewalls are controlled

by the sender VM. Figure 13(b) illustrates this environment.

This scenario is suitable for a case where it is difficult or even

impossible for the receiver VM to co-reside with the sender: for

instance, a case where the sender VM is deployed as a “dedicated

instance.” As more cloud users are concerned with co-residency

attacks, cloud providers have started to support dedicated-instance

options, where an entire physical machine is dedicated to a specific

customer. Since the cost of dedicated instances is greater than that of

normal VMs, it is reasonable for cloud users to deploy only the VMs

that handle sensitive information as dedicated instances. Under this

restricted environment, the classic hardware-based covert channels

do not work. We will show that the sender can leak confidential

368

I Heard It through the Firewall SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

(a) Single-node Covert Channel (b) Multi-node Covert Channel

Figure 13: Covert channel setups. The color of each VM represents the tenant it belongs to. The medium VM in (b) is a VM

whose firewall is controlled by the sender VM.

6.0
Total Elapsed Sleep After Before Epoch

5.0
VM w/ 1
Interface

VM w/ 2
Interfaces

VM w/ 3
Interfaces

VM w/ 4
Interfaces

3 0

4.0

(s
e
c)

2.0

3.0

Ti
m

e
 (

1.0

2.0T

0.0
0 50 100 150 200

Index of RPC Loop Iteration

Figure 14: Signals of creating/terminating VMs in Epochs. We created and terminated eight VMs one-by-one and monitored

their impact on Epochs by running the EpochMonitor in a co-resident VM. The number of interfaces for each VM is indicated.

messages through the firewalls of other VMs that it controls as a

covert channel under this environment.

Covert Channel Mechanism: Under the given environment,

we should first consider the limitation that the sender VM is unable

to know whether messages are sent successfully. Since the firewall

update requests do not make any changes on the sender’s own VM’s

iptables, the sender is unable to “read” the signal on the channel.

Moreover, even if the effects of the requests were visible to the

sender, it is not meaningful for the sender VM to monitor its own

iptables update events because the updates are not synchronized

across hosts, meaning that the Epoch start times will be different

on the sender and receiver(s). Therefore, it is important for this

covert channel to send messages in a noise-tolerant way. In our

proof of concept, we simply assume the message can be safely

sent if each bit of the message is sent for n seconds repeatedly.

A future implementation could use forward error correction for

greater efficiency.

To send the same bit repeatedly for n seconds, we could reuse

the single-node covert channel mechanism. However, this would

require the sender to invoke many API calls when it sends a bit ‘1’:

i.e., the senderwould need tomake an overhead-introducing request

every second for n seconds. Instead, we use a different way to

influence the shared execution. In Section 3.2, we saw some requests

that can permanently increase or decrease the execution time of

the iptables update process. Therefore, the sender can exploit these

special requests to send either ‘1’ (by “permanently” increasing the

execution time) or ‘0’ (by “permanently” decreasing the execution

time) for as long as it needs. API requests are now only necessary

on the “edge” between transmitting a ‘0’ and a ‘1’ or vice versa.

The receiver uses the same monitoring mechanism as the previous

covert channel.

Implementation: As a proof of concept, we implemented this

multi-node covert channel for OpenStack Mitaka in Python. The

sender attaches or detaches a security group with a large number

of rules (e.g., 2,000) as its method of “permanently” increasing and

decreasing the execution time of iptables updates. The architecture

of the receiver is similar to the previous covert channel’s implemen-

tation except that it uses the iterative Update+Probe mechanism

and utilizes both the creation and deletion of rules.

5.3 Snooping on Infrastructure Events

Epoch as a Side Channel: Since the RPC loop processes most

network-related requests, infrastructure-level network changes

could leave their marks on Epoch times. This means that, if a VM

keeps monitoring such infrastructure-level activities through the

Epochs, and if it can distinguish different events from the Epochs, it

369

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA Hyunwook Baek, Eric Eide, Robert Ricci, and Jacobus Van der Merwe

would be possible to extract further infrastructure-level information

such as “the number of VMs the host is running” and “the sizes of secu-

rity groups attached to this host.” This would represent a meaningful

new class of side-channel attacks targeting infrastructure-level in-

formation, which can provide valuable information about the cloud

provider itself, and can potentially be used to improve other attack

vectors.

Based on this idea, we implemented a prototype of an infras-

tructure event snooper using the EpochMonitor in OpenStack. In

particular, we found that VM creation and termination events make

relatively strong signals on a sequence of Epochs as shown in

Figure 14. This is because VM creation and termination involve

virtual network-level changes in multiple network components.

For the same reason, we can also see that we may estimate “the

number of virtual interfaces of a created/terminated VM” through

this channel. Since cloud providers typically limit the number of

virtual interfaces for a VM by its flavor (i.e., the larger the VM is,

the more virtual interfaces it may have), this information could be

used as a good indicator to estimate the size of the VM as well.

Detecting Events: Since the same type of event causes a similar

pattern of sequences of Epochs, detecting an event from a sequence

of Epochs can be understood as a sequence classification problem.

We used a Long Short-Term Memory (LSTM) [12] model; LSTM is

a deep-learning approach well known for its good performance in

sequence classification problems [11, 13, 19]. To apply the LSTM

model, we used each subsequence of Epochs with a fixed window

size as a data point, and the label of each event was given to the

data point that covers all the Epochs influenced by the event and

has the longest Epoch at the center. For the current prototype, we

used a neural network consisting of four LSTM layers, and covered

nine different classes: Idle, Creating a VM with n interfaces, and

Terminating a VM with n interfaces (where n ∈ {1, 2, 3, 4}). Further
details about the experimental setup and the evaluation results are

presented in Section 6.4.

6 EVALUATION

In this section, we demonstrate the feasibility of our CNS-based

information leakage channel by presenting practical evaluation

results for both types of covert channels, as well as the infrastruc-

ture event snooper. For this evaluation, we deployed an OpenStack

Mitaka IaaS cloud in the Utah Emulab network testbed [23].

6.1 Accuracy of EpochMonitor
We first evaluated the accuracy of EpochMonitor’s estimation for

the size of Epochs. We ran two EpochMonitors in different VMs

concurrently and had both measure the sizes of Epochs while we

were generating arbitrary requests. We evaluated the accuracy

by comparing their results to the ground truth, which is directly

collected from the host machine’s firewall agent. The evaluation

result showed that the estimations of both VMs were very precise.

Across 460 Epochs measured, the first VM showed a root mean

squared error (RSME) of 684 microseconds, and the second showed

an RMSE of 649 microseconds. The maximum errors of the two VMs

were 1.54 milliseconds and 25.5 milliseconds, which is sufficient for

distinguishing different requests, which typically show more than

100 milliseconds of difference as described in Section 3.

6.2 Single-node Covert Channel

For this evaluation, we created two co-resident VMs: a sender and a

receiver belonging to different tenants. We had both the sender and

the receiver run EpochMonitor with the reactive Update+Probe

method. Both VMs used add/delete requests to monitor Epoch

lengths. The sender used attach/detach requests to send messages

by manipulating Epoch durations. As discussed in Section 5.1, to

properly handle the task-postponing problem, we used two Epochs

to send each bit. The sender sent the message “hello world” en-
coded in ASCII. Figure 15(a) shows the “hello” part of the result.

As one can see from the figure, the message was sent without

much noise. With a naive decoding method that simply interprets

any Epoch taking longer than 2.2 seconds as a bit ‘1,’ the receiver

had a 0% error rate. For a real-world deployment, more robust

error-handling strategies would be required since the environment

could be noisier. This could easily be accomplished through more

distinguishable patterns as we saw in Section 3 or through forward

error correction.

For the “hello world” message, the actual bandwidth of the

covert channel was 0.211 bits/second. Note that, since we sent ‘1’

bits using two Epochs, the best bandwidth for this covert channel is

0.25 b/s (in case the sender sends only ‘0’s). Though the bandwidth

can be further improved by utilizing more patterns and encoding

multiple bits in an Epoch, we believe the current bandwidth would

be enough for some use cases such as co-residency detection or

leaking cryptographic keys.

6.3 Multi-node Covert Channel

For the multi-node covert channel attack, we used three VMs. In

this case, the sender and receiver are on different hosts. The third

VM, used as an intermediary, is co-resident with the receiver. As in-

troduced in Section 5.2, the sender and intermediary VMs belong to

the same tenant, and the sender could update the firewall of the in-

termediary. The receiver belongs to a different tenant. The receiver

ran EpochMonitor with the reactive Update+Probe method and

issued add/delete requests, and the sender sent the string “hello
world” through the intermediary using long-term impact requests,

attachment and detachment of a security group with 2,500 rules.

The sender used 10 seconds to send each bit. Figure 15(b) shows

the “hello” part of the message as observed by the receiver.

One can see from the results that the receiver saw the message

very clearly. The bandwidth was only 0.1 b/s since each bit was sent

for 10 seconds. There were several iterations (for example, the 107th

and 118th) in which no firewall-updating requests arrived. This

is because the receiver used the reactive Update+Probe method.

This could be “fixed” by deploying the iterative or n-reactive Up-

date+Probe methods.

6.4 Infrastructure Event Snooper

We evaluated the performance of the infrastructure event snooper

for two different types of physical machines in the Utah Emulab

network testbed, which we will refer to as type-1 [10] and type-2 [9]

hosts. For each type of host, we first collected 100 data points for

each class of event as training data: call this data TR1 for type-1

hosts and TR2 for type-2. We then generated three different LSTM

models for evaluation: M1, M2, and MC, which were trained on TR1,

370

I Heard It through the Firewall SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

3.5
Total Elapsed Sleep After Before Epoch

2 5

3.0

2.0

2.5

(s
e
c)

1 0

1.5

Ti
m

e

0.5

1.0

0.0
0 10 20 30 40 50 60 70 80

Index of RPC Loop Iteration

(a) Single-node covert channel

6.0
Total Elapsed Sleep After Before Epoch

5.0

3 0

4.0

(s
e
c)

2.0

3.0

Ti
m

e

1.0

0.0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

Index of RPC Loop Iteration

(b) Multi-node covert channel

Figure 15: Execution durations of the RPC loop while sending “hello” through covert channels

Figure 16: Accuracies of the infrastructure event snooper

with different LSTM models. The accuracy of a model x
against test data y is labeled x:y.

TR2, and both, respectively. For training, we used 75% of the data

for actual training and the other 25% as validation data so that we

could halt the training before overfitting began. Next, we collected

test data for each type of host (call these data sets T1 for type-1 and
T2 for type-2) by creating and terminating 100 VMs in a random

order, where the VMs were configured to have a random number

of virtual interfaces between one and four. To prevent bias on the

evaluation results due to too many trivially identifiable “Idle” data

points, we pre-filtered the test data using a threshold and obtained

219 data points for T1 and 259 for T2, which respectively contain

19 and 59 “Idle”-class data points.

Figure 16 shows the evaluation results. In addition to regular

(exact-class) accuracy, the figure also presents activity accuracy

that counts any data point whose activity is correctly classified as

a true positive (i.e., ignoring the number of interfaces). As one can

see from the figure, the model M1 showed a large performance gap

between T1 and T2. This is because the Epoch sequence patterns in

the type-2 hosts were more varied, and thus the model M1—which
was trained on relatively stable data TR1—could not classify some

“erratic” signal patterns in T2. However, for the model trained on

both (MC), one can see good performance for both test data sets,

achieving 83.1% accuracy and 93.3% activity accuracy on average.

In addition, for VM creation events, the models showed remark-

ably high true positive rates. For instance, as shown in Table 1, the

model MC showed 100% true-positive rate for VM creation activity

when ignoring the number of interfaces.

371

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA Hyunwook Baek, Eric Eide, Robert Ricci, and Jacobus Van der Merwe

Table 1: Classification result of the model MC against the test
data set (T1 + T2). The Roman numerals represent the num-

ber of virtual interfaces of the VMs. The underlined entries

count correctly classified data points, and the bold-faced en-

tries count data points whose activities are correctly classi-
fied: Idle, VM Creation, or VM Termination.

Classified

Idle

VM Creation VM Termination

I II III IV I II III IV

G
r
o
u
n
d
T
r
u
t
h

Idle 72 6

V
M

C
r
e
a
t
i
o
n

I 46
II 50 12
III 35 3
IV 54

V
M

T
e
r
m
i
n
a
t
i
o
n I 2 31 13

II 2 9 1 4 34 10 2
III 1 33 4
IV 1 11 42

7 MITIGATION TECHNIQUES

Adjusting the Polling Interval: A simple way to reduce the po-

tential for information leakage through a cloud’s networking ser-

vices is to increase the services’ polling intervals. For example, if

one sets the polling interval to 10 seconds, since it is very rare for

actual network-level updates to take longer than 10 seconds (as we

saw in Section 3), the loop will complete within 10 seconds most of

the time, making it hard for attackers to distinguish difference in

Epochs between different requests. Though this approach is readily

available and may suppress the attack to some degree, there are

two problems with this approach. First, this approach does not

prevent the attacker from sending/receiving signals sent through

the elapsed time before updating iptables. Second, this approach
may increase either the response time of the request or the chance

for virtual resources to be functionally inconsistent [5]: different

parts of the tenant’s infrastructure could see inconsistent resource

states for extended periods of time.

Setting the polling interval to be very short is not an effective mit-

igation strategy. Though it would seem that this prevents multiple

requests from being processed within the same iteration, inten-

sive requests (such as attach/detach requests) will still produce

noticeable delays.

Request Rate Limiting: Since rate-limiting is a general strat-

egy to suppress DoS-style attacks targeting API front ends, one

may consider using rate-limiting to suppress information leakage

through shared services as well. However, compared to DoS-style

attacks, the actual request rate needed for these channels is very

low. For running EpochMonitor with the reactive Update+Probe

method, we need just two requests per polling interval. We be-

lieve more involved analysis on the request rates of tenants is

required to detect this type of attack at the service level. One of

the possible approaches in this regard is to devise a policy that

may effectively throttle requests from these attacks and enforce the

policy by extending the existing distributed resource management

systems [15, 18].

8 RELATEDWORK

Ristenpart et al. [17] first introduced several information leakage

channels and their potential impacts in the cloud. Specifically, the

authors utilized covert channels based on hard disks and caches

to verify the co-residency of two cooperative VMs, achieving a

bandwidth of 0.2 b/s. This cache-based cloud covert channel has

been further improved through a number of studies [14, 24, 25],

and the latest result achieved a transfer rate of up to 1.2 Mb/s [14].

Bates et al. [6] exploited the physical network interface as a side

channel to detect co-residency; in their scenario, the probing VM

could detect co-residency with the victim by monitoring the net-

work performance change of the victim. All these previous studies

focus on hardware-level shared resources, while our focus is on

infrastructure-level software services.

In addition to the aforementioned work, Ristenpart et al. [17]

exploited additional side channels based on the behavior of a cloud

management system—including host machines’ IP addresses, inter-

VM network round-trip times, and numerical distances of internal

IP addresses—to detect co-residency as well as the VM placement

policy of the cloud. Varadarajan et al. [21] and Xu et al. [26] showed

that the previous approaches do not work anymore inmodern cloud

platforms, but still there exist several factors that may increase the

probability of co-residency. In the sense of analyzing and utilizing

the properties of cloud management systems, these studies are the

most similar to our work. However, since our side channel is based

on the fundamental software architecture (i.e., shared service), it

would be more difficult to suppress this type of side channel.

9 CONCLUSION AND FUTUREWORK

We have shown that management services in the cloud can be

exploited to build an information leakage channel. Through our

evaluation, we have demonstrated that we can conduct robust and

unique information leakage attacks by exploiting this channel in

OpenStack. As future work, we plan to explore the feasibility of

this type of attack in different cloud platforms. We also plan to

investigate the extensibility of the attacks presented in this paper

to other shared services.

ACKNOWLEDGMENTS

We thank the anonymous SoCC reviewers for their valuable com-

ments on this work. We performed our experiments in the Utah

Emulab network testbed [23]. This material is based upon work sup-

ported by the National Science Foundation under Grant No. 1314945.

REFERENCES

[1] Amazon Web Services. 2018. AWS CloudTrail. Retrieved Aug. 24, 2018 from

https://aws.amazon.com/cloudtrail/

[2] Amazon Web Services. 2018. AWS Marketplace. Retrieved Aug. 24, 2018 from

https://aws.amazon.com/marketplace

[3] Pablo Neira Ayuso. 2006. Netfilter’s connection tracking system. ;lo-

gin: 31, 3 (June 2006), 34–39. https://www.usenix.org/publications/login/

june-2006-volume-31-number-3/netfilters-connection-tracking-system

[4] Hyunwook Baek, Eric Eide, Robert Ricci, and Jacobus Van der Merwe. 2018.

Monitoring the Update Time of Virtual Firewalls in the Cloud. Technical Report

372

https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/marketplace
https://www.usenix.org/publications/login/june-2006-volume-31-number-3/netfilters-connection-tracking-system
https://www.usenix.org/publications/login/june-2006-volume-31-number-3/netfilters-connection-tracking-system

I Heard It through the Firewall SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

UUCS–18–005. University of Utah. http://www.cs.utah.edu/docs/techreports/

2018/pdf/UUCS-18-005.pdf

[5] Hyunwook Baek, Abhinav Srivastava, and Jacobus Van der Merwe. 2017.

CloudSight: A Tenant-Oriented Transparency Framework for Cross-Layer Cloud

Troubleshooting. In Proc. CCGRID. 268–273. https://doi.org/10.1109/CCGRID.

2017.97

[6] Adam Bates, Benjamin Mood, Joe Pletcher, Hannah Pruse, Masoud Valafar, and

Kevin Butler. 2012. Detecting Co-Residency with Active Traffic Analysis Tech-

niques. In Proc. CCSW. 1–12. https://doi.org/10.1145/2381913.2381915

[7] Tathagata Das, Yuan Zhong, Ion Stoica, and Scott Shenker. 2014. Adaptive

Stream Processing using Dynamic Batch Sizing. In Proc. SoCC. 1–13. https:

//doi.org/10.1145/2670979.2670995

[8] Thomas Erl. 2005. Service-Oriented Architecture: Concepts, Technology, and Design.

Pearson Education India.

[9] Flux Research Group. 2018. D430: The Emulab Dell R430 (aka “d430”) machines.

Retrieved Aug. 24, 2018 from https://wiki.emulab.net/wiki/d430

[10] Flux Research Group. 2018. D710: The “d710” Nodes. Retrieved Aug. 24, 2018

from https://wiki.emulab.net/wiki/d710

[11] Alex Graves and Jürgen Schmidhuber. 2005. Framewise phoneme classification

with bidirectional LSTM and other neural network architectures. Neural Networks

18, 5–6 (July–Aug. 2005), 602–610. https://doi.org/10.1016/j.neunet.2005.06.042

[12] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.

Neural Computation 9, 8 (Nov. 1997), 1735–1780. https://doi.org/10.1162/neco.

1997.9.8.1735

[13] Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirectional LSTM-CRF Models for

Sequence Tagging. CoRR abs/1508.01991 (2015), 10. http://arxiv.org/abs/1508.

01991

[14] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-

Level Cache Side-Channel Attacks are Practical. In Proc. IEEE S&P. 605–622.

https://doi.org/10.1109/SP.2015.43

[15] Jonathan Mace, Peter Bodik, Rodrigo Fonseca, and Madanlal Musuvathi.

2015. Retro: Targeted Resource Management in Multi-tenant Distributed Sys-

tems. In Proc. NSDI. 589–603. https://www.usenix.org/conference/nsdi15/

technical-sessions/presentation/mace

[16] Microsoft. 2017. Azure Marketplace. Retrieved Aug. 24, 2018 from https:

//azuremarketplace.microsoft.com/en-us

[17] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. 2009.

Hey, You, Get Off of My Cloud: Exploring Information Leakage in Third-Party

Compute Clouds. In Proc. CCS. 199–212. https://doi.org/10.1145/1653662.1653687

[18] Lalith Suresh, Peter Bodik, Ishai Menache, Marco Canini, and Florin Ciucu. 2017.

Distributed Resource Management Across Process Boundaries. In Proc. SoCC.

611–623. https://doi.org/10.1145/3127479.3132020

[19] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence Learn-

ing with Neural Networks. In Advances in Neural Information Processing Systems

27, Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and

Kilian Q. Weinberger (Eds.). Curran Associates, Inc., 3104–3112. https://papers.

nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks

[20] Venkatanathan Varadarajan, Thawan Kooburat, Benjamin Farley, Thomas Ris-

tenpart, and Michael M. Swift. 2012. Resource-Freeing Attacks: Improve Your

Cloud Performance (at Your Neighbor’s Expense). In Proc. CCS. 281–292. https:

//doi.org/10.1145/2382196.2382228

[21] Venkatanathan Varadarajan, Yinqian Zhang, Thomas Ristenpart, and Michael

Swift. 2015. A Placement Vulnerability Study in Multi-Tenant Public Clouds.

In Proc. USENIX Security. 913–928. https://www.usenix.org/conference/

usenixsecurity15/technical-sessions/presentation/varadarajan

[22] Zhenghong Wang and Ruby B Lee. 2006. Covert and Side Channels Due to

Processor Architecture. In Proc. ACSAC. 473–482. https://doi.org/10.1109/ACSAC.

2006.20

[23] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac

Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. 2002. An Integrated

Experimental Environment for Distributed Systems and Networks. In Proc. OSDI.

255–270. https://www.usenix.org/legacy/event/osdi02/tech/white.html

[24] Zhenyu Wu, Zhang Xu, and Haining Wang. 2012. Whispers in the Hyper-space:

High-speed Covert Channel Attacks in the Cloud. In Proc. USENIX Security. 159–

173. https://www.usenix.org/conference/usenixsecurity12/technical-sessions/

presentation/wu

[25] Yunjing Xu, Michael Bailey, Farnam Jahanian, Kaustubh Joshi, Matti Hiltunen,

and Richard Schlichting. 2011. An Exploration of L2 Cache Covert Channels

in Virtualized Environments. In Proc. CCSW. 29–40. https://doi.org/10.1145/

2046660.2046670

[26] Zhang Xu, Haining Wang, and Zhenyu Wu. 2015. A Measurement Study

on Co-residence Threat Inside the Cloud. In Proc. USENIX Security. 929–

944. https://www.usenix.org/conference/usenixsecurity15/technical-sessions/

presentation/xu

[27] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolu-

tion, Low Noise, L3 Cache Side-Channel Attack. In Proc. USENIX Security. 719–

732. https://www.usenix.org/conference/usenixsecurity14/technical-sessions/

presentation/yarom

[28] Yinqian Zhang, Ari Juels, Alina Oprea, and Michael K. Reiter. 2011. HomeAlone:

Co-Residency Detection in the Cloud via Side-Channel Analysis. In Proc. IEEE

S&P. 313–328. https://doi.org/10.1109/SP.2011.31

[29] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2012. Cross-

VM Side Channels and Their Use to Extract Private Keys. In Proc. CCS. 305–316.

https://doi.org/10.1145/2382196.2382230

373

http://www.cs.utah.edu/docs/techreports/2018/pdf/UUCS-18-005.pdf
http://www.cs.utah.edu/docs/techreports/2018/pdf/UUCS-18-005.pdf
https://doi.org/10.1109/CCGRID.2017.97
https://doi.org/10.1109/CCGRID.2017.97
https://doi.org/10.1145/2381913.2381915
https://doi.org/10.1145/2670979.2670995
https://doi.org/10.1145/2670979.2670995
https://wiki.emulab.net/wiki/d430
https://wiki.emulab.net/wiki/d710
https://doi.org/10.1016/j.neunet.2005.06.042
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1508.01991
http://arxiv.org/abs/1508.01991
https://doi.org/10.1109/SP.2015.43
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/mace
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/mace
https://azuremarketplace.microsoft.com/en-us
https://azuremarketplace.microsoft.com/en-us
https://doi.org/10.1145/1653662.1653687
https://doi.org/10.1145/3127479.3132020
https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks
https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks
https://doi.org/10.1145/2382196.2382228
https://doi.org/10.1145/2382196.2382228
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/varadarajan
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/varadarajan
https://doi.org/10.1109/ACSAC.2006.20
https://doi.org/10.1109/ACSAC.2006.20
https://www.usenix.org/legacy/event/osdi02/tech/white.html
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/wu
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/wu
https://doi.org/10.1145/2046660.2046670
https://doi.org/10.1145/2046660.2046670
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/xu
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/xu
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://doi.org/10.1109/SP.2011.31
https://doi.org/10.1145/2382196.2382230

	Abstract
	1 Introduction
	2 Background
	3 Measurement Study
	3.1 One-time Impact
	3.2 Long-term Impact

	4 Monitoring Epochs
	4.1 Update+Probe Technique
	4.2 Deployment
	4.3 Practical Epoch Monitor

	5 Exploitation
	5.1 Single-node Covert Channel
	5.2 Multi-node Covert Channel
	5.3 Snooping on Infrastructure Events

	6 Evaluation
	6.1 Accuracy of EpochMonitor
	6.2 Single-node Covert Channel
	6.3 Multi-node Covert Channel
	6.4 Infrastructure Event Snooper

	7 Mitigation Techniques
	8 Related Work
	9 Conclusion and Future Work
	Acknowledgments
	References

