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ABSTRACT
A similarity join aims to find all similar pairs between two collec-

tions of records. Established approaches usually deal with synthetic

differences like typos and abbreviations, but neglect the semantic

relations between words. Such relations, however, are helpful for

obtaining high-quality joining results. In this paper, we leverage

the taxonomy knowledge (i.e., a set of IS-A hierarchical relations)

to define a similarity measure which finds semantic-similar records

from two datasets. Based on this measure, we develop a similarity

join algorithm with prefix filtering framework to prune away irrel-

evant pairs effectively. Our technical contribution here is an algo-

rithm that judiciously selects critical parameters in a prefix filter to

maximise its filtering power, supported by an estimation technique

and Monte Carlo simulation process. Empirical experiments show

that our proposed methods exhibit high efficiency and scalability,

outperforming the state-of-art by a large margin.
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1 INTRODUCTION
Given two sets of records, a similarity join aims to find all records

whose similarities are higher than a given threshold. Such operation

is widely-seen in tasks such as data cleaning [1, 7], information

retrieval [2, 13], and data mining [6]. To perform joining efficiently,

a plethora of established algorithms utilise similarity measures,

e.g., Levenshtein similarity [11] and Jaccard coefficient [9]. Such
measures capture syntactic-similar records, which is not enough

because of the existence of synonyms and related concepts, which

often differ from spellings.
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Figure 1: Example of a simplifiedhierarchical taxonomyand
similarity calculation based on Equations 1 and 2.

Taxonomy is an abundant source of lexica, maintaining IS-A re-

lations between terms. It has been proved useful [10] for enhancing

the quality of similarity joins. Figure 1 depicts an example. Given a

Wikipedia taxonomy and two strings, a join algorithm with Leven-

shtein distance will fail to capture their similarity due to distinct

spellings. In contrast, a taxonomic similarity measure maps each

string to multiple taxonomy nodes, and calculate the similarity be-

tween every two nodes from the depth of their lowest common

ancestor (LCA). For example, “Turin” and “Via Nizza”, with three

common ancestors (including “Turin” itself) and maximal depth

five, have 0.6 (=3/5) similarity. Hence, the similarity between two

strings can be calculated as 0.717, by averaging the maximal sum

of three distinct node-wise similarities.

Joins with taxonomic similarity measure can be useful in many

real-life scenarios. For example, location providers are interested

in integrating knowledge taxonomy to remove duplicates or link

related records from crawled Points of Interests (POIs) [10]; per-
sonalised medicine provides specific treatment to a small group of

patients clustered by a disease taxonomy [4]. Also, taxonomic joins

can be helpful for enhancing the quality of similarity matrices used

in various recommender systems [14].

In this article, we tackle the taxonomic joining problem by adopt-

ing the filtering-and-verification framework, which works by first

(i) removing record pairs which are impossible to be similar, then

(ii) verifying the real similarity of survived pairs. Since verification

is expensive, we introduce a novel filtering technique which effi-

ciently removes unfeasible pairs whose number of similar nodes

do not reach a given overlap constraint. We observed that such con-

straint vitally affects filtering quality and thus joining time. In this

paper, we propose an estimator to predict the running time of a

given constraint by performing test-drives on small samples and

then scaling the result accordingly. To suggest the best constraint

for minimising the joining time, as our technical contribution, we

propose aMonte Carlo simulation process which gives accurate sug-

gestions without a predetermined sample size. Experiments show
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that, remarkably, our suggestion achieves higher than 90% accu-

racy, by using only a few (e.g., 100) samples from nearly 3 million

records, and occupies approximately 1% of total joining time. The

superior performance of our solution over the state-of-art approach

[10] further motives its application in practice.

2 PRELIMINARIES
Similarity measures. Let S : {s1, · · · , si } and T : {t1, · · · , tj } be
two sets of nodes from a hierarchical taxonomy. Let s ∈ S and t ∈ T
be two nodes, and let |s | (|t |) denotes the depth of node s (t ). Then,
their similarity can be measured based on the depth of the lowest

common ancestor (LCA):

TS(s, t) = |LCA(s, t)|
max(|s |, |t |) (1)

With Equation 1, the similarity between two sets S and T can

then be obtained by averaging the maximum sum of all TS’s of
distinct node pairs, where |S | (|T |) is the number of nodes in set S
(T ), Ipq is an indicator variable (i) controlling whether to select the

edge (sp , tq ), and (ii) ensures any of sp or tq is used at most once:

GTS(S,T ) = W (S,T )
max(|S |, |T |) =

max

∑
p
∑
q IpqTS(sp , tq )

max(|S |, |T |)
where p ∈ [1, i],q ∈ [1, j], Ipq = 0 or 1,

∑
p Ipq ⩽ 1,and

∑
q Ipq ⩽ 1

(2)

Solving for the value ofW in Equation 2 requires to find the

maximum weight matching in a bipartite graph, which can be

categorised as an assignment problem. Hungarian algorithm [8] is

so far the best solution which runs in a polynomial O(n3) time.

Example 2.1. Take two strings in Figure 1 as an example. Since

the three most-similar node pairs are (“coffeehouse”, “bar”), (“latte”,

“espresso”), and (“Turin”, “Via Nizza”), the GTS similarity between

two strings becomes 0.717 (= (0.75 + 0.8 + 0.6)/3). Note that the
distinctness forbid any node from being selected more than once,

e.g., selecting both (“latte”, “espresso”) and (“latte”, “Turin”) are not

allowed.

Problem definition.We define our research problem as follows:

Problem 1. LetS andT be two collections of setsS : {S1, · · · , Sm },
T : {T1, · · · ,Tn }, where each set contains multiple nodes, i.e., S ∈
S : {s1, · · · , si }, T ∈ T : {t1, · · · , tj }. Given a GTS similarity mea-
sure and a similarity threshold θ , find all pairs of sets in forms of
(S,T ) ∈ S × T such that each GTS(S,T ) ⩾ θ .

It is not trivial to solve Problem 1 efficiently. Recall Example 2.1.

To apply the Hungarian algorithm, we first need to fill a 3×3matrix

by 9 TS calculations, not to mention a longer string which may have

hundreds of words resulting in a massive amount of calculations.

Large datasets exacerbate the situation as processing every string

pair leads to interminable running time. Hence, it is crucial to have

an efficient solution which avoids running Hungarian algorithm

whenever possible to speed up the joining process.

3 ADAPTIVE OVERLAP JOINING
We now present our novel joining algorithm which include three

stages, namely (i) inverted lists construction (Line 2 in Alg. 1), where

each set is being indexed for faster overlap-finding; (ii) filtering
(Lines 3 - 14), where we try to purge unfeasible set pairs which

have not enough (⩾ τ ) similar nodes; and (iii) verification (Lines 15

- 16) where we perform actual GTS calculation on survived pairs.

Since Stage 2 is a key step to speed up the whole processing, we

will focus on developing an effective optimisation strategy.

Based on the definition of GTS , our filtering technique states

that two similar sets must have at least τ pairs of similar nodes,

where τ is the overlap constraint:

Lemma 3.1 (AP-Filter). Given two sets S and T , and without loss
of generality by assuming |S | < |T |. If GTS(S,T ) ⩾ θ , then there are
at least τ distinct similar pairs of nodes (si ∈ S, tj ∈ T ) such that
each of them satisfies TS(si , tj ) ⩾ φ, where φ = θ |T |−τ+1

|S |−τ+1 .

According to Lemma 3.1, for each pair of sets, we need to find

the number of distinct node pairs whoseTS ⩾ φ. SinceTS depends

on |LCA|, the problem can be converted to overlap finding problem,

which is to find the common ancestors between pairs of nodes

within two sets. An efficient way to find such ancestors is to index

them (as keys, corresponding nodes as values) by inverted lists, and
joining these lists afterwards to obtain overlapped keys and thus

sets which contains nodes having common ancestors. Furthermore,

Lemma 3.1 can be relaxed to the follows, so that we can build an

inverted list independently for each of S and T :

Corollary 3.2. Two similar sets, S and T , must have at least τ
distinct (si , tj )’s such that each TS(si , tj ) ⩾ φ, where φ = θ |S |−τ+1

|S |−τ+1 .

Corollary 3.2 states that a node s ∈ S only needs to put its

ancestors deeper than φ |s | into the inverted list since others are not
able to achieve φ similarity. This insight reduces the index size and

thus accelerate filtering.

The pseudo code of our joining technique is presented in Algo-

rithm 1. Specifically, Line 7 employs a length filtering technique to

remove pairs having a disparate number of nodes, and Line 10 en-

sures the distinctness of each node so that a node s is counted one

time even if it is similar to multiple t ’s from another set T .

Algorithm 1: AP-Join: Set joining with AP-Filter

Input: two collections of sets S and T , a similarity threshold θ and

an positive integer τ
Output: R: {(S, T ) ∈ S × T |GTS (S, T ) ⩾ θ }

1 P ← ∅, C ← ∅, R ← ∅
2 LS, LT ← inverted lists built from S and T , according to Cor. 3.2

3 G ← overlapped keys (common ancestors) between LS and LT
4 foreach д ∈ G do
5 ℓS, ℓT ← lists indexed by д in LS and LT
6 foreach (S, T ) ∈ (ℓS × ℓT ) do
7 if min( |S |, |T |) ⩽ θ ·max( |S |, |T |) then
8 continue // length filtering

9 sд, tд ← nodes producing ancestor д in S and T
10 if sд and tд have not been found similar with other nodes from

T or S then P ← P ∪ {(S, T )}
11 foreach (S, T ) ∈ P do // find pairs with τ overlaps
12 if (S, T ) appears at least τ times in P then
13 C ← C ∪ {(S, T )}
14 foreach (S, T ) ∈ C do // verification
15 if GTS (S, T ) ⩾ θ then R ← R ∪ {(S, T )}
16 return R
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Figure 2: Overlap constraint τ ’s affecting joining perfor-
mance (10K × 10K subsets of OHSUMED).

Effect of overlapping constraint τ . The value of parameter τ
influences the joining time. Intuitively, as τ increases, the sizes of

inverted lists will grow, indicating that the filtering will be slower. In
the meantime, fewer pairs satisfies the increased overlap constraint,

leading to the faster verification phase. Perceiving the opposite

trends, we conduct an empirical experiment as presented in Figure

2, in which we confirm the existence of optimum that minimises

the overall running time. Now a natural question arises: how to find
such optimal τ correctly and efficiently? We tackle the question and

present our answer in the next section.

4 PARAMETER RECOMMENDATION
This section aims to give an accurate recommendation for τ which

minimises the total joining time. It is backed by a cost model and a

sampling-based estimator.

Cost model. The joining time cost can be modelled as follows:

Cτ = CFτ +CVτ = tF · Fτ + tV ·Vτ (3)

where the total costCτ is the sum of filtering (CFτ ), and verification
cost (CVτ ). Each of them is obtained by multiplying corresponding

number of processed pairs (Fτ orVτ ) by the average time to process

one pair in each stage (tF or tV ).
Bernoulli estimator. It is certainly unfeasible to run the joining

algorithm on full datasets to get its cost. Instead, we can estimate the
number of pairs in each stage (F̂τ and V̂τ ) and hence the total cost

Ĉτ by using the independent Bernoulli sampling, where each set in

input dataset S (T ) has probability ps (pt ) for being in the sample.

Therefore, a set pair (S,T ) being processed during a real filtering
(or verification) stage has probability pspt for being counted into

Fτ (or Vτ ), i.e., when once both S and T exist in the sample. Hence,

we get an unbiased estimator of Fτ :

E[F ′τ ] = Fτ · pspt ⇒ F̂τ =
F ′τ
pspt

. Similarly, V̂τ =
V ′τ
pspt

(4)

Plugging F̂τ and V̂τ into Equation 3 to obtain estimated cost Ĉτ .
Iterative suggestion refinement. Equation 4 is a static estimation

strategy where ps and pt are determined beforehand, usually by

trial-and-error. To erase the requirement of this foreknowledge,

we propose an iterative method based on Monte Carlo simulation,

which refines the suggestion from multiple iterations until the

smallest Ĉτ is identified with high confidence.

Multiple iterations give a series of estimations. Since all of them

are i.i.d., the Central Limit Theorem (CLT) holds such that their

mean µ̂Fτ converges to a normal distribution when iteration goes

on (the same for µ̂Vτ ; Var [·] denotes the population variance):

µ̂Fτ ∼ N
(
E[F̂τ ],Var [F̂τ ]/n

)
when n →∞ (5)
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Figure 3: Illustration of the convergent of the means (solid
lines) and CI’s (shaded areas) to the real values (dotted lines).
The cost when τ = 1 is too large thus have been eliminated.

CLT also allude that the mean and variance of underlying distri-

bution, E[F̂τ ] andVar [ ˆFτ ]/n, can be estimated by the sample mean

and variance, µ̂Fτ and σ̂ 2

Fτ
. Both estimators are unbiased. Thus, we

can calculate µ̂Fτ and σ̂ 2

Fτ
by a recursive formula (e.g., [3]), and

use them to estimate µ̂Fτ (the same for µ̂Vτ ). Since both F̂τ and V̂τ
converge to normal distributions, the estimated total cost Ĉτ also

converges, and can be modelled by a Student’s t distribution. The
confidence interval (CI) of Cτ can be constructed consequently.

Stopping criterion. Given a universe of τ ’s, we can safely termi-

nate the refinement procedure once the overlapped CI’s between

the best (which gives the least µ̂Cτ ) and other τ ’s are small enough.

In other words, the refinement stops when the additional cost due
to an inaccurate estimation (i.e., the sum of overlapped CI’s) is less
than that for one more iteration:

Lemma 4.1 (Stopping Criterion). Let Uτ be the universe of τ ’s,
and let τ1 ∈ Uτ denote the τ leading to the minimal estimated cost,
i.e., τ1 = argminτ

(
µ̂Cτ

)
. The refinement process terminates when∑

τ2 (UCτ1 − LCτ2 ) < tF ·
∑
τ F
′
τ holds for all τ2 ∈ Uτ ,τ2 , τ1.

We present our iterative refinement procedure in Algorithm 2.

Given multiple independent samples form S and T , it runs the fil-
tering stage of AP-Join for every τ , obtaining F ′τ and V ′τ , then es-

timates the mean and variance of Ĉτ . The procedure terminates

when the best τ is found with a predefined confidence level. The

refinement runs at least n∗ iterations to discard the effect of insta-

bility in the early stage, known as the burn-in period.

5 EXPERIMENTAL ANALYSIS
We implemented all algorithms in Java 8, and run the code on

a quad-core Xeon 2.53GHz node with 32GB RAM. We use two

Algorithm 2: Cost-bounded suggestion refinement

Input: k samples from each dataset:

{
S′
1
, · · · , S′k

}
and{

T′
1
, · · · , T′k

}
, a positive integer n∗, a Student’s t quantile t∗

corresponding to a specific confidence level, and a universe of

τ ’s Uτ
Output: τ which has the minimal estimated cost

1 n← 1 // select first samples

2 repeat
3 foreach τ ∈ Uτ do
4 Run the filtering stage of AP-Join on samples S′n and T′n
5 Compute the confidence interval of total cost CI (Cτ )
6 n← n + 1 // select next samples

7 until n ⩾ n∗ and the condition in Lemma 4.1 is fulfilled
8 return τ1 in Lemma 4.1



Table 1: Characteristics of taxonomies and datasets.
Taxonomy trees (Height in min/avg/max) String datasets (# nodes in min/avg/max)

Name # of nodes Height Avg. fanout Name # of records # of nodes

MeSH 57,840 1 / 5.1 / 12 157 OHSUMED 293,294 5 / 8.4 / 26

Wiki categories 1,212,943 1 / 6.2 / 26 32,300 Wiki articles 3,512,954 5 / 8.2 / 277

Table 2: Performance vs the state-of-art w.r.t. θ .

Dataset Algorithm

# Pairs (10
8
) # Candidates (10

6
) Running time (min)

0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8

Wiki articles

(50K×50K)
AP-Join 0.42 0.08 0.01 11.52 3.04 0.27 10.03 2.64 0.55
K-Join 0.87 0.25 0.07 28.42 8.35 1.98 22.28 6.65 1.74

OHSUMED

(50K×50K)
AP-Join 1.08 4.97 1.72 63.43 0.64 0.26 41.81 4.44 1.67
K-Join - 2.13 0.86 - 115.58 38.42 - 80.01 25.33

Table 3: Suggestion accuracy and speed (100 samples).

Dataset

Accuracy from 128 runs varies θ Estimation time varies θ (s)

0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9

Wiki articles 92.03% 100% 100% 100% 2.58 1.69 1.74 1.51

OHSUMED 96.09% 99.22% 90.63% 100% 4.63 1.10 2.04 1.42
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Figure 4: Scalability experiments on (a) mid-sized and (b)
large-sized datasets. Two joining datasets have the same size.

taxonomies, Wiki categories1 and MeSH terms2, and two string

datasets,Wiki articles andOHSUMED articles. Each string is mapped

to a set of taxonomic nodes according to its categories (Wiki articles)

or keywords (OHSUMED). Table 1 describes these datasets.

Performance vs the state-of-art. We obtained the source code

from the authors of the state-of-art approach K-Join [10], rewrote

their C++ code using Java, and extended the algorithm to perform

R-S join following their instructions. After that, we ran both AP-

Join and K-Join to compare their performance and present Table

2. It shows that our approach outperforms the state-of-art on both

datasets, especially OHSUMED, with a large margin. Specifically,

given the threshold 0.6, K-Join uses up 32GB of RAM for storing all

pairs and eventually crashed. AP-Join, on the contrary, has fewer

candidates and successfully finishes the joining.

Scalability.We randomly sample our datasets into different sub-

sets so that the largest one contains roughly half of total records.

Then, we run our algorithm and present the result in Figure 4. The

result shows that the joining time increases linearly with data size.

Besides, a larger θ leads to a faster joining, because a high similar-

ity threshold leads to a high φ, which reduces sizes of inverted lists,

the number of candidates, and ultimately the total joining time.

Parameter suggestion. The final experiment is the iterative proce-

dure which suggests the key parameter τ . We setn∗ = 10, t∗ = 1.036

(70% confidence level) following common practices, and the sample

size be 100, a tiny fraction comparing to whole datasets. We repeat

our suggestion algorithm for 128 times and record the number of

correct suggestions according to our empirical knowledge. The re-

sults (in Table 3) show that our algorithm suggests the correct τ

1
http://wiki.dbpedia.org/services-resources/documentation/datasets

2
https://www.nlm.nih.gov/mesh and http://trec.nist.gov/data/t9_filtering.html

values in few seconds, and achieves higher than 90% accuracy with

only 100 samples for each iteration.

6 RELATEDWORK
Most of recent works on set-similarity joins (e.g., [6, 10]) follow the

filter-and-verification framework. Verification is expensive; hence,

the key technical challenge is to design a filtering mechanism to

prune away irrelevant record pairs as much as possible. Several

techniques have been proposed, such as length [5], position [12],

and prefix filtering [2]. While the last one is widely used in many

works of literature, it suffers the problem of numerous candidates

since it finds all record pairs having at least one overlapped token.

This problem is tackled by Wang et al. [11] with a time-complexity-

basedmethod. For our research problem, themost recent article [10]

extends the prefix filtering by considering the weight of each token,

but still having the same problem due to the one-overlap policy

(see τ = 1 in Figure 2). In contrast, our work finds the best overlap

constraint for each dataset to achieve a much shorter joining time.

7 CONCLUSION AND FUTUREWORK
This paper studies a problem of integrating taxonomies for efficient

set-similarity joins. We first extend the prefix filtering technique to

solve the join problem efficiently, then, as our technical contribu-

tion, we propose a novel estimation framework to judiciously se-

lect the parameter which minimises the total running time. Exper-

iments based on real datasets exhibit the superiority of proposed

algorithms. As future work, we would like to apply our estimation

method for accelerating the computation of knowledge-based simi-

larity matrices used in various machine learning tasks (e.g., [14]).
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