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ABSTRACT
This paper poses a non-linear dynamical system on bipartite graphs

and shows its stability under certain conditions. The dynamical

system changes the weights on the nodes of the graph in each

time step. The underlying weight transformation is non-linear,

motivated by information gain in a document retrieval setting.

Stability analysis of this problem is therefore more involved than

that of PageRank-like algorithms. We show convergence using

methods from Lyapunov theory and also provide some examples of

how the algorithm performs when ranking keywords and sentences

in a set of documents.
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1 INTRODUCTION
1.1 Motivation
Suppose we are to summarize a corpus of documents that do not

have explicit hyperlinks among them. Arguably, a good summary

would contain important concepts from the corpus and arise from

important sentences in these documents. Given a collection of

words and sentences from a corpus of related documents, our goal

then is to associate a weight with each sentence and each word (or

phrase) which can be interpreted as their importance in the corpus.

From the viewpoint of natural language understanding, words

that occur too frequently are usually not important. For example,

words such as ‘the’ are usually not important and typically will

not be the keywords of a document. This is the informal intuition

behind Inverse Document Frequency (IDF) [11]. However, IDF is

the highest for rarest words; but just as very frequent words in a

document are unimportant, very rare words are also not expected

to be keywords of a document. Therefore, neither too frequent nor

very rare words are going to be keywords in a document, and the

sweet-spot lies somewhere in the middle.

The above informal intuition was first described in [5], and was

captured in [10] in a mathematical setting, which defined the in-
formation gain of a word as the Kullback-Leibler divergence of the
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word’s relative frequency of occurence in a document. In other

words, the information gain from a given word is

дw := fw · (fw − 1 − ln(fw )),

where fw denotes the fraction of sentences containing the word

w . Note that the gain, as a function of f, is a positve and inverted

U-shaped function in [0, 1] (the range of f), with a maximum near

0.2. Of course, there is nothing magical about the constant 0.2

i.e., ideal keywords are not necessarily those that occur with a fre-

quency of 20%. This particular fraction is merely an artifact of using

equal weights on all sentences to measure the Kullback-Leibler di-

vergence. Therefore, assigning the correct weights to sentences is

important before we can identify keywords. In particular, long sen-

tences with many keywords should intuitively be more important

from a natural language understanding and summarization point

of view than short sentences which contain mostly filler words.

Hence, we are now facing a circular problem: We need to identify

important sentences before we can identify important words, but to

identify important sentences we need to identify important words.

The circular nature of our problem suggests the following fixed-

point type algorithm to compute a weighted version of information

gain: Assign a (reasonable) intial weight to all words and sentences.

For each word w and each sentence s , compute sumw and sums
– the sum of weights of sentences that contain w and the sum of

weights of words in s . Update the weight of eachw and s as follows:

Weightw ← sumw · (sumw − 1 − ln(sumw )),

Weights ← sums · (sums − 1 − ln(sums )).

Repeat the updates until the weights of all vertices do not change

significantly between two iterations.

Mathematically, it is not clear under what conditions i.e., for what

kinds of corpus and what initial choice of weights, does the above

algorithm converge to a “optimal" weight distribution. Intuitively, it

is not clear how the important sentences and keywords generated

by using such a weighted information gain qualitatively compare

with some other conventional approach, or even in some absolute

sense.

This paper applies basic linear algebra and Lyapunov theory to

prove convergence of the above iterated update algorithm when

the underlying word-sentence graph obeys certain eigenvalue con-

straints. Moreover, we have also implemented the above fixed-point

algorithm and ran it on a small corpus of documents to see if there

was a natural qualitative difference between the sentences produced

with weights and using a conventional method.

Finally, we observe that there is no reason why the algorithm

can’t be applied to more general settings. For instance, instead of a

collection of words and sentences, we can apply it to any container

which is a collection of tokens – a corpus of images and the entities

within those images; a corpus of videos and the entities within

those videos, and so on.

Short Paper CIKM’18, October 22-26, 2018, Torino, Italy

1479

https://doi.org/10.1145/3269206.3269271
https://doi.org/10.1145/3269206.3269271
lacson
Typewritten Text
This work is licensed under a Creative Commons Attribution International 4.0 License.

lacson
Typewritten Text

lacson
Typewritten Text

https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3269206.3269271&domain=pdf&date_stamp=2018-10-17


1.2 Related Work
The fixed-point approach described in the introduction implicitly

assumes a graph structure between sentences and words in a doc-

ument. In the underlying graph, every word and sentence cor-

responds to a vertex, and a word is linked to a sentence by an

undirected edge, if it occurs in the sentence. There is already a

significant amount of work which applies fixed-point algorithms

over an underlying graph structure to compute a rank or score

which has some relevance in the real world. For example, the initial

papers [9], [4] in the areas of citation analysis, social networks and

analyzing the link structure of the world-wide web, use similar

ideas. More importantly, in the area of lexical analysis and ranking

of documents there has been significant work using such graph

based models, see for example [6], [8] and the book [7].

In [9], the authors work on a graph where the vertices are web-

pages and the edges reflect the link structure of the web. If δ+(v)
and δ−(v) denote the out-degree and in-degree neighbours of a

vertex v , then the score of v (on which its Page-rank is based) is

defined as:

S(v) := (1 − c) + c ·
∑

u ∈δ−(v)

S(u)

|δ+(u)|
, (1)

where the constant c is around 0.8. The idea is to iterate until the

score stabilizes and then use the scores to rank web-pages. Note

that the intial scores do not matter too much as the scores converge

rapidly [9].

[4] introduced a similar algorithm (HITS), which ranked web-

pages by implicitly ascribing a bipartitie structure to the graph –

vertices correspond to “authority" pages (corresponding to a large

δ−) or hub pages (corresponding to a large δ+). Therefore, we have
two scores for each vertex: an authority score and a hub score –

both calculated as a weighted linear sum over their neighbours.

More relevant to us, [8] introduced TextRank an unsupervised

procedure to extract and rank keywords and sentences, or more

generally text units, from a lexical corpus. Their approach is similar

to Page’s approach, but now the graph vertices correspond to text

units (for example, sentences or phrases) and edges reflect some

semantic or syntactic connection between text units. While the

algorithm and score used is similar to that in [9], one important dif-

ference was that the edges can be weighed and so their counterpart

of Equation 1 would be:

S(v) := (1 − c) + c ·
∑

u ∈δ−(v)

Wuv · S(u)∑
w ∈δ+(u)Wuw

, (2)

whereW is the weight matrix of the underlying graph and the

constant c may be chosen depending upon the exact scenario at

hand.

While the viewpoints in each case may be different, the relevant

theme, at least for us, remains the same i.e., there is an iterated local

computation on a graph that leads to a score for each vertex, and this

score is interesting from the perspective of some real world problem.

However, in all the above cases the score is computed using a linear

function, as in Equations 1 and 2, for example. Linearity together

with high connectivity in the graph structure leads to rapid mixing,

thus convergence is ensured and is typically very fast. This linearity

is in contrast to our situation, where we iteratively update based

on a Kullback-Leibler divergence type of function– a non-linear

function, and so convergence does not follow from earlier ideas.

Therefore, we go back to first principles and analyze convergence

of the underlying dynamical system using Lyapunov theory.

2 RESULTS
In this section, we recap the mathematical model for our problem

and then provide a proof of Theorem 1 and 3, ourmainmathematical

results. We provide experimental verification in the next section.

We are given an undirected bipartite graphG ≡ (X ,Y ,W ), where
X and Y denote the vertex sets andW denotes the edge weights i.e.,

Wuv ∈ R is the weight of the edge connecting vertices u andv inG .
With |X | = n and |Y | =m,W is a (n+m)×(n+m) block offdiagonal
symmetric matrix

1
. Let xu (t) ∈ R

n
and yv (t) ∈ R

m
, where u ∈ X

and v ∈ Y , denote the values of the weight distribution at time t
on the vertices u and v respectively. Let

z(t) :=

(
x(t)
y(t)

)
, (3)

denote the column vector of all weights, which is the state of the

dynamical system that we will induce on the graph.

Following [10], we define the time-invariant gain function д :

R→ R as follows:

д(x) := x · (x − 1 − ln |x |) ,x ∈ R , (4)

define the vector version д̄ : Rn+m → R, as the component-wise

application of д to each element in the argument.

At time t + ∆t , we update the weight vectors x and y based on

the following update rule:

z(t + ∆t) = д̄(Wz(t)). (5)

Note that edge weights are constant, only the vertex weights

change over time. We thus have a nonlinear time-invariant dynam-

ical system on the graph. We make a mild assumption thatW is

full-rank. In our motivating example, this assumption is satisfied

when no two tokens appear in exactly the same set of containers. If

they do, we can replace by a joint token. WhenW is non-binary, we

can perturbW to make it full-rank. This concludes the description

of our underlying model. We can state our main theorem as follows.

Theorem 1. Assume that there exists ze := (xe ,ye ) ∈ R
n+m , a

positive solution to the system д̄(Wze ) = ze . Suppose that λ denotes
the maximum eigenvalue of the graph G2 obtained by squaring G
i.e., squaring the adjacency matrix of G, and then multiplying the
weight of each edge uv ∈ G2 by д′(ze (u)) · д′(ze (v)). The algorithm
for updating vertex weights given above converges to some stable
point ze if λ < 1, and the initial value z0 lies in the basin of attraction
of ze .

We first sketch the main ideas behind the proof in the scalar case

before presenting the actual proof. Consider the following scalar

ODE:

d

dt

x(t) = д̂(x) := д̄(x) − x(t) (6)

= x(t)(x(t) − 1 − lnx(t)) − x(t). (7)

The rate of change in weight x(t) in time ∆t is equal to the change

in x(t) in one update step, and as ∆t → 0, we get the ODE above.

1
In our motivating application, W is the adjacency matrix withwuv ∈ {0, 1}.
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The ODE has two fixed points: (1) x = 0.158..., and (2) x = 3.146...,

with д̂.
Our goal is to analyze whether either of the fixed points is lo-

cally asymptotically stable and by Lyapunov’s criteria such a one

dimensional update rule for x(t) would lead to convergence with

x∗ ≃ 0.158..., as long as the initial value x(0) was close to x∗.
We need the following indirect version of Lyapunov’s stability

criterion for higher dimensions:

Theorem 2 ([3]). Lyapunov stability criterion: Let x = 0 be an
equilibrium point for Ûx = f (x), where f : D → Rn is continuous
and differentiable and D is a neighborhood of the origin. Let J ≡
∂
∂x f (x)|x=0 denote the Jacobian matrix, then
• The origin is asymptotically stable if the real part of all eigen-
values of J are negative.
• The origin is unstable if the real part for at least one of the
eigenvalues is positive.

Consider the following n +m dimensional ODE:

d

dt

z(t) = д̂(z(t)) := д̄(Wz(t)) − z(t) . (8)

The above dynamical system captures our update rule. Note that

any ze ∈ R
n+m

that satisfies д̄(Wze ) = ze will be a candidate for a

stable fixed point.

Our next task is to characterize the eigenvalues of the Jacobian

at fixed point ze . The uv
th

entry of the Jacobian matrix at ze is

given by:

∂

∂zv

©­«д ©­«
∑

w ∈N (u)

Wuvzw
ª®¬ − zuª®¬ |ze , (9)

where N (u) denotes the set of neigbours of vertex u. By the chain

rule, it equals: (
∂

∂zv
s(u)

) (
∂

∂s
д(s)

)
|ze
− δu (v), (10)

where we have used s(u) :=
∑
w ∈N (u)Wuvzw and δ is the kro-

necker delta function. But, the last expression is equivalent to:

Wuv · д
′(s) |ze − δu (v). (11)

Therefore, the Jacobian about ze has the form:

J |ze = D ·

(
0 M

M
T

0

)
− I , (12)

where M is the n ×m block matrix which is the incidence matrix of

the bipartitie graph G, I is the n +m dimensional identity matrix,

and D is the diagonal matrix with it’s uth
entry given by:

Du = д
′ ©­«

∑
w ∈N (u)

Wuvze (w)
ª®¬ . (13)

Let, H := J + I. If we can place an upper-bound on the real part

of the eigenvalues of H so that

Re (λmax(H)) < 1 (14)

then the eigenvalues of J are simply obtained by translation of

the eigenvalues of H, so that Re(λmin(J)) < 0 – the fixed point

corresponding to ze is then stable. The condition which ensures

Equation 14 will be our condition in Theorem 1.

Let us rewrite D as:

D =

(
D1 0

0 D2

)
, (15)

where D1 and D2 aren×n andm×m diagonal matrices, respectively.

Proposition 1.

HH
T =

(
D1MM

T
D1 0

0 D2M
T

MD2

)
. (16)

The eigenvalues of HH
T
are bounded by the maximum of the

eigenvalues of D1MM
T

D1 and D2M
T

MD2. It follows from the defi-

nition of spectral norm that the absolute value of the eigenvalues of

H is upper-bounded by the square-root of the maximum eigenvalue

of HH
T
. Therefore, the condition that both matrices D1MM

T
D1 and

D2M
T

MD2 have all eigenvalues upper-bounded by 1 is sufficient

to ensure a stable fixed point.

However, the matrices D1MM
T

D1 and D2M
T

MD2 are simply the

adjacency matrix of the graphs on the partite sets X and Y ofG , ob-
tained by squaring the weighted bipartite graph G and reweighing

every edge uv in the squared graph by д′(ze (u))д
′(ze (v)). Hence,

if the eigenvalues of these graphs are all upper-bounded by 1, the

statement of Theorem 1 follows.

2.1 Basin of Attraction
The next task is to determine the starting values of z for which

we can be assured of convergence. In this case, the conceptually

easiest solution is to construct a Lyapunov function, as in the one

dimensional case above, and show that V (z) is locally positive defi-

nite and ÛV (z) is locally negative definite. However, things are more

complicated in higher dimensions and such explicit constructions

are not easy for non-linear dynamical systems. Therefore, the stan-

dard approach is to construct an ellipsoidal Lyapunov function for

the linearized system, which is expected to be globally asymptoti-

cally stable, and then show it is locally asymptotically stable in a

large enough region. Typically, even this problem is difficult but

the symmetries of the Jacobian matrix makes it simpler.

Theorem 3. Given matrix M which satisfies the conditions of
Theorem 1, the radius of convergence about ze is non-decreasing in λ,
where λ is as in Theorem 1.

Consider a linear system Ûz = Az, it is asymptotically stable if

the Jacobian J has all eigenvalues with negative real parts. A more

direct characterization is that if the linear system is asymptotically

stable then for any positive definite matrixQ , there exists a positive

definite matrix P such that

AT P + PA = −Q (17)

which follows from using V (z) = zT Pz as the Lyapunov function
[2].

The same kind of analysis can be done for non-linear systems i.e.,

linearize the system about the fixed point (Taylor expansion with

higher order terms dropped), compute a Lyapunov function which

shows global asymptotic stability, then use it as a candidate for the

non-linear system.V already has all the proprties we need except for

one: ÛV (z)may not be negative definite, but we can show it is locally

negative definite and prove a lower bound on the convergence

radius.
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We know,

d

dt

z(t) = J |ze z(t) + h(z(t)), (18)

where h is what remains after substracting J |ze from the RHS of

Equation 8 i.e. д̄(z)−z. In our notation,A = J |ze , so that Equation 17

reads:

J
T P + PJ = −Q (19)

Choosing Q = I gives the matrix equation:

J
T P + PJ = −I. (20)

Note that, the matrix P in Equation 20 is assumed symmetric, so

that the left and right eigenvectors coincide (after transposition).

Multiplying the LHS and RHS of Equation 20 by vmax and vT
max

,

the unit eigenvector corresponding to the maximum eigenvalue

λmax(P), we get,

λmax(P)
(
vT

max
J
Tvmax +v

T
max

Jvmax

)
= −1. (21)

By the definition of spectral norm,

max

(
|vT

max
Jvmax |, |v

T
max

J
Tvmax |

)
≤

√
λmax(JJ

T ) , (22)

and so, √
λmax(JJ

T ) ≥
1

2λmax(P)
. (23)

Now, it is also known (see [3] or [2]) that

ÛV (z) = zT (JT P + PJ)z + 2zT Ph

≤ −∥z∥2 + 2λmax(P)∥z∥ · ∥h(z)∥

≤ −

(
1 − 2λmax(P)

∥h(z)∥

∥z∥

)
∥z∥2,

where ∥ · ∥ denotes ℓ2 norm. The RHS is negative as long as

2λmax(P)
∥h(z)∥

∥z∥
≤ 1, (24)

which is equivalent, by Equation 23, to

∥h(z)∥

∥z∥
≤

1

2λmax(P)
(25)

≤

√
λmax(JJ

T ). (26)

As λmax(JJ
T ) increases ÛV is at least going to remain locally negative

definite around ze . Recall from Proposition 1 and the discussion that

followed that λmax(JJ
T ) is upper-bounded by the largest eigenvalue

of the reweighed square of G i.e., λ (≡ λmax(DW
2
D
T )). Therfore,

as λ increases, the time derivative of the candidate Lyapunov func-

tion either remains negative or may become negative. Hence, the

statement of Theorem 3 follows.

3 EXPERIMENTAL RESULTS
We present some qualitative comparisons with the MMR algo-

rithm [1] below. We believe the top-ranked sentences for the reflec-

tion algorithm have more information content. Further experimen-

tal results will appear in a full paper.

Our comparison in the table simply displays the top-ranked

sentence, for each algorithm, when both algorithms are run on the

concatenated text in the set of top twenty documents obtained using

google web-search for some arbitrary queries related to monarch

butterflies.

Query Weighted Gain MMR

monarch butterfly parasites Protozoan parasites such as Ophryocystis

elektroscirrha and a microsporidian Nosema

species have also been identified in wild and

captive monarchs (McLaughlin and Myers

1970, Leong et al. 1992;1997, Altizer andOber-

hauser 1999, O. Taylor, personal communica-

tion).

Monarchs have many natural enemies -

predators, parasitoids, and parasites can

harm monarch eggs, larvae, pupae, and

adults.

monarch butterfly migration While the practice of transferring monarchs

from place to place is generally not condoned

by scientists, some reciprocal transfers of

tagged monarchs have demonstrated that

monarchs from east of the Rocky Mountains

will migrate south if transferred west, in the

range of the western population (rather than

SW).

The Monarch butterfly migrates for 2 rea-

sons.

monarch butterfly adult The four stages of the monarch butterfly life

cycle are the egg, the larvae (caterpillar), the

pupa (chrysalis), and the adult butterfly.

The King of Butterflies – The Monarch But-

terfly

monarch butterfly climate Aside from the ecological significance of

these migrations – monarch butterflies are

the only insects known to migrate to warmer

climates more than 2,500 miles away – the

butterflies’ five-month layover in Mexico be-

fore returning to the United States has be-

come one of the region’s main tourist attrac-

tions and economic drivers.

Given that monarchs largely depend on the

genus Asclepias as larval host plants, the ef-

fects of climate change on monarch north-

ward migrations will most likely be mediated

by climate change effects on Asclepias.

monarch butterfly captive rearing Moreover, these subtle variation appear to

have biological significance; monarchs with

darker shades of orange (approaching red)

show higher flight ability in captive settings

[13], and a recent study provided evidence

that the degree of black pigment is related to

migration distance in wild-caught monarchs

[14].

Chrysoperla rufilabris (Green Lacewing) lar-

vae is a common inhabitant of milkweed

species and a voracious predator of monarch

eggs.

Table 1: Some example sentences
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