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ABSTRACT
Although the scientific digital library is growing at a rapid pace,

scholars/students often find reading Science, Technology, Engineer-

ing, and Mathematics (STEM) literature daunting, especially for the

math-content/formula. In this paper, we propose a novel problem,

“mathematics content understanding”, for cyberlearning and cyber-

reading. To address this problem, we create a Formula Evolution

Map (FEM) offline and implement a novel online learning/reading

environment, PDF Reader with Math-Assistant (PRMA), which in-

corporates innovative math-scaffolding methods. The proposed

algorithm/system can auto-characterize student emerging math-

information need while reading a paper and enable students to

readily explore the formula evolution trajectory in FEM. Based on a

math-information need, PRMA utilizes innovative joint embedding,

formula evolution mining, and heterogeneous graph mining algo-

rithms to recommend high quality Open Educational Resources

(OERs), e.g., video, Wikipedia page, or slides, to help students bet-

ter understand the math-content in the paper. Evaluation and exit

surveys show that the PRMA system and the proposed formula

understanding algorithm can effectively assist master and PhD

students better understand the complex math-content in the class

readings.
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1 INTRODUCTION
Over the past decade, while the volume of Science, Technology,

Engineering, and Mathematics (STEM) publications has increased

dramatically in university and digital libraries, few efforts have

been made to help readers, especially junior scholars and graduate

students, understand them. From a learning and reading viewpoint,

understanding the content (especially the math-content) of sci-

entific publications in STEM remains daunting [16]. In a survey

conducted involving computer science program (35 Master and

Ph.D. students), participants rated readings (textbook/publications)

in data mining to be difficult (45.71%) or very difficult (14.29%). Fur-

thermore, students claimed that math content in the readings was

too difficult and inscrutable to understand because of the readers’

limited knowledge in statistics and mathematics, i.e., participants

believed the mathematical content in the readings to be difficult

(51.43%) or very difficult (22.86%). Meanwhile, all the participates

believe these papers are important, and they hope they could get

additional help to better understand the math content in these pa-

pers. This survey motivated our thinking about this new problem

-Mathematics Content Understanding (MCU), a.k.a. how can

we propose a useful method to assist readers to better understand

the math-content in an academic publication. Junior students who

struggle with math problem or scholars who want to conduct inter-

disciplinary research can especially get benefit from this study. To

the best of our knowledge, this is the first study investigates the

MCU problem. However, MCU faces the following challenges:

Math content representation.There are significant differences
between math content (formula in most cases) and natural language.

First, the mathematical symbols of a formula are ambiguous. For

instance, the variable “α” or “x” could represent the same meaning

if defined by different scholars. Second, formulae can carry recur-

sive structures while natural language is usually linear in structure.
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Third, formulae are highly structured and usually presented in a

layout form, e.g., LATEX or MathML. Existing text mining method

can be hardly used to address MCU problem.

Information need shifting. Student’s math information need

could potentially shift when facing a complicated formula. For in-

stance, to understand the formula of “Latent Dirichlet Allocation
(LDA)”, one may need to understand the formulae of “Dirichlet/Beta
distribution” (component) or even “Conditional Probability” (foun-
dation). From the evolutionary viewpoint, these formulae can be

considered as the “ancestors” of the original formula, and have

important auxiliary effects for MCU. However, such information

can not be fully extracted from the formula context or citations.

Information access , information understanding. Though
traditional formula retrieval models could help user to access the

math information. But, understanding information is fundamentally

different from accessing information [15]. User need more support-

ive information to understand the math-content in the publications.

For instance, [14] showed that cyberlearning resources (i.e., slides

or video) can be more helpful (than scholarly publications) for

scientific understanding.

In order to address these challenges, this paper proposes a novel

solution, MCU via Formula Evolution Map, in a broad area of

information retrieval and education. Although STEM publications

generally do not place a premium on writing for readability, in

this study, we hypothesize that the formula evolution information

can be important to assist readers to better understand the math-

content in a paper. As Figure 1 shows, we investigate the following

two processes:

• In an offline process: By mining a large number of scientific

knowledge-base documents and the associated formulae, from het-

erogeneous graph and joint embedding perspectives, we gener-

ate the Formula Evolution Map (FEM), which encapsulates the

mathematical evolutionary information over time.

• In an online process: By leveraging formula layout and context

information extraction, we will project the user information
need (while reading the math-content in a publication) to
the FEM, as well as recommend useful resources to help readers

better understand and consume the target publication and associ-

ated math content.

For FEM generation, the proposed algorithm explores more than

4 million documents and the associated math/formula/algorithmic

information to characterize comprehensive and fundamental for-

mula evolutionary relations in STEM (there are a total of 21,292,157

evolutionary relations on the FEM). To help readers/students better

consume the target paper, in the FEM graph index, each formula

vertex also associates the formula layout information, target topic

(the formula belongs to), and a number of Open Educational Re-

sources (OERs), i.e., video lectures, presentation slides, source codes,

and Wikipedia pages, that may help readers to better consume the

mathematical content in the online environment.

Meanwhile, in order to verify the proposed algorithm and cyber-

learning hypothesis, we design a novel reading environment (PDF

Reader with Math-Assistant, PRMA). When using PRMA system,

a reader can easily highlight a formula with the mouse, and the

system can automatically project the target formula in the paper to

the vertexes on the backend FEM as well as recommend OERs for

formula understanding. Evaluation results show that the proposed

method is important to help students understand the math-content

in a paper, and its potential in cyberlearning is promising.

The contribution of this paper is fourfold. First, we propose
an innovative MCU problem in an education context to help stu-

dents and junior scholars better consume the STEM publications.

Second, a new reading environment is employed to capture student

information need while enabling them to highlight the confusing

formula of the reading. Third, novel algorithms are proposed to

characterize formula evolution information in a map by mining a

massive scientific knowledge base. Last but not least, an exten-

sive experiment (with 52 participants) is employed to qualitatively

and quantitatively validate the proposed formula understanding

hypothesis as well as the usefulness of the system and to evalu-

ate the FEM generation quality. As MCU is a newly proposed but

important problem, we share the algorithm generated FEM plus

massive formula and math-topic information to motivate further

investigation.

Figure 1: The whole framework for this study
Based on the experiment participants’ feedback, 72.73% of par-

ticipants believed the proposed method can provide very useful

information for math-understanding and 75.75% of participants

believed the system recommended OERs (especially for videos and

slides), comparing with the text content, are much more helpful for

math-understanding. Algorithm evaluation also shows that FEM

and the associated formula evolution relations are very important

for math-understanding (can enhance precision and NDCG signifi-

cantly).

2 PROBLEM FORMULATION
As aforementioned, simply return academic papers may not be

enough to help junior scholars [14]. In this study, we hypothe-

size that formula evolution information along with OERs can be

important to address MCU problem.

Definition 1. Formula Evolution Map (FEM). FEM is defined
as a weighted directed graph G = (F ,R,τ ), where F denotes the



formula vertex set, and R ⊆ F × F denotes the directed evolution
relation set. ω is the relation weight set, denotes formula evolution
probabilities.

FEM encapsulates the fundamental and enlightened formula evo-

lution information, which could be especially useful for exploring

the development of a formula as well as the details of its compo-

nents. For instance, formula of “Bayes’ theorem” is the foundation

of “Naive Bayes classifier” formula, and formulae of “Gaussian naive
Bayes” and “Multinomial naive Bayes” are both the specific forms

of general “Naive Bayes”. There are clear evolutionary paths among

these formulae.

Definition 2. Mathematics ContentUnderstanding viaOER.
From OER recommendation viewpoint, the MCU problem can be de-
fined as a conditional probability P(OER|info-need), i.e., the probability
of an OER given a particular math information need, which can be
formalized as:
• Input: A mathematical content (a formula with its context).
• Output: A list of ranked OERs that could be potentially useful
for understanding the target math-content.

Definition 3. Mathematics ContentUnderstanding via FEM
+ OER. Based on prior definitions, we can further integrate FEM into
consideration, i.e., P(OER|info-need) = P(OER|formula) ∗ P(formula|info-
need), where user’s math information need can be projected to a for-
mula with its ancestors (vertexes) on FEM for MCU. Then, the projected
formulae (on FEM) and their related OERs can help to address MCU
problem.

3 METHODOLOGY
In this section, we discuss the research method in detail includ-

ing: generating the Formula Evolution Map (FEM) offline (3.1),

designing the novel cyberlearning environment to characterize

readers’ information need when consuming mathematics content

in a paper (3.2), and designing OER recommendation for formula

understanding (3.3).

3.1 Formula Evolution Map Generation

Figure 2: Formula evolution map generation
We generate a Formula Evolution Map (FEM), offline, to inter-

connect important/fundamental formulae in scientific publications.

Note that the formulae in the FEM cannot cover all the formulae

in the readings. Instead, it provides the potential to 1) project any

formula in any paper to the vertex(es) in FEM, and 2) trace the

formula evolution information on FEM for math-understanding.

To achieve this goal, we employ a large knowledge base,Wikipedia,

to generate FEM. There are two reasons we use Wikipedia: first,

Wikipedia contains a wealth of mathematical information, includ-

ing tens of thousands of fundamental formulae (with math-topic

and formula layout information); second, Wikipedia provides links

between pages, which can be important to generate formula evolu-

tion information. In this paper, we use the text information, formula

layout information, and link topology information extracted from

Wikipedia dump to generate FEM that enables an algorithm to esti-

mate formulae evolution over time. More importantly, the proposed

FEM can minimize the noisy formulae information.

The FEM generation process is illustrated in Figure 2, which

involves three steps: (a) formula evolution relation generation, (b)

formula evolution direction determination, (c) formula evolution

probability calculation.

(a) Formula Evolution Relation Generation: By using the

hyperlinks between Wikipedia pages and the co-occurrence rela-

tionships (in the sameWikipedia page) of formulae, we generate the

basic relation context of formulae. The formula evolution relation

generation can be modeled as:

R(fa , fb |W ) = Sgnr (wa ,wb ) =
{
1 Co(wa ,wb ) = 1| |wa = wb
0 otherwise

(1)

Here, R is a signum function Sgnr , that indicates the evolution

relation existence between formula fa and formula fb based on

the Wikipedia page networkW . wa is the home page of fa , and
wb is the home page of fb (extracted from the Wikipedia dump).

Co(wa ,wb ) = 1 indicates that there is a hyperlink betweenwa and

wb , and wa = wb means fa and fb are hosted in the same page.

When R(fa , fb ) = 1, there could be a candidate evolution relation

between fa and fb .
In the generated undirected formula relation network, each

formula is characterized as a vertex with multiple attributes: (1)

Wikipedia page title, (2) formula context information (250 charac-

ters), and (3) formula layout information.

(b) Formula EvolutionDirectionDetermination: In this study,
the evolution direction between formulae are determined by three

indicators (assumptions): (1) λt (f ) , formula birth time (formulae

could evolve from past to present); (2) λд (f ), formula generality

(formulae could evolve from fundamental to contextualized); (3)

λc (f ) formula layout complexity (formulae could evolve from sim-

ple to complex).

For a formula pair { fa , fb }, R(fa , fb |W ) = 1, the evolution di-

rection is first decided by λt . However, not every formula has λt
attribute. If the “birth time” of a formula is missing, we use λc to
determine the direction. To avoid the uncertainty caused by the

layout comparison, if the ratio of the complexity difference < 0.1,

we use λд as the final direction indicator.

To generate λt (f ), we use the title of home Wikipedia page to

represent the formula, then we use the greedy match algorithm in

a large academic paper corpus to find the earliest appearance of the

formula. Note that one formula may exist in multiple Wikipedia



pages. We use the first appearance time among the Wikipedia con-

cepts as this formula’s creation time. The smaller λt (f ) is, the
earlier the formula f appears.

Meanwhile, PageRank [23] is utilized to calculate the formula

generality λд (f ), for measuring the fundamental level of a for-

mula. The underlying assumption is similar as PageRank: more

fundamental formulae are likely to receive more links from other

formulae. λд is calculated via a formula-formula graph (generated

from the page-page wiki-graph), and each vertex in the graph is a

formula. The generality of a formula is voted by the links among

formulae. We hypothesize that formulae could evolve from past to

the present.

In this study, a formula semantic tree based approach is used for

calculating λc (f ). We first parse the LATEX expressions of formulae

and convert them into Presentation MathML expressions. Then we

construct a formula tree using a semantic tree-constructed algo-

rithm proposed in [12] (Figure 3 (a) shows an example of semantic

tree presentation of the formula x2+ 1

a+b ). After that, we extract for-

mula terms hierarchically from the constructed semantic tree. The

extraction algorithm is described in Algorithm 1. In the proposed

algorithm, there are two kinds of formula terms: original terms

and generalized terms. The original terms are generated directly

from the original substructures of the semantic tree presentation

of the formula. The generalized terms are proposed by changing

the variables and constants of the original terms into wildcards

(describe the sketch of the formula structure, for fuzz representa-

tion). Variables are replaced by ∗v , and constants are represented

as ∗c . There is a “level” attribute extracted for each term which

denotes the level of the term in the semantic tree whose root’s level

is 1. Figure 3 (b) shows the sub-tree levels and terms of formula

“x2 + 1

a+b ”. The similar formula tree layout presentation has been

proven an effective method for formula retrieval task [5].

Figure 3: (a) Semantic tree presentation and (b) term extrac-
tion of x2 + 1

a+b

Based on the formula semantic tree and its extracted terms, the

λc (f ) can be calculated as: λc (f ) =
∑N
i=1 (L(ti )), in which, N is

the total formula term number, ti is a formula term, and 1 ≤ i ≤ N ,

L(ti ) is the level of ti in the formula tree. The greater λc (f ) is, the
more complicated formula f is.

(c) Formula Evolution Probability Calculation: Although
Wikipedia provides multitudinous evidence that can be used to

infer candidate evolution relations, some of them can be noisy.

For instance, page “Artificial neural network” has a link to page

“Algorithm”, but not every formulae in “Algorithm” page can be

evolutionary to the “Activation function” formula, some of them

could be noisy. This kind of noisy formulae will not be useful for

math-content understanding. To address this problem, we propose

the formula evolution probability to characterize the reliability of a

formula evolution relation. The evolution probability from fa to fb
can be modeled as:

P(fa
e→ fb ) = π (ϕ(fa ),ϕ(fb )) (2)

where, P(fa
e→ fb ) is the formula evolution probability from fa to

fb , ϕ is a representation function, which can project each formulae

to a low-dimensional joint embedding space from context, layout

and generality viewpoints. π is probability scoring function based

on the learned formula embeddings.

Algorithm 1 Formula Semantic Term Extraction

Input: Formula Semantic Tree, ST
Output: Set of formula terms, T
1: Let O (ST ) be the original semantic tree

2: Let G(ST ) be the generalization of the semantic tree

3: Let L(ST ) be the level of the semantic tree

4: procedure Extractor(ST , L(ST ))
5: if ST is not a leaf then
6: T+ = (O (ST ), L(ST )) ▷ original term

7: T+ = (G(ST ), L(ST )) ▷ generalized term

8: for STi ← each child of ST do
9: Extractor(STi , L(ST ) + 1)
10: end for
11: end if
12: end procedure

In this work, we construct the formula representation via semi-

supervised graphical learning. Following the evolution relations in

FEM, we can simulate a random walk of fixed length l with a set of

parameters θ to guide the walker on the graph. Let fi denote the
ith formula in the walk, which can be generated by the following

distribution:

P(fi | fi−1) = tanh
[
τ (Pt , Pl , Pд |θ )

]
= tanh

[
θtPt (fi | fi−1) + θlPl (fi | fi−1) + θдPд(fi | fi−1)

] (3)

where P(fi | fi−1) denotes the normalized transition probability be-

tween fi and fi−1. τ (·) is a trivariate function that can fusion three

different kinds of transition probabilities: context Pt , layout Pl , and
generality Pд . θ =

{
θt ,θl ,θд

}
is the non-negative fusion param-

eters that control the contribution of each transition probability.

For this study, we set θt = θl = θд = 1, and more sophisticated

parameter tuning will be saved for future. tanh (·) is the hyperbolic
tangent function for normalization.

For context transition probability estimation, a 250-word text

window around the formulae was employed along with language

model with Dirichlet smoothing [35].

Pt
(
f ti | f

t
i−1

)
∝ Pt (f ti−1 | f

t
i )Pt (f

t
i ) (4)

f t· represents the context of a formula, Pt
(
f ti | f

t
i−1

)
is the posterior

probability, Pt (f ti−1 | f
t
i ) is the f ti−1 likelihood given f ti , p(f

t
i ) is

assumed to be uniform. We hypothesize that if two formulae share

the similar context, they may have a high evolution probability.

For formula layout, we calculate formula transition probability

by leveraging formula semantic layout tree and its extracted terms:

Pl
(
f ti | f

t
i−1

)
=

ωcov (f li , f
l
i−1)

∑
tn ∈f li−1

[ωдen (tn )ωlel (tn , f li , f
l
i−1)]∑

tn ∈f li−1
[ωдen (tn )]

(5)



where, f l· is the formula term set generated from the semantic

layout tree; ωcov (f li , f
l
i−1) =

f li
⋂
f li−1

|f li−1 |
, denotes the ratio between

matched term number and total term number of fi−1; ωдen (tn )
is the penalty parameter for the generalized terms, if tn is a gen-

eralized term, ωдen (tn ) is empirically set to 0.5 [12], otherwise,

ωдen (tn ) = 1; ωlev (tn , f li , f
l
i−1) is the term level weight, affected

by the minimum level distance of the matched formula term tn in fi
and fi−1, ωlevel (tn , f li , f

l
i−1) =

1

1+minj
{
|level (t,f li−1)−levelj (t,f li ) |

} .
We hypothesize that, if two formulae have similar layout trees, they

may have a high evolution probability.

Formula generality transition probability can be calculated as:

Pд(fi | fi−1) = λд(fi−1) (6)

which is the formula generality of fi−1. We hypothesize that, a

fundamental formula can have a high evolution probability to its

variants with more detailed contextual constraints.

We then use ϕ : F → Rd as the mapping function (from formula

vertexes) for representation learning, where d specifies the number

of dimensions. ϕ is a matrix of size |F | × d parameters. Feature

learning methods are based on the Skip-gram architecture [18]. For

every starting formula vertex f ∈ F , we define NS (f ) ⊂ F as a

network neighborhood (“context”) of vertex f generated through

the proposed neighborhood sampling strategy S (semi-supervised

randomwalk guided by θ ). The objective function can be formalized

as:

max
ϕ

∑
f ∈F

loдP(NS (f )|
−−−→
ϕ(f )) (7)

Stochastic gradient ascent is used to optimize the joint embedding

model parameters of

−−→
ϕ(·). Negative sampling [18] is applied for

optimization efficiency. In this study, we use cosine similarity (with

a ReLU function) of the optimized formula representations as π for

scoring the formula evolution probability.

By calculating the evolution probability for formula relation,

we are able to rule out the noisy relations (with low evolution

probabilities) and better explore the formula evolution trajectory

to help users understand the essence of the target formula.

3.2 Math-Information Need Characterization
To help students better understand the math-content of a scientific

publication in a course environment, we design a novel system,

PDF Reader with Math-Assistant (PRMA). As Figure 4 shows, the

new system has three main functions:

• Capture evidence and characterize students’ emerging im-

plicit/explicit information needs when encounter a formula under-

standing problem. For instance, students can ask a specific question

given a formula (explicit information need), or easily highlight a

formula with mouse in the paper, as evidence of an implicit infor-

mation need. In either case, the PRMA is able to extract the formula

layout presentation and formula context from the target PDF paper.

• Automatically project the target formula onto the formula

evolution map, which allows students to navigate the formula evo-

lution trajectory in FEM while helping them understand the target

formula.

• Automatically recommend high quality OERs for the target

formula, such as video lectures, slides, source code, or Wikipedia

pages, to resolve students’ information needs while helping them

understand the formula. (We crawl and pre-index massive OERs by

using meta-search algorithms provided in [15].)

At the front-end, the mathematical expressions are obtained by

a symbol dominance based formulae recognition algorithm pro-

posed in [36], and the formula context is extracted by a PDF parser.

At the backend, the PRMA has access to the generated FEM, the

list of assigned class readings (title, abstract, full content, associ-

ated topics and citation information), and the formula-based OER

recommendations algorithm.

Table 1: Formula projecting features for math-information
need characterization*

No. Projecting feature Mathematical Definition

1 Formula Context Feature p(f t
?
|f tc )p(f tc )

2 Formula Context Key-

word Feature

∑
ki ∈f t

?

p(f ki
?
|f tc )p(f tc )

3 Question Text Feature p(f qt
?
|f tc )p(f tc )

4 Question Text Keyword

Feature

∑
qk,i ∈f

qt
?

p(f
qk,i
?

|f tc )p(f tc )

5 Formula Layout Feature

∑
ti ∈f l

?

[ωдen (ti )ωlel (ti , f
l
c , f

l
?
)]

[ωcov (f lc , f l? )]
−1 ∑

ti ∈f l
?

[ωдen (ti )]

6 Paper Idea Feature p(f pabs
?

|f tc )p(f tc )
7 Paper Keywords Feature

∑
ki ∈f

pK
?

p(f ki
?
|f tc )p(f tc )

8 Weekly Topic Feature

∑
wi ∈f

pW
?

p(f wi
?
|f tc )p(f tc )

9 Context Evolution Fea-

ture

p(f tm |f tc )p(f tc )

10 Layout Evolution Feature

∑
ti ∈f lm

[ωдen (ti )ωlel (ti , f
l
c , f

l
m )]

[ωcov (f lc , f lm )]−1
∑
ti ∈f lm

[ωдen (ti )]

11 Generality Evolution Fea-

ture

λд (fc )

12 Evolution Distance Fea-

ture

|fm ⇝ fc |

1 Formula Text Feature Group 2 Formula Layout Feature Group

1 Paper Content Feature Group 2 Formula Evolution Feature Group

*Because of the space limitation, the detailed feature description(hypothesis)

will be available in https://github.com/GraphEmbedding/FEM

The algorithms presented in the next section can recommend the

optimized OERs given the math-information need, which will be

able to help readers better understand the essence of the targeted

formula. Meanwhile, readers can also provide usefulness feedback

for system recommended OERs. For instance, as Figure 4 shows,

readers can click “Good”, “OK”, or “Bad” for each recommended

OER given their information needs. The judgments and student

click information will be saved as system logs. The formula evolu-

tion explore behavior (click the formula evolution map) will also

be recorded, which will be important for formula-based OER rec-

ommendation algorithms, i.e., training learning to rank model, and

algorithm evaluation.

Although FEM can be potentially helpful for MCU, it’s still chal-

lenging to characterize the student’s emerging information needs

while facing a formula in the target paper. The critical problem is

how to “project” a puzzling formula to one or a number of formula

vertex(es) in the FEM.

To address this problem, by using PRMA, we employ multi-

ple Formula Projecting Features (FPF) to characterize the math-

information need. The proposed FPFmainly focuses on four aspects:

(1) the math-information need can be related to formula layout, (2)



Figure 4: PDF Reader with Math-Assistant (PRMA) System

related to the text information of formula, e.g., students’ questions

about the formula, context and their associated topics, (3) related to

the content of paper where formula exists, i.e., abstract, keywords

and weekly topics in the syllabus (in a course environment), (4)

related to the formulae located in the evolution trajectories in FEM

given a matched formula. Detailed math definition is provided in

Table 1.

3.3 OER Recommendation via FEM Mining
Figure 5 illustrates the graphical OER recommendation via FEM

mining towards the mathematical query from PRMA, the vertexes

and edges are depicted in Table 2. There are totally 48 offline OER

ranking features (ORF) constructed
1
for this study, which can be

divided into two groups:

(1) text-mining-based feature group, for instance, we calculate

the p(OER | f ormula) based on the OER’s text description and for-

mula context using the language model. Note that we utilize the

reading paper’s content information (abstract, keywords, andweekly

topics) for constructing text-mining-based features, which means

even for a same formula, if the reading paper is changed, the rec-

ommended OERs will change correspondingly.

(2) Heterogeneous-graph-ranking feature group, a formula ver-

tex in FEM can random walk to the OERs in the scholarly hetero-

geneous graph, i.e., OER ranking given a formula vertex in FEM.

In this study, we employ meta-path plus random walk from the

formula to candidate OER as graph-ranking features. For instance,

F ∗
m→ K

p
→ R? is a graph-ranking feature, which denotes that if an

OER has a high probability relation from the keywords (topics) ver-

texes extracted from question formula’s context, this OER should

be recommended. The random walk probability can be estimated

by:

r (v(1)i ,v
(l+1)
j ) =

∑
t=v (1)i ⇝v (l+1)j

RW (t), RW (t) =
∏
j
w(v(j)i j ,v

(j+1)
i, j+1)

(8)

1
Because of the space limitation, we cannot providemore detailed OER ranking features.

The detailed feature list will be available in https://github.com/GraphEmbedding/FEM

where t is a tour from v
(1)
i to v

(l+1)
j following the meta-path[30],

and RW (t) is the simulated random walk probability of the tour t .

Suppose t = (v(1)i1 ,v
(2)
i2 , . . . ,v

(l+1)
il+1 ), w(v

(j)
i j ,v

(j+1)
i, j+1) is the weight of

edge v
(j)
i j → v

(j+1)
i, j+1. More detailed algorithm can be found in [15].

Figure 5: Graphical representations of OER recommenda-
tion via FEM mining

In section 3.2, we proposed a number of FPF (i.e., M formula

projecting features, see Table 1) for formula projecting, and the

ORF (i.e., K OER ranking features) are presented in this section. By

using the formulae in FEM as the transition, we integrate FPF and

ORF to recommend useful OER for math content understanding.

The OER recommendation probability P(vr |vf ? ), i.e., an OER r

based on the query formula f ?, can be calculated as:

P(vr |vf ? ) =
M∑

m=1

K∑
k=1

ωm,k · EFm ∈F PF (vf ? ,vf ) · EFk ∈ORF (vf ,vr )

(9)

Here,ωm,k is the featureweight formth FPF andkth ORF,EFm ∈F PF
(vf ? ,vf ) is the online query formula projecting probability based

on different FPF, EFk ∈ORF (vf ,vr ) is the OER ranking probability

based on different ORF. There are totallyM ∗ K features for OER

recommendation. In order to avoid laborious parameter tuning,

we utilize learning to rank algorithm [11] to jointly optimize the



feature weights for FPF and ORF. The training data (OER usefulness

judgments) are collected via PRMA system.

Table 2: Vertexes and edges of OER recommendation via
FEM mining

Vertex Description

R Open Education Resource

P Paper

K Keyword

W Weekly Topic (from Syllabus)

F Formula

F ?
Query Formula

C?
Context of Query Formula

Q ?
User Additional Question

Edge Description

P
h→ K Paper is related to keyword (using Labeled LDA [26])

P
a→W Paper is assigned to weekly topic (probability)

P
p
→ R Paper-resource relationship based on p(R |P ) (language model)

K
cite→ K Keyword cites keyword (probability)

K
co→ K Keyword-keyword co-occurrence (probability)

K
cont→ P Keyword is contributed by paper (using PageRank with prior [32])

K
p
→ R Keyword-resource relationship based onp(R |K ) (language model)

W
co→W Weekly topic-weekly topic co-occurrence (probability)

W
p
→ R Weekly topic-resource relationship based on p(R |W ) (language

model)

R
r→ R OER is related to OER (collected from service sites)

F
p
→ R Formula context-OER content relation based on p(R |F ) (language

model)

F
m→ K Formula context is related to keyword (greedy match algorithm)

F
e→ F Formula evolves to formula (probability)

C?
s→ F ?

Context surrounds formula

Q ?
at→ F ?

Additional question is attached to formula

F ?
p
→ F Query formula is online projected to the formula on FEM

4 EXPERIMENT
4.1 Dataset and Experiment Setting
We tested this reading system and the associated mathematics con-

tent understanding algorithms in a real learning environment. Two

graduate-level information retrieval courses at Indiana University

were used for this experiment. A total of 52 students (Masters and

Ph.D.s) voluntarily participated this experiment, and they were

required to use the PRMA system for eight weeks (with 15 required

readings, 10 chapters of an IR book, and 5 ACM journal papers).

They could use PRMA with university account, and PRMA enables

formula understanding function (e.g., highlight a formula in the

reading and access formula evolution trajectories in FEM as well

as recommended OERs). Meanwhile, we asked each participant to

provide OER relevance judgments for the system-recommended

OERs. There were a total of 7,099 valid judgments collected (for

622 student requests), and we used those judgments to train the

learning to rank model and to evaluate the algorithm performance.

Among the 622 student requests, only 29 (4.7%) requests contained

an explicit question. This phenomenon indicates that most students

don’t want to input a specific question when facing a formula in

PRMA.

At the backend of PRMA, we created a heterogeneous graph

for OER recommendation. For paper vertexes, we used 248,893

publications from 1,553 venues (in ACM digital library). The paper

vertexes were connected to 7,190 keyword labeled topics, and the

publication data were also used to generate formula birth time

λt (f ). According to the syllabus, there were a total of 60 weekly

topics. By using meta-search, we collected a total of 1,112,718 OERs.

We used a Wikipedia dump of July 30, 2014. There were 358,116

raw formulae, 34,683 formula home pages, 198,336 page-formula

ownership relations, and 74,947,670 page hyperlinks. For the exper-

iment, we kept the formulae featuring at least two variables and

three operators. There were 194,150 formulae left, and the generated

FEM had 21,292,157 potential formula evolution relations.

As Figure 4 (b) shows, for each query formula, we visualized a

three-level (distance) target-formula-centered evolution sub-graph.

Meanwhile, the visualized formula vertex had at least 0.5 probability

(P(fa
e→ fb ) ≥ 0.5) to connect to its neighbor.

4.2 Experiment Results

Figure 6: Statistics of OER judgements
Among the 622 student requests, 610 of them (98.1%) contained

at least one OER rated as “Good” or “OK” for their “mathematics

content understanding”. For all the OER judgments, participants

rated 19.72% of the recommended OERs as “Good”, 37.61% as “OK”,
and 42.67% as “Bad”. Note that, the students were asked to rate

at least top 5 OERs for each request, because we need to collect

a amount of “Bad” judgments for model training and evaluation.

Based on the target-centered formula evolution map provided by

PRMA, users could not only consume the recommended OERs for

target formula but also freely explore the formula evolution map

to check the recommended OERs for ancestor formulae. For any

formula request, PRMA could record the user OER judgement, the

ancestor formula (on FEM) that hosted the OERs, and the distance

from ancestor formula to target formula on FEM. As Figure 6 (a)

shows, while the (evolutionary) distance between target and an-

cestor formula increasing, the percentage of “Good” judgements

for OERs (ancestor formula hosted) raises (from 18.04% to 28.77%).
Meanwhile, as Figure 6 (b) indicates, there are more percentages

of “Good” rating OERs from the ancestor formulae. This finding

demonstrates that the ancestor formulae on FEM can be especially

important to assist students better consume the math-content in a

paper, and, when the target formula is complex, the background in-

formation (e.g., the ancestor formulae on FEM) can be more useful.

In order to further explore the relationship between OER judge-

ments and evolutionary distance, we calculate the Average Judge-

ment Distance (AJD) from ancestor to question (target) formula on

FEM for each type of judgements: AJDtype =
∑Ntype
i=1 di
Ntype

. Ntype is

the total number of a specific type of judgement (e.g., “Good”, “OK”,

etc.); di should be one of {0, 1, 2, 3}, representing the evolutionary

distance between OER hosted formula and target formula, for ith



judgement of this specific type. The result, AJD
“Good ′′ (0.92) >

AJD
“OK ′′ (0.91) > AJD

“Bad ′′ (0.88), indicates the remoter ancestor

formulae (with recommended OERs) can be more helpful for math

information understanding. This finding also proves FEM can be

effective to address the student’s math-information need for math-

understanding (without FEM, it is not feasible to trace the ancestor

formulae and math-evolution for information understanding).

Table 3: Baseline groups and comparison groups for OER
ranking experiment

Baselines

Rankabs

Use the reading’s abstract to represent the user’s math-

information needs, then generate the OER ranking based

on p(OER |abstract ) (using Language Model with

Dirichlet prior smoothing [35], the same below).

Rankkeyword
Use the reading’s keywords to represent the user’s math-

information needs: p(OER |keywords).
Rankcontext

Use the formula’s context to represent the user’s math-

information needs: p(OER |context ).
Comparison Groups

L2Rlayout
L2R (learning to rank) model using formula layout

feature[12] plus all OER ranking features.

L2Rtext
L2R model using formula context feature, formula context

keyword feature, question text feature and question text

keyword feature plus all OER ranking features.

L2Rcontent
L2R model using paper idea feature, paper keywords fea-

ture and weekly topic feature plus all OER ranking fea-

tures.

L2Rmultiple

L2R model using formula layout feature group, formula

text feature group and paper content feature group plus

all OER ranking features.

L2Rall
L2R model using all formula projecting features plus all

OER ranking features.

1 Without FEM 2 With Partial FEM 3 With Complete FEM

As this study is not focusing on learning to rank (L2R), we used

a relative simple list-wise algorithm, Coordinate Ascent[17], which

iteratively optimizes a multivariate objective ranking function, for

formula and OER features integration and algorithm evaluation.

Meanwhile, we needed to employ the baseline groups for compari-

son. However, as mathematics content understanding is a newly

proposed problem, and few existing algorithms addressed this prob-

lem. We chose three classic methods as baseline groups (without

FEM assisted) and five L2R models for different feature groups

(with partial or complete FEM assisted) as comparison groups. The

baselines (e.g., text and formula retrieval models) and comparison

groups are listed in Table 3.

From an NDCG viewpoint, we scored Good = 2,OK = 1, and

Bad = 0. The OER recommendation performance can be found in

Table 4. As the OER recommendation was more like a QA problem

and students were more interested to find the first useful resource,

we used MRR (Mean Reciprocal Rank) as the metric to train the

learning to rank model. For evaluation, 10-fold cross-validation was

used.

From a performance viewpoint, evaluation results show that,

first, FEM can provide important information for OER recommen-

dation and math-understanding. For instance, L2Rall (the best per-
formed method empowered with complete FEM information), com-

pared with the baseline groups (without FEM assisted), P@3 has

an average increase of 15.2%, NDCG@3 improves with 20.8%, MAP

increases 9.7% and MRR enhances 10.9%. Meanwhile, MRR score

of L2Rall is higher than 0.88 (which means students are finding

the useful OERs (“Good” or “OK”) in the 1st position in almost

result ranking list). This finding is also confirmed in the exit survey

where 72.73% of participants believe the PRMA system along with

recommended OERs can provide precise and useful information

for math-understanding. It is clear that FEM plays a critical role

in the proposed framework, and FEM can provide very helpful

information for math content understanding.

Second, based on the student judgments, we found that a number

of formula projecting features, can be potentially useful. From a

ranking viewpoint, all L2R models outperform the baseline groups

ofRankabs andRankkeyword (L2Rmodel using only formula layout

feature group or formula text feature group can not outperform the

baseline ofRankcontext ). By combiningmultiple formula projecting

feature groups, the ranking model L2Rmultiple outperforms all

baseline groups (including Rankcontext ), which also proves L2R

approach is an effective method for integrating features.

Third, while evolution relations among massive formulae are

very useful for math-understanding, various kinds of information,

i.e., formula layout, context, and generality, can be all useful for

evolution relation discovery. For instance, though the comparison

groups (based on partial FEM features) perform decently in the

experiment, L2Rall (with comprehensive FEM mining features)

is significantly superior (p < 0.0001) than all other groups for

almost all the evaluation metrics. This finding supports our initial

hypothesis that evolution relation is a latent variable hiding behind

formula context and layout, and we can hardly explore it by using

a single kind of evidence.

4.3 Exit Survey
The goal of this proposed study is to design a novel algorithm/system

to assist students to better understand the mathematics content

in a paper. Although from an OER ranking viewpoint the experi-

ment results are positive, we designed another exit survey to fur-

ther proof the usefulness of the new reading environment and the

effectiveness of the new formula-understanding method. In the

survey, we asked each participant seven questions (at the end of

the experiment), including “precision”(Q1), “satisfaction” (Q2),
“usefullness” (Q3), “relevance” (Q4), “user-friendliness” (Q5),
“usability” (Q6) and “effectivity” (Q7)2. Based on the students’

feedback, 72.73% of participants believed the new system along

with the formula-understanding method can provide precise and

useful information, and 43.75% find the proposed method can help

them better understand the math-content in a paper “most of the

time" (another 31.25% reported it is helpful “about half of the time").

From a system usability perspective, 78.85% of participants found

the formula highlight function in PDF and OER recommendation

functions were easy or very easy to use.

Overall, 63.63% of participants reported that the system and

formula understanding method can be helpful or very helpful to

assist them to better understand the target paper (only 12.12%

reported the new functions are not helpful, and others were neutral).

For the OER usefulness, 75.75% participants are satisfied with the

quality of the recommended OERs (especially for videos and slides).

Participants reported, comparing narrative content, the OERs are

more helpful for math-understanding. It is clear that the proposed

system and math information understanding method achieves the

2
More detailed information can be found at https://github.com/GraphEmbedding/FEM



Table 4: Measures of different OER ranking algorithms (Significant test: L2Rall vs. other groups; †p < 0.01, ††p < 0.001,
†††p < 0.0001)

Ranking NDCG@3 NDCG@5 NDCG@all P@3 P@5 MAP MRR
Rankabs 0.5536 0.5860 0.7156 0.5544 0.4932 0.7309 0.7764

Rankkeyword 0.5744 0.6004 0.7268 0.5635 0.4973 0.7344 0.7833

Rankcontext 0.6483 0.6642 0.7589 0.6293 0.5422 0.7689 0.8328

L2Rlayout 0.5771 0.6031 0.7253 0.5680 0.5000 0.7393 0.7861

L2Rtext 0.6408 0.6531 0.7567 0.6202 0.5361 0.7671 0.8509

L2Rcontent 0.6571 0.6731 0.7651 0.6440 0.5551 0.7815 0.8497

L2Rmultiple 0.6798 0.6908 0.7777 0.6497 0.5612 0.7961 0.8717

L2Rall 0.7150††† 0.7252††† 0.7969††† 0.6712†† 0.5776†† 0.8171††† 0.8848†

1 Without FEM Assisted 2 With Partial FEM Assisted 3 With Complete FEM Assisted

goals, and the algorithms developed in this paper can be promising

for scaffolding in education domain.

5 RELATEDWORK
Scientific Information Understanding:Help students better un-
derstand and consume publications is an essential task in education

and cyberlearning domains. Since 1976 [34], the term “scaffolding”

has been widely used in educational research [24, 25]. In particular,

the concept of scaffolding is applied to the studies of computer-

assisted learning environments, also known as computer-mediated

scaffolding [25]. One of the most recent efforts utilizes existing

social tagging and annotation tools. Social tagging/annotation has

produced positive results in a number of tasks, including the pro-

motion of learning [9, 29, 33]. Prior studies, however, also found

those scaffolding approaches, by leveraging social tagging, can be

quite limited [15, 22], and students cannot essentially benefit from

such systems when reading a challenging text. Researchers only

recently began to focus on the usefulness of Open Educational

Resources (OERs). For instance, Dennis, et al. [3] found that an

additional video presentation had significant positive impacts on

students’ learning, and more recently, Liu [13, 14] found ODRs, e.g.,

presentation videos/slides and Wikipedia pages, can help scholars

better understand scientific readings. Meanwhile, more recent stud-

ies [8, 15] found that text and graph mining methods can be used

to automatically recommend high quality OER to help students

understand the paper text content. However, this approach cannot

be applied to address the formula understanding problem.

Scientific Topic Evolution: Topic dynamics and evolution has

been recently investigated. Laura Dietz et al. [4], for example, de-

vised a probabilistic topic model that explains the generation of

documents. The model incorporated topical innovation and topical

inheritance via citations. Blei and Lafferty [2] proposed a Dynamic

Topic Model (DTM), which explicitly characterized the chronologi-

cal nature of sequential corpora by utilizing a Markov chain of term

distributions over time. Based on [2], Gerrish and Blei proposed

the Document Influence Model (DIM) [6]. This model respected the

ordering of the documents and not only tracked how underlying

theme has changed over time, but also captured how past articles

exhibit varying influence on future articles. More recently, Jiang

et al. [7] investigated topic evolution problem by integrating both

text and citation data. Unlike earlier efforts, [7] generated a het-

erogeneous graph with various relations between topics and paper,

i.e., citation and topic evolution, and supervised random walk was

used for citation recommendation.

However, all the existing methods cannot be used to address

scientific formula evolution for two reasons. First, one complex

formula (in a paper) may implicitly associate with different kinds of

topics, and these topics may not appear in the formula context (text

information is not complete). Second, scholarly publication citation

information may not be sufficient for formula understanding, e.g.,

“LDA” studies do not necessarily cite “Beta distribution” or “Bayesian

inference” foundations (that can be important to help readers to

understand the formula).

Formula Search and Layout Mining: Formula search is an

important area in information retrieval. Recently, National institute

of informatics Testbeds and Community for Information access

Research (NTCIR) developed an evaluation collection for mathe-

matical formula search with the aim of facilitating and encouraging

research in formula search and its related fields [1]. For formula

search, one of the main challenges should be formula information

extraction, namely how to convert formulae into terms which were

utilized to build the index. The same with text tokenizer, a text-

based category of tokenizers was employed for formula retrieval

and formula layout mining [19–21]. Different from plain text, for-

mulae were highly structured. They can be expressed and parsed as

tree structures. Thus, tree-based methods were the most important

tokenization approach in recently proposed formula search sys-

tems [10, 27, 28, 31]. However, formula understanding and formula

evolution mining are novel problems, and existing formula search

methods cannot be directly applied.

6 CONCLUSION
In this study, we propose a novel problem-Mathematics Content

Understanding-to assist readers to better understand and consume

the math-content in scientific publications by leveraging Formula

Evolution Map (FEM) and high-quality OERs. By using the PRMA

cyberreading system, students/scholars can easily highlight a target

formula in a PDF reading, and the proposed algorithms can project

the query formula to the formula(e) vertex(es) in FEM as well as rec-

ommend OERs to users. In the offline process, we extract formula

evolution relations from a massive Wikipedia dump. Evaluation

shows that formula relations on FEM are fundamental and enlight-

ened for math-understanding. Most of the experiment participants

find the proposed method/system can effectively help them better

understand the math-content and readings in a cyberreading envi-

ronment. Meanwhile, students reported that the formula highlight

function was easy to use and the recommended OERs can be very

useful for their understanding of the math-content.



For the algorithm evaluation, we found that: first, the proposed

OER recommendation via FEM mining is effective. It achieves the

best performance for all evaluation metrics. Compared with the

baselines without FEM assistance, the newmodel is significantly su-

perior. Second, formula evaluation information is especially impor-

tant for math-content understanding tasks, i.e., compared with the

other comparison groups with partial FEM assistance, the proposed

method with complete FEM information has an average increase of

8.2% for P@3 and an average increase of 11.9% for NDCG@3.

The methodological limitations of this work is that the parameter

θ of evolution probability calculation is treated equally without

tuning. This is caused by two reasons. First, there is no existing

formula evolution relations for training. Second, the number of

scientific knowledge base documents and associated formulae is

huge, and the time cost of direct parameter tuning can be very

high. In the future, we will explore the combination of knowledge

base and academic corpus in depth, and try to use more features

(e.g., selected paper citation relation information) in the formula

evolution mining. Meanwhile, we will propose more sophisticated

optimization methods for FEM evolution probability parameter

tuning.
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