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ABSTRACT
Recommender systems are aimed at generating a personalized
ranked list of items that an end user might be interested in. With
the unprecedented success of deep learning in computer vision and
speech recognition, recently it has been a hot topic to bridge the gap
between recommender systems and deep neural network. And deep
learning methods have been shown to achieve state-of-the-art on
many recommendation tasks. For example, a recent model, NeuMF,
first projects users and items into some shared low-dimensional
latent feature space, and then employs neural nets to model the
interaction between the user and item latent features to obtain
state-of-the-art performance on the recommendation tasks. NeuMF
assumes that the non-interacted items are inherent negative and
uses negative sampling to relax this assumption. In this paper, we
examine an alternative approach which does not assume that the
non-interacted items are necessarily negative, just that they are
less preferred than interacted items. Specifically, we develop a new
classification strategy based on the widely used pairwise ranking as-
sumption. We combine our classification strategy with the recently
proposed neural collaborative filtering framework, and propose a
general collaborative ranking framework called Neural Network
based Collaborative Ranking (NCR). We resort to a neural network
architecture to model a user’s pairwise preference between items,
with the belief that neural network will effectively capture the la-
tent structure of latent factors. The experimental results on two
real-world datasets show the superior performance of our models
in comparison with several state-of-the-art approaches.
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1 INTRODUCTION
With the explosive growth of social media and e-commerce, we

are living in the era of information explosion. Personalized recom-
mendation is developed to alleviate the dilemma of information
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overload, and has become a core component of many popular e-
commerce and social media services. Collaborative filtering (CF)
[10, 16, 19] is the most popular approach to personalized recommen-
dation, which has been extensively studied in the past years. The
two broad categories of CF are neighborhood-based approaches and
model-based approaches. Neighborhood-based approaches, such
as itemkNN [21], first employ similarity metric to identify a set of
similar items, and then generate top-N recommended items based
on those similar items. They can give explainable recommendations,
but the relevance of their recommendation is lower in comparison
with model-based methods. Model-based methods [5, 10, 19], espe-
cially latent factor models (LFM), map both users and items into
a joint low-dimensional latent space. The prediction for a user’s
preference on an item is estimated by the inner product of the
corresponding user and item latent vectors.
Implicit feedback refers to the scenarios where there are exam-

ples of items users prefer, but lack of examples of items they dislike,
e.g., retweeting history in twitter, purchase history in e-commerce.
LFM have achieved state-of-the-art onmany recommendation tasks,
however, traditional LFM methods suffer from the implicitness in
implicit feedback. To address this issue, several variants of LFM has
been proposed. For example, Hu et al. [10] proposed a Weighted
Regularized Matrix Factorization (WRMF) method that weights ob-
served and unobserved ratings differently and solves a regularized
Least-Squares problem. Rendle et al. [18] proposed Bayesian Per-
sonalized Ranking (BPR) that formulates Top-N recommendation
as a ranking problem and optimizes the Bayesian pairwise ranking
criterion, which is the maximum a posteriori (MAP) estimation
of users’ pairwise preference between observed and unobserved
items.
In the literature [7, 9], it has been pointed out that the perfor-

mance of LFM is hindered by using inner product as the user-item
factor interaction function. For example, inner product does not
guarantee the triangle inequality condition, as a result it is hard
for the latent vectors of LFM to reliably capture the item-item or
user-user similarity. To address this problem, Hsieh et al. [9] pro-
posed to use metric learning[13] to simultaneously capture users’
preference and the user-user and item-item similarity. While He
et al. [7] argued that inner product only captures linear interactions,
proposing a general framework named NCF that employs neural
networks to learn a function from data to effectively capture the
nonlinear interaction between user factor and item factor. NCF uses
the learned interaction function to replace inner product and gives
promising results.
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Nevertheless, we argue that the learning strategy of NCF might
hinder its performance. NCF labels observed interactions as pos-
itive instances, and all unobserved interactions or some sampled
unobserved interactions are labeled as negative instances. If all
unobserved interactions are treated as negative instances, then it
suffers from two limitations: first, the negative class dominates the
training data, which can degrade the predictive accuracy for the in-
frequent positive class (known as Class Imbalance Problem); second,
treating non-interacted item as negative feedback does not conform
to the facts that non-interacted item can also be interpreted as the
user is not aware of it. Sampling some unobserved interactions as
negative instances can alleviate the first problem, but it’s still at the
risk of introducing false negative examples.
To tackle the problem above, in this paper, we develop a novel

classification strategy for collaborative ranking. Based on thewidely
employed pairwise preference assumption that a user prefers ob-
served items over all other unobserved items, we construct a posi-
tive preference set and a negative preference set from rating data.
Then, the elements in positive preference set are labeled as 1, and
0 for negative preference set, as seen in section 4.2. Our classifica-
tion strategy has the following advantage: (1) The total number of
positive examples are equal to the total number of negative exam-
ples, which gives us hope to solve the Class Imbalance Problem; (2)
Under our classification strategy, negative instances do not assume
non-interacted items to be negative feedback, just that they are less
preferred than interacted items. Finally, we combine the proposed
classification strategy with NCF to present a neural collaborative
ranking framework.

2 RELATEDWORK
2.1 One-Class Collaborative Filtering

When it comes to implicit feedback, we cannot simply treat the
non-interacted items as negative examples, because the reason why
a user doesn’t interact with an item is ambiguous, e.g., the user may
dislike it or the user is just unaware of it. Implicit feedback scenarios
are also referred to as one-class collaborative filtering (OCCF) prob-
lems [16]. One crucial issue of OCCF is lack of negative feedback.
Matrix Factorization (MF) is the most popular collaborative filtering
technique. However, traditional MF approaches are incapable of
handling the no negative feedback problem of OCCF. Because if the
missing user-item interactions are treated as negative samples or
just ignored, then the learner cannot generalize well.

To tackle the above problem, several approaches have been pro-
posed. According to how the missing data is used, existing methods
to OCCF can be classified into two categories e.g., sampling based
approaches [7, 16, 18] and whole-data based approaches [10]. The
former samples negative examples from the unobserved user-item
interactions, while the latter includes all the unobserved user-item
interactions as negative examples and uses a conditional weight to
demote the influence of these ambiguous examples. We can also
mainly categorize these approaches into point-wise methods and
pairwise methods, according to how the relevance order is learned.
Point-wise approaches generally regard user ratings as categorical
labels or numerical values, and try to learn the relevance scores of
missing data directly. While pairwise approaches try to capture the

preference order between missing data. Pairwise approaches gener-
ally improve the ranking performance over point-wise approaches
[1, 14].

2.2 Deep Neural Networks
There are many existing works trying to bridge the gap between

deep neural networks (DNNs) and the task of collaborative filtering.
A pioneering work along this direction is proposed by [20], they
adopted a variant of Restricted Boltzmann Machine, which is a two-
layer undirected graphical model consisting of softmax visible units
and binary hidden units, to perform the task of rating prediction.
Hybrid collaborative filtering methods, which combine deep learn-
ing with MF, has received much attention recently. These work
mainly focuses on leveraging deep learning models like autoen-
coders [15, 26] or CNN to model side information (texts or images)
to regularize latent user or item factors. Typical approaches include
Collaborative Deep Learning (CDL) [26] and Convolutional Matrix
Factorization (ConvMF) [11]. The former employed SDAE [24] to
model texts, while the latter argued that bag-of-words model like
SDAE has an inherent drawback, and proposed to use CNN to learn
more effective latent features. In spite of their promising results,
these approaches generally try to integrate deep learning with con-
ventional recommender systems, no much attention has been paid
to applying deep learning to develop pure collaborative filtering
approaches to OCCF.
Another line of work tries to use deep learning to make rec-

ommendation directly. For example, Cheng et al. [4] proposed a
context-aware recommendation method called Wide&Deep, which
first embedded features into latent space then used a multi-layer
perceptron (MLP) on the concatenation latent vectors to learn the
latent structure. The idea using MLP on the concatenation latent
vectors latter was modified by He et al. [10], they proposed a gen-
eral framework for neural network based collaborative filtering
(NCF). NCF takes advantage of the one-class nature of implicit
feedback and casts OCCF as a binary classification problem. More
recently, the attention mechanism has been introduced to the task
of collaborative filtering. In [3], the proposed model ACF adopted
item- and component-level attention to address the implicitness in
users’ interactions with multimedia content. ACF used two atten-
tion sub-networks to capture user’s preference degree in item level
and component level. Item-level attention was employed to score
the item preferences, while the component-level attention was em-
ployed to capture interesting components in multimedia content.
Again, it is worth highlighting that most of these work focuses on
recommendation scenarios with rich feature, while no much atten-
tion has been paid to deep learning for pure collaborative filtering
approaches to OCCF.

3 PRELIMINARIES
Assume that we have a set of usersU and a set of items I, with

m = |U| and n = |I | respectively. R ∈ {0, 1}m×n is the user-item
rating matrix, where Rui indicates whether user u rated item i or
not. We denote by I+u the set of the items rated by user u. Matrices
U ∈ Rk×m , V ∈ Rk×n are the latent representations of users and
items respectively,Ui denotes the i-th column ofU , andVi likewise.
The goal in OCCF is to obtain a predicted ranking over items.
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3.1 Latent Factor Models
The basic idea of latent factor models is to transform both users

and items into some shared low-dimensional latent feature space.
Matrix factorization is the most popular technique to derive latent
factor models. Formally, let denoteW as some weighting matrix,
the objective of MF is to minimize the following regularized squared
loss:

min
U ,V

∑
i ∈U, j ∈I

Wi j · (Ri j −UT
i Vj )

2 + λ(| |U | |2 + | |V | |2), (1)

where λ is the regularization hyperparameter. One classical MF
approaches is Singular Value Decomposition (SVD). In SVD,W
is conditioned on whether a user has interacted with an item or
not, e.g.,Wi j = II(Ri j > 0), where II(·) denotes the indicator func-
tion that returns 1 if the statement is true and 0 otherwise. This
weighting scheme is inappropriate in implicit scenarios, as it will
lead to trivial but useless solutions (e.g., all the miss entries of R
is predicted as 1). An alternative approach is to use some weight-
ing scheme to give larger weight to observed ratings meanwhile
small but non-zero weight to unobserved ratings, which leads to
the WRMF method [10].

3.2 Bayesian Personalized Ranking (BPR)
An alternate strategy to address the implicitness in OCCF is BPR.

Instead of predicting the relevance scores directly, BPR models
a user’s preference over two items, where one of the item is ob-
served and the other is not. BPR is a well-known pairwise ranking
optimization framework, which assumes that the known positive
preferences over observed items are ranked higher than all the
other unknown preferences over unobserved items. Let DS denote
the triplets of the form (u, i , j), u is a user, i is an observed item, j
has not been observed yet:

DS = {u ∈ U, i ∈ I+u , j ∈ I ∧ j < I+u } (2)

BPR optimizes a loss over a (user, item, item) triplet, the following
optimization criterion is used for personalized ranking (BPR-OPT):∑

(u,i, j)∈DS

−lnσ (x̂ui j ) + λΘ | |Θ| |2, (3)

where σ (x) = 1
(1+e−x ) is the sigmoid function, Θ is the parameter

vectors, λΘ is the regularization hyperparameter. In particular, BPR-
MF is obtained when x̂ui j is predicted by matrix factorization:

x̂ui j = U
T
u Vi −UT

u Vj . (4)

4 PROPOSED METHOD
In this section, we will introduce our Neural Collaborative Rank-

ing (NCR) model in detail. We first describe our neural network
based pairwise ranking model, elaborating how to learn NCR with
a probabilistic model that emphasizes user preference over a pair
of observed and unobserved items. We then show the relations be-
tween our model and BPR-MF, and develop a shallow model using
linear interactions between latent vectors. Next, a deep instantia-
tion of NCR using multi-layer perceptron to model latent features
is proposed to investigate deep neural networks for collaborative
ranking. MLP endows our model with a high level of nonlinearities.
Finally, a new pairwise ranking model unifying the strengths of

linear and nonlinear interactions for modeling latent features is
presented.

4.1 General Framework
We now elaborate NCR, our proposed general framework for col-

laborative ranking based on neural network. In order to obtain a full
neural treatment of collaborative ranking, following Wide&Deep,
we adopt feed-forward neural networks to model a (user, item, item)
triplet interaction ŷui j , as shown in Figure 1. Our model consists
of three layers, the bottom embedding layer, the middle hidden
layers and the output prediction layer. Hereinafter, we elaborate
the neural network architecture layer by layer.

u i j

Layer 1

Layer 2

Layer N

Vi

uij

Uu Vj

……

ŷ

Hidden Layers

Prediction

Embedding Layer

Figure 1: Network Architecture for Neural Collaborative
Ranking

Embedding Layer. The goal of the embedding layer is to trans-
form both users and items into some shared low-dimensional latent
feature space. After embedding, we acquire a dense vector repre-
sentation for each user and item. This shares the same spirit of LFM
mentioned before. Formally, let (u, i, j) be an input triplet, we use
embedding table lookup to obtain three embedding vectorsUu ,Vi
and Vj , respectively. The embedding layer can be easily extended
to cover a wide range of auxiliary information, such as topic infor-
mation [25] and multimedia content [3]. Since in this work we only
focus on the pure collaborative ranking setting, we do not take any
side information into account.

Hidden Layers. The hidden layers are a stack of fully connected
layers built above the embedding layer. The obtained dense vectors
from embedding layer are concatenated together, resulting in a
dense vector jointly encoding user preference and item attribute.
Then the concatenated vector is fed into the hidden layers. Hidden
layers are the key to endow our model with the capacity to learn
highly nonlinear interactions between latent features. In particular,
the size of the last hidden layer determines the model’s capability,
so we term it as predictive factors.
Let N be the number of hidden layers, the concatenated vector

are propagated forward layer by layer, so we can formulate the
interaction function f as follow:
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f (Uu ,Vi ,Vj ) = fN (· · · f2(f1(Uu ,Vi ,Vj ))), (5)
where fl (l = 1, 2, · · · ,N ) denotes the mapping function for the l-th
hidden layer.

Prediction Layer. The prediction layer maps previous layers’
output to the prediction score ŷui j . ŷui j expresses the extent user
u prefers item i to item j. The prediction score given by NCR can
be formulated as follows:

ŷui j = fout (fN (· · · f2(f1(Uu ,Vi ,Vj )))), (6)

where fout denotes the the mapping function for the output layer.
In our case, it’s the sigmoid function.
In this paper we choose to use a set of unified hidden layers

to model the latent structure of a (user, observed item, unobserved
item) triplet. Another choice is to employ two sets of hidden layers
to model (user, observed item) and (user, unobserved item) pairs,
respectively. Then the prediction score is formulated as follows:

д(Uu ,Vi ) = fout (fN (· · · f2(f1(Uu ,Vi )))) (7)

д(Uu ,Vj ) = fout (fN (· · · f2(f1(Uu ,Vj )))) (8)
ŷui j = д(Uu ,Vi ) − д(Uu ,Vj ) (9)

We consider the former being more feasible, the intuition behind
is that it also takes the nonlinear interactions between items into
account. For the latter, we leave it as a future work.

4.2 Model Learning
To learn the parameters of our models, it’s straightforward to

adopt the widely used logistic ranking loss as the loss function:

Llog = −
∑

(u,i, j)∈DS

log(1 + e−ŷui j ) (10)

However, logistic loss may suffer from vanishing gradients for
correctly ranked pairs [17]. Besides, prior work [2, 7] shows that
binary cross-entropy loss is a good choice for neural network based
ranking, so we adopt the binary cross-entropy loss for our model.
Hereinafter, we demonstrate that under our classification strategy,
it is nature to formulate the binary cross-entropy for learning with
NCR. And we elaborate how to construct the positive instances and
negative instances for training.

Classification Strategy. The use of log ranking loss is based on
the assumption that a user prefers observed items to unobserved
items:

∀(u, i, j) ∈ DS , i >u j, (11)
where >u⊂ I2 is the personalized total ranking [18]. We call DS
positive preference set. Similarly, we can construct a negative pref-
erence set:

D̄S = {(u, j, i) : (u, i, j) ∈ DS } (12)
For all triples in set DS ∪ D̄S , we define the following indicator
function:

yui j =

{
1, if (u, i, j) ∈ DS

0, if (u, i, j) ∈ D̄S
(13)

Then we view the value of yui j as a label 1 for (u, i, j) ∈ DS ; for
all triplets in D̂S , we view the value of yui j as a label 0. It’s obvious
that the size of DS is equal to D̄S . Thus, we successfully avoid the

Class Imbalance Problem in NCF. We constrain the prediction score
ŷui j in the range of [0,1], and interpret it as how likely the triple
belongs to DS . With the above settings, the likelihood function is
defined as follows:

p(DS , D̄S |U ,V ,Θд) =
∏

(u,i, j)∈DS

ŷui j
∏

(u,i, j)∈D̄S

(1 − ŷui j ) (14)

Take the negative logarithm of the likelihood function, we endow
our NCR with the binary cross-entropy loss

L = −
∑

(u,i, j)∈DS

logŷui j −
∑

(u,i, j)∈D̄S

log(1 − ŷui j )

= −
∑

(u,i, j)∈DS∪D̄S

yui j logŷui j + (1 − yui j )log(1 − ŷui j )
(15)

Discussion. The classification strategy above is based on the
widely used pairwise preference assumption. By labeling a triplet
(u, i, j) ∈ DS as a positive instance, our model learns to rank an item
i (known preference) higher than an item j (unknown preference).
Likewise, By labeling a triplet (u, i, j) ∈ D̄S as a negative instance,
our model learns to rank an item i (unknown preference) lower
than an item j (known preference). As a result, both positive and
negative instance contribute to the pairwise ranking process. Since
we employ the binary cross-entropy loss, the negative instance is
necessary, which is different from the log ranking loss.
By utilizing a probabilistic treatment for NCR, we address pair-

wise ranking based recommendation as a binary classification prob-
lem. At training stage, we uniformly sample positive and negative
instances from DS and D̄S respectively. In practice, we iteratively
update the parameters until the loss does not decrease (by 0.1%) or
the maximum iteration limit is reached. In latter section, we also
conduct experiments to study the influence of negative samples on
the results.

4.3 Relations to Other Methods
4.3.1 Relations to Bayesian Personalized Ranking. BPR-MF can

be seen as a special case of NCR without hidden layers. In what
follows, we concretely show that if we choose specific interaction
function, output function and edge weight, our NCR model will
degenerate into BPR-MF. As BPR-MF is the most popular method
for pairwise ranking based recommendation, the fact that BPR-MF
can be explained as a special case of NCR reveals that it is trivial for
NCR to accommodate a wide range of pairwise ranking approaches.
To recover BPR-MF, we set the interaction function of latent

vectors as

f1(Uu ,Vi ,Vj ) =
[
Uu ⊙ Vi
−Uu ⊙ Vj

]
, (16)

where ⊙ denotes the element-wise product of vectors. This vector
is then project to the output layer

ŷui j = aout (wT
[
Uu ⊙ Vi
−Uu ⊙ Vj

]
), (17)

where aout and w is the activation function and the edge weight
of the output layer, respectively. Then we define aout as

aout (x) = −log(1 + e−x ), (18)

and let w be a vector with all elements equal to 1. In this way, we
can obtain the BPR-MF model.
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In this work, we use the sigmoid function as aout , since we want
to constrain the output in the range of [0,1]. For the edge weightw,
instead of constraining it to be a vector of 1, we learn it from data,
which allows w to vary the importance of latent dimensions. We
term the degenerated model as NBPR, short for neural Bayesian
personalized ranking.

4.3.2 Relations to RankNet. RankNet [2] is a well-known pair-
wise ranking method for information retrieval tasks. Our proposed
model NCR shares some similarities with RankNet, e.g., bothmodels
are based on neural network and adopt binary cross-entropy loss.
Nevertheless, RankNet was originally proposed for information
retrieval tasks with dense features, which might not be directly ap-
plied in OCCF setting with no context information. We also mainly
address the following difference: RankNet is a "point-wise" model
endowed with pairwise ranking policy, while NCR itself is a "pair-
wise" model using pairwise ranking policy. By "point-wise", we
mean both the input and output of RankNet are point-wise, i.e., it
takes as input one training sample at a time, and the output is also
a predicted score for a single sample. Pairwise ranking in RankNet
is conducted by minimizing the loss function of two consecutive
training samples. While NCR is inherently "pairwise" as it takes as
input a pair of items at a time, the output score is also a predicted
preference over two items.

4.4 Predictive Rule
As for how to make recommendation, we cannot sort the output

scores directly to obtain the top-N ranked items, because an output
score is associated with a pair of items rather than a single item.
To get rid of this bad situation, we provide a heuristic approach.
Before making recommendation, let us discuss the consistency
requirement in pairwise ranking.

Ideally, given a user u, three items i, j and k , if our model asserts
i >u j and j >u k , we also want it to assert j >u k . Otherwise
it would be hard to rank the three items correctly. Note that the
consistency requirement in our case is different from RankNet, as
we cannot calculate the combining probabilities for i and k . In what
follows, we show that under certain conditions, our model indeed
can meet the consistency requirement. Recall that in section 4.3.1,
we present a NCR model NBPR. We rewrite the edge weight w in
NBPR as

w =
[
w1
w2

]
,

where the dimensionality of w1 is equal to w2. Then, we have the
following predicted scores:

ŷui j = aout (wT
1 ·Uu ⊙ Vi −w

T
2 ·Uu ⊙ Vj ),

ŷuji = aout (wT
1 ·Uu ⊙ Vj −w

T
2 ·Uu ⊙ Vi ),

(19)

where aout is given by Equation 18 and is a monotonically increas-
ing function. We have similar results for ŷujk , ŷuk j , ŷuik and ŷuki .
The first problem is how to rank two items i and j . Intuitively, ŷui j
indicates the probability that u likes i more than j, while ŷui j indi-
cates the probability that u likes j more than i . So we can infer that
if ŷui j > ŷuji , then the user u will like i more than j. As a result,
we give the following predictive rule: If ŷui j > ŷuji , then i >u j;
otherwise j >u i . According to the predictive rule above, if i >u j

and j >u k , we have

wT
1 ·Uu ⊙Vi −w

T
2 ·Uu ⊙Vj > wT

1 ·Uu ⊙Vj −w
T
2 ·Uu ⊙Vi , (20)

wT
1 ·Uu ⊙Vj −w

T
2 ·Uu ⊙Vk > wT

1 ·Uu ⊙Vk −w
T
2 ·Uu ⊙Vj . (21)

Add the above two equations and eliminate duplicates, we have

wT
1 ·Uu ⊙Vi −w

T
2 ·Uu ⊙Vk > wT

1 ·Uu ⊙Vk −w
T
2 ·Uu ⊙Vi . (22)

In other words, we have ŷuik > ŷuki , i.e., i >u k . In consequence,
the consistency requirement is met. For NCR model with hidden
layers, if we use two sets of hidden layers to model user’s inter-
actions between observed item and unobserved item, respectively,
the above conclusion can also hold. However, if we decide to use a
unified hidden layers to model the interactions, we have no idea
whether the predictive rule above can meet the consistency re-
quirement or not, so we call it a "heuristic" approach, and our
experimental results show it works well.
Based on the analysis above, we propose a simple algorithm to

find the top-K ranked items, as shown in Algorithm 1. To rank
two items i and j , we need to compare the predicted score ŷui j and
ŷuji . Algorithm 1 scans the candidate item set K pass, each pass
choosing a most preferred item.

Algorithm 1: NCR Recommendation
Input :A user u; A set of unobserved items

I−u = {I1, · · · , Im }; number of recommendation K ;
ranked list Puk ← ϕ

Output : top-K items Puk
1 for p ← 1 to K do
2 I−u =I−u - Puk
3 M=length of I−u
4 max=I−u [1]
5 for i ← 2 toM do
6 j=I−u [i]
7 if ŷ(u, j,max)>ŷ(u,max, j) then
8 max=j
9 end

10 end
11 Append max to the end of Puk
12 end

4.5 Deep Neural Collaborative Ranking
In order to make full use of DNNs’ capacity, in this section we

investigate how to go deep with NCR. In the embedding layer of
NCR, there are embeddings for user and item, respectively. For every
triplet in the training set, we have three latent vectors. Intuitively,
we can concatenate these latent vectors together. This is a widely
used technique in many existing deep learning work [7, 23, 23].
However, simply concatenating latent features is insufficient to
capture the user-item latent structures, because it dose not take
any interactions between latent dimensions into consideration. To
address this problem, following Wide&Deep, we add hidden layers
on the concatenated vector. More precisely, we employ a standard
MLP to to capture the user-item latent structures. MLP’s multi-
layer nature enable it to learn a variety of levels of user-item latent
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structures, especially the nonlinear interactions between latent
features. In comparison with NBPR using a fixed element-wise
product between user and item latent vectors, MLP is more flexible
when dealing with the concatenated vector. Proceeding on this
track, we define a deep neural collaborative ranking (DNCR) model
under NCR framework as

x1 = f1(Uu ,Vi ,Vj ) =

Uu
Vi
−Vj

 ,
x2 = f2(x1) =a2(WT

2 x1 + b2),
· · · · · ·

xN = fN (xN−1) =a2(WT
N xN−1 + bN ),

ŷui j = σ (wT fN (xN−1)),

(23)

where W∗ and b∗ denote the weights and biases respectively, a∗
is the activation function. We use tanh as activation functions
of hidden layers. As for the network architecture, we follow the
popular tower pattern (e.g. [4, 7]). The width (number of neurons)
of a layer is decreased with its height (the number of layers below).
More precisely, we first set the number of neurons in the bottom
layer, then half the layer width for each successive higher layer. In
this sense, higher layers can obtain more abstractive features.

u i j

DNCR Layer 1

DNCR Layer N

Vi

uij

Uu Vj

……

ŷ

Concatenation

Mapping

u i j

NBPR Layer

ViUu Vj

NeuPR Layer

NN N DDD

Concatenation

Figure 2: Neural pairwise ranking model

4.6 Neural Personalized Ranking
In this section, we develop a model to combine NBPR and DNCR.

The intuition behind is twofold: first, NBPR is a shallow model
with limiting capacity, while DNCR is a deep model at the risk of
overfitting, fusing them together can increase model’s capacity at
the same time prevent overfitting; second, NBPR applies a linear
mapping to model the interactions of latent user and item vectors,
DNCR applies a nonlinear kernel to model the latent structures of
features, by fusing them together, we can obtain a model enjoying
the advantage of linearity and nonlinearity simultaneously. As for
how to fuse them together, a trivial solution is to let NBPR and

DNCR share the same embedding layer, and then fuse them together
by combining the outputs of their learned interaction functions

ŷui j = σ (wT a(
[
Uu ⊙ Vi
Uu ⊙ −Vj

]
+WT

N xN−1 + bN )), (24)

where xN−1 is the (N − 1)-th layer’s output of MLP (Equation.
23). This solution is similar to Neural Tensor Network (NTN) [22].
However, due to the different learning process of the two models,
their optimal embedding dimensionality and weights might be very
different. Thus, constraining the two models to share the same
embedding is not flexible enough, and may degrade the prediction
performance. With this in mind, we propose to allow NBPR and
DNCR to learn separate embeddings, and then fuse the two models
by concatenating their last hidden layer, as shown in Figure 2. We
formulize this solution as

f N =

[
U N
u

U N
u

]
⊙
[
V N
i
−V N

j

]
,

f D = aN (WT
N (aN−1(. . . a2(WT

2


UD
u

VD
i
−VD

j

 + b2) . . . )) + bN ),

ŷui j = σ (wT
[
f N

f D

]
),

(25)

where U N ,V N denotes the user and item embeddings for NBPR
part, respectively; andUD ,VD is similarly defined. We name this
model NeuPR, short for neural personalized ranking. As we have
discussed before, NeuPR enjoys the linearity of BPR and nonlinear-
ity of MLP at the same time, thus may be able to yield better results
than NBPR and DNCR.

4.7 Pre-training
For NeuPR, randomly initialized weights and embeddings do not

pass any information, thus it is hard for the output layers to capture
meaningful features. As a result, the neural network cannot be
trained effectively. On the other hand, improper initialization may
lead NeuPR to being trapped in local optimum at an early stage, in
consequence the convergence and performance suffer. To alleviate
the problems above, it is intuitive to first train NBPR andDNCRwith
random initializations until convergence or the maximum iteration
limit, then initialize NeuPR’ NBPR part and DNCR part with the
pre-trained models of NBPR and DNCR, respectively. The only
modification is the edge weight, like prior work [7], we concatenate
the edge weights of the two pre-trained models with

w←
[

αwN

(1 − α)wD

]
, (26)

where wN ,wD denote the edge weight vector w of NBPR and
DNCR, respectively; and α is a hyperparameter which balances the
trade-off between the two pre-trained models.

5 EXPERIMENTS
In this section, we conducted experiments to show the effective-

ness of our proposedmodels. Moreover, extensive experiments were
conducted to analyze the performance with different experimental
settings, such as the number of hidden layers, negative sampling
ratio, size of predictive factors, and so on.
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number of Datasets Metrics Methods NCR Improvement of
predictive factors PopRank BPR eALS NeuMF NBPR DNCR NeuPR NeuPR vs. NeuMF

8
ML1m HR 0.4227 0.5096 0.4861 0.5480 0.5402 0.5664 0.5661 3.30%

NDCG 0.1815 0.2724 0.2503 0.2921 0.2854 0.3037 0.2997 2.60%

Amusic HR 0.2710 0.2752 0.3263 0.3476 0.3554 0.3654 0.3645 4.86%
NDCG 0.1222 0.1586 0.1819 0.2048 0.2062 0.2207 0.2124 3.71%

16
ML1m HR 0.454 0.5234 0.5156 0.5515 0.5492 0.5672 0.5692 3.21%

NDCG 0.254 0.2756 0.2691 0.2989 0.2935 0.3076 0.3124 4.52%

Amusic HR 0.229 0.2821 0.3247 0.3531 0.3643 0.3862 0.3707 4.98%
NDCG 0.126 0.1623 0.1841 0.2016 0.2115 0.2228 0.2089 3.06%

24
ML1m HR 0.454 0.5419 0.5227 0.5495 0.5478 0.5690 0.5724 4.17%

NDCG 0.254 0.2876 0.2759 0.2960 0.3002 0.3082 0.3104 4.86%

Amusic HR 0.229 0.2860 0.3028 0.3505 0.3667 0.3853 0.3736 6.59%
NDCG 0.126 0.1659 0.1729 0.2022 0.2139 0.2229 0.2166 7.12%

32
ML1m HR 0.454 0.5513 0.5344 0.5493 0.5435 0.5652 0.5740 4.50%

NDCG 0.254 0.2895 0.2833 0.2912 0.2973 0.3089 0.3096 4.14%

Amusic HR 0.229 0.2958 0.2995 0.3441 0.3676 0.3941 0.3758 9.21%
NDCG 0.126 0.1738 0.1727 0.2006 0.2165 0.2264 0.2185 8.92%

64
ML1m HR 0.454 0.5478 0.5386 0.5400 0.5258 0.5753 0.5801 7.42%

NDCG 0.254 0.2903 0.2891 0.2987 0.2885 0.3116 0.3158 5.72%

Amusic HR 0.229 0.2920 0.2961 0.3564 0.3793 0.3904 0.3826 7.35%
NDCG 0.126 0.1707 0.1710 0.2103 0.2291 0.2261 0.2245 6.75%

Table 1: HR@10 and NDCG@10 comparisons of different methods w.r.t. the number of predictive factors

Dataset #users #items #interactions density

ML1m 6,040 3,260 998,539 5.07%
Amusic 5,729 9,267 65,344 0.12%

Table 2: Data statistic on two real-world datasets

5.1 Experimental Settings
Datasets We evaluated our models on two real-world datasets
form different domains, each of which has been widely used in
many previous works for evaluation: MovieLens 1M1 (ML1m) and
Amazon Digital Music (Amusic)2. For both datasets, we discarded
users and items associated with less than 10 interations. Table 2
shows the statistics of our two datasets.
Evaluation Protocols We adopted the leave-one-out evaluation
to evaluate the performance of item recommendation. For both
datasets, we held out the latest interaction as a test item and the
second latest interaction as a validation item for every user. The
remaining data is used for training. Since it is too time-consuming
to rank all items for every user during testing, following [7, 12],
we randomly sampled 100 items that are not interacted by the user,
ranking the test item among the sampled items. The ranking per-
formance is evaluated by Hit Ratio (HR) and Normalized Discounted
Cumulative Gain (NDCG) [6]. For both metrics, the results are based
on the truncated ranked list at 10.
Baselines We compared our proposed methods with the follow-
ing baselines. We leave out the comparison with item-item models,
1The dataset is available at https://grouplens.org/datasets/movielens/1m/
2The dataset is available at http://jmcauley.ucsd.edu/data/amazon/

such as CDAE[27], because they lack of user models for personal-
ization, which may cause performance difference.
• ItemPop. Items are ranked by the number of interactions.
It is a non-personalized method that is widely used as the
baseline for personalized methods.
• BPR [18] is a pairwise ranking method which optimizes the
matrix factorization model with a pairwise ranking loss.
• eALS [8] is a state-of-the-art matrix factorization method
with square loss for collaborative filtering with implicit feed-
back.
• NeuMF [7] is a state-of-the-art neural network based col-
laborative filtering method with binary cross-entropy loss.
For fair comparison, we employ the same embedding size,
number of hidden layers, and size of predictive factors for
NueMF and our models.

Parameter Settings We implemented our proposed approaches
based on keras3. For learning NCR, we randomly sampled one
interaction for each user as the validation data and tuned hyperpa-
rameters on it. We varied the learning rate of [0.001, 0.0005, 0.0001],
randomly initialized model weights with a Gaussian distribution
(mean of 0 and standard deviation of 0.01), set the batch size to be
256, and chose Adam optimizer. For methods relying on negative
samples, we sampled one negative instances per positive instances.
And recall that in section 4.1 we term the last hidden layer of NCR
as predictive factors. We conducted experiments to test the predictive
factors of [8, 16, 24, 32, 64]. Without special mention, we employed
four hidden layers for DNCR; for example, if the size of predictive
factors is 8, then the neural network architecture of hidden layers
is 96→ 32→ 16→ 8, and the embedding size is 32.
3https://github.com/fchollet/keras
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Figure 3: Evaluation of Top-K item recommendation where K ranges from 1 to 10 on the two datasets
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Figure 4: Performance of NeuMF, NeuPR, DNCR and NBPR w.r.t. the number of negative samples per positive instance (fac-
tors=8).

Performance Comparison Table 1 shows the results of com-
parison w.r.t. the number of predictive factors. For BPR and eALS,
the size of predictive factors is equal to the dimensionality of latent
factors. The table demonstrates the effectiveness of our proposed
models, we can see that DNCR and NeuPR achieve the best per-
formance in both metrics NDCG and HR on most cases. On both
datasets, our models are able to outperform the state-of-the-art ma-
trix factorization methods eALS and BPR by a considerable margin.
Even in comparison with the strongest baseline, NeuMF, our NeuPR
consistently outperforms it and can achieve relative improvements
of 3.21%∼ 7.42% by HR on MovieLens. On the same dataset, Ne-
uPR achieves relative improvements of 2.60%∼ 5.72% by NDCG in
comparison with NeuMF. On Amusic, the corresponding improve-
ments are 4.86%∼ 9.21% and 3.06%∼ 8.92%. If we take the best of all
NCR models into consideration, NCR models can achieve relative
improvements of 3.21%∼ 7.42% by HR and 3.97%∼ 5.72% by NDCG
on the MovieLens dataset. While on the extremely sparse Amusic
dataset, our models significantly outperform the strongest baseline
NeuMF, the corresponding improvements are 5.12%∼ 14.53% by HR
and 7.1%∼ 12.86% by NDCG (paired t-tests, p<0.01).

Figure 3 shows the performance of Top-K recommended lists
where the number of recommended items ranges from 1 to 10. Here
we employed predictive factors of 8 for all methods. And ItemPop is
omitted due to its weak performance. DNCR generally achieves sim-
ilar prediction accuracy in comparison with NeuMF, and their per-
formance curves are so close that we can hardly make a distinction.
On Amusic, NBPR achieves comparable prediction accuracy with
NeuMF, DNCR and NeuPR better NeuMF by a considerable margin.
On both dataset, neural-network-based methods outperform con-
ventional matrix-factorization-based methods. The characteristic
of datasets also have some influences on the results; on the extreme
sparse Amusic dataset, the performance gaps between different
methods are relatively large, while on the relatively dense Movie-
Lens dataset, the performance gaps between different methods are
relatively small. From Table 1 and Figure 3, we can conclude that
on dense dataset like MovieLens, NeuPR performs best, DNCR per-
forms better than NBPR. While on the extreme sparse dataset like
Amusic, DNCR performs best, NeuPR the second best and NBPR
the worst. This indicates that on extreme sparse dataset, model’s
capacity is more important than it’s ability to avoid overfitting.
NeuPR’s NBPR part may drag its performance on Amusic.

8



Impact of Negative Sampling Ratio We also conducted exten-
sive experiments to compare the performance of NCR models with
the strongest baseline NeuMF under different negative sampling ra-
tio. Figure 4 shows the performance of NeuMF and NeuPR w.r.t. the
number of negative samples per positive instance. As can be seen,
on both datasets, NCR methods beat all other methods in terms of
both metrics across different negative sampling ratio. Among three
NCR methods, DNCR consistently outperforms the other two meth-
ods on Amusic; While on MovieLens, NeuPR performs the best. On
Amusic, DNCR performs the best when the negative sampling ratio
is 5 negative samples per positive sample. On MovieLens, NeuPR
performs the best when the negative sampling ratio is 2 negative
samples per positive samples.

Training Loss To compareNeuPR, DNCR andNBPRmore clearly,
we further investigate the training loss (averaged over all instances)
of NCR methods of each iteration on the two datasets. For fair com-
parison, we use learning rate of 0.0005, negative sampling ratio of 1
and report the training loss within 100 iterations. As can be seen in
Figure 5, NeuPR achieves the lowest training loss on both datasets.
However, lower training loss does not always means higher perfor-
mance. For example, on Amusic, DNCR has the highest training
loss while at the same time it achieves the best performance.
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Figure 5: Evaluation of pre-training w.r.t. α , where α ranges
from 0.0 to 1.0.

Impact of Depth of Layers in DNCR We conducted extensive
experiments to investigate DNCR with different number of hid-
den layers. The results are shown in Figure 6. Here DNCR1 means
DNCRwith 1 hidden layers, and other DNCR notations have similar
meaning. We evaluated the performance using the same number
of predictive factors (8) for DNCR with two or larger number of
hidden layers. As can be seen, DNCR with only one hidden layer
(In this case, the hidden layer is a concatenation of input features)
performs worst, it only performs slightly better than Itempop, and
underperforms eALS and BPR by a huge margin. Although DNCR2
only has one more hidden layer than DNCR1, it performs far better
than DNCR1. This result shows that simply concatenating latent
vectors is insufficient to capture the interactions between latent
factors. On both datasets, when the number of layers are smaller
than 5, increasing the number of hidden layers brings better perfor-
mance; When we use DNCR with more than 5 hidden layers, the
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Figure 6: Evaluation of DNCR w.r.t. the number of hidden
layers, where the number of hidden layers ranges from 1 to
6.

performance does not improve.

Utility of Pre-training We conducted an extensive experiment
to investigate the utility of pre-training for NeuPR with α = 0.5.
Table 3 shows the performance of NeuPR with and without pre-
training. As can be seen, NeuPR with pre-training consistently
outperforms NeuPR without pre-training on Amusic. On Movie-
Lens, pre-training achieves better performance in most cases, but
not significantly. On the Amusic dataset, pre-training is able to
improve the recommendation quality by a large margin. In general,
pre-training is beneficial to recommendation quality.

NeuPR Without Pre-training With Pre-training
factors HR@10 NDCG@10 HR@10 NDCG@10

Ml1m
8 0.5661 0.2997 0.5702 0.3024
16 0.5692 0.3124 0.5750 0.3085
24 0.5724 0.3104 0.5776 0.3127
32 0.5740 0.3096 0.5793 0.3122
64 0.5801 0.3158 0.5840 0.3125

Amusic
8 0.3645 0.2124 0.4083 0.2342
16 0.3707 0.2089 0.4036 0.2365
24 0.3736 0.2166 0.3992 0.2327
32 0.3758 0.2185 0.4025 0.2380
64 0.3826 0.2245 0.4125 0.2429

Table 3: Impact of Pre-training

Conclusion and Future Work
In this work we propose a novel general neural network based
collaborative ranking framework for personalized ranking. We ex-
perimentally demonstrate the effectiveness of our novel pairwise
classification strategy for recommendation. The results on two real-
world datasets illustrate the effectiveness of our proposed three NCR
instantiations NBPR, DNCR and NeuPR. In future, we will study
how to solve the problem of information loss caused by concate-
nating latent vectors, and how to extend our proposed framework
to incorporate auxiliary information to enrich latent features.
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