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ABSTRACT

We present, GEM, the first heterogeneous graph neural network
approach for detecting malicious accounts at Alipay, one of the
world’s leading mobile cashless payment platform. Our approach,
inspired from a connected subgraph approach, adaptively learns
discriminative embeddings from heterogeneous account-device
graphs based on two fundamental weaknesses of attackers, i.e. de-
vice aggregation and activity aggregation. For the heterogeneous
graph consists of various types of nodes, we propose an attention
mechanism to learn the importance of different types of nodes,
while using the sum operator for modeling the aggregation pat-
terns of nodes in each type. Experiments show that our approaches
consistently perform promising results compared with competitive
methods over time.
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1 INTRODUCTION

Large scale online services such as Gmail!, Facebook? and Ali-
pay® have becoming popular targets for cyber attacks. By creating
malicious accounts, attackers can propagate spam messages, seek
excessive profits, which are essentially harmful to the eco-systems.
For example, numerous abused bot-accounts were used to send
out billions of spam emails across the email system. What is more
serious is that in financial systems like Alipay, once a large number
of accounts be taken over by a malicious user or a group of them,
those malicious users could possibly cash out and gain ill-gotten
earnings, that enormously harms the whole financial system. Effec-
tively and accurately detecting such malicious accounts plays an
important role in such systems.

Many existing security mechanisms to deal with malicious ac-
counts have extensively studied the attack characteristics [5, 15, 21—
23] which hopefully can discern the normal and malicious accounts.
To exploit such characteristics, existing research mainly spreads in
three directions. First, Rule-based methods directly generate sophis-
ticated rules for identification. For example, Xie et al. [22] proposed
“spam payload” and “spam server traffic” properties for generating
high quality regular expression signatures. Second, Graph-based
methods reformulate the problem by considering the connectivities
among accounts. This is based on the intuition that attackers can
only evade individually but cannot control the interactions with
normal accounts. For example, Zhao et al. [23] analyzed connected
subgraph components by constructing account-account graphs
to identify large abnormal groups. Thrid, Machine learning-based
methods learn statistic models by exploiting large amount of histor-
ical data. For examples, Huang et al. [15] extracted features based
on graph properties and built supervised classifiers for identifying
malicious account. Cao et al. [5] advanced the usages of aggre-
gating behavioral patterns to uncover malicious accounts in an
unsupervised machine learning framework.

As attacking strategies from potential adversaries change, it is
crucial that a well-behaved system could adapt to the evolving
strategies [5, 23]. We summarize the following two major obser-
vations from attackers as the fundamental basis of our work. (1)
Device aggregation. Attackers are subjected to cost on computing
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resources. That is, due to economic constraints, it is costly if attack-
ers can control a large amount of computing resources. As a result,
most accounts owned by one attacker or a group of attackers will
signup or sigin frequently on only a small number of resources. (2)
Activity aggregation. Attackers are subject to the limited time of
campaigns. Basically, attackers are required to fulfil specific goals
in a short term. That means the behaviors of malicious accounts
controlled by a single attacker could burst in limited time.

The weaknesses of attackers have been extensively analyzed,
however, it’s still challenging to identify attackers with both high
precision and recall*. In financial systems like Alipay, it is way im-
portant to accurately identify malicious account as many as possible.
The reason is in two-folds: (1) The illegal behaviors like cash-out
is essentially harmful to the whole financial system or even the
national security; (2) As an Internet service company, we need to
reduce the unnecessary disturbances and interruptions to normal
users, i.e. providing friendly services. Existing methods [23] usually
achieve very low false positive rate (friendly services) by setting
strict constraints but potentially missing out the opportunities on
identifying much more suspicious accounts, i.e. with a high false
negative rate. The reason is that the huge amount of benign accounts
interwined with only a small number of suspicious accounts, and
this results into a low signal-to-noise-ratio. It is quite common that
normal accounts share the same IP address with malicious accounts
due to the noisy data, or the IP address comes from a common proxy.
Thus make it important to jointly consider the “Device aggregation”
and “Activity aggregation” altogether in the view of heterogeneous
graph consists of various types of devices such as phone number,
Media access control address (MAC), IMEI (International Mobile
Equipment Identity), SIM number, and so on.

In this work, we present, Graph Embeddings for Malicious ac-
counts (GEM), a novel nueral network-based graph technique based
on the literature of graph representation learning [13], which jointly
considers “Device aggregation” and “Activity aggregation” in het-
erogeneous graphs. Our proposed approach essentially models the
topology of the heterogeneous account-device graph, and simulta-
neously considers the characteristics of activities of the accounts
in the local strucuture of this graph. The basic idea of our model
is that whether a single account is normal or malicious is a func-
tion of how the other accounts “congregate” with this account via
devices in the topology, and how those other accounts shared the
same device with this account “behave” in timeseries. To allow
various types of devices, we use attention mechanism to adaptively
learn the importance of different types of devices. Unlike existing
methods that one first studies the graph properties [15] or pairwise
comparisons of account activities [5], then feeds into a machine
learning framework, our proposed method directly learns a func-
tion for each account given the context of the local topology and
other accounts’ activities nearby in an end to end way.

We deploy the proposed work as a real system at Alipay. It can
detect tens of thousands malicious accounts daily. We empirically
show that the experimental results significantly outperform the
results from other competitive methods.

We summarize the contributions of this work as follows:

“https://en.wikipedia.org/wiki/Precision_and_recall

e We present a novel neural network based graph represen-
tation method for identifying malicious accounts by jointly
capturing two of attackers’ weaknesses, summarized as “De-
vice aggregation” and “Activity aggregation” in a heteroge-
neous graph. To our best knowledge, this is the first fraud
detectoin problem addressed by graph neural network ap-
proaches with careful graph constructon.

e Our approach is deployed at Alipay, one of the largest third-
party mobile and online cashless payment platform serving
more than 4 hundreds of million users. The approach can
detect tens of thousands malicious accounts daily.

2 PRELIMINARIES

In this section, we first briefly present some preliminary contents
of graph representation learning techniques recently developed.

2.1 Graph Neural Networks

The first class is concerned with predicting labels over a graph, its
edges, or its nodes. Graph Neural Networks were introduced in Gori
et al.[11] and Scarselli et al. [19] as a generalization of recursive
neural networks that can directly deal with a more general class of
graphs, e.g. cyclic, directed and undirected graphs.

Recently, generalizing convolutions to graphs have shown promis-
ing results [4, 9]. For example, Kipf & Welling [16] propose simple
filters that operate in a 1-step neighborhood around each node.
Assuming X € RM-D is a matrix of node features vectors x; € RD,
an undirected graph G = (V, &) with N nodes v; € V, edges
(vi,vj) € &, an adjacency matrix A € RN*N_They propose the
following convolution layer:

D) _ U( AH<f>w<f>), )

where A is a symmetric normalization of A with self-loops, i.e.

A=D31ADi ,A=A+Iand D is the diagonal node degree matrix
of A, H®) denotes the ¢-th hidden layer with H 0 =x , W) is the
layer-specific parameters, and o denotes the activation functions.
The GCN [16] essentially learn a function f(X, A) that helps the rep-
resentation of each node x; by exploiting its neighborhood defined
in A. By modeling nodes as documents, and edges as citation links,
their algorithm achieves state-of-art results on tasks of classifying
documents in citation networks like Citeseer, Cora, and Pubmed.

At the same time, a novel connection between graphical models
and neural networks has been studied by Dai et al. [8]. One key
observation is that the solution of variational latent distribution
qi(u;) for each node i needs to satisfy the following fixed point
equations:

log qi (i) = g(ui» xi, {qj}je ni))- )

Moreover, Smola et al. [20] showed that there exists another feature
space such that one can find an injective embedding h; as sufficient
statistics corresponding to the original ¢;(y;) function. As a result,
Dai et al. [8] shows that for any given above fixed point equation
one can always find an equivalent transformation in another feature
space:

hi = f(xi {hj}jena))- ®3)



As such, one can directly learn the graphical model in the em-
bedding space h and directly optimize the funtion f by extra link
functions in a neural network framework. Such representation is
even more powerful compared with traditional graphical models
where each variable is limited by a function from an exponential
family.

To summarize, the works in this domain essentially are built
based on an iterative-style neighborhood aggregation method [13]:

() 5 (8)
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where f(-) is a parameterized non-linear transformation. Most of
the efforts in this domain study the “receptive fields” [17] that
aggregation operators should work on, because compared with
data like images where each pixel have exactly 8 neighbors, the
nodes in the graph domain can vary a lot.

More recently, Liu et al. [17] propose GeniePath, which aims
to adaptively filter each node’s receptive fields, compared with
GCN that does convolution on pre-defined receptive fields. And
this yields much better results.

Our methods can be viewed as a variant of graph convolutional
networks, that is, we design a approach that uses the sum oper-
ator to capture the “aggregation” patterns in each node’s T-step
neighborhood, while using attention mechnisms to reweigh the
importances of various types of nodes in the “heterogeneous” graph.

(t+1) _
h; =

2.2 Node Embedding

The second class of techniques consists of graph embedding meth-
ods that aim to learn representation of each node while preserving
the graph structure [13]. They explicitly model the relationships
among node pairs. For example, some methods directly use the
adjacency matrix [1, 3], t-th order adjacency matrix [6], and others
simulate random walks by approximating the high order adjacency
matrix in a randomized manner [12, 18].

Formally, most approaches aim to minimize an emprical loss, £,
over a set of training node pairs:

L= 3 Ufaeelfenc@i), fenc@), fg@invp),  (5)

(vi,vj)€E

where fenc : V — RK is the encoder function, faec : VXV > RF
is the decoder function such as fye.(zi, zj) = z;'—z]-, and fg(-,) =
R™ is the so called pairwise proximity function, and £ : RXR — R
is a specific loss function used to measure the reconstruction ability
of fdec» fenc to a user-specified pairwise proximity measure fg.

The methods in this domain are unsupervised algorithms. They
learn node embeddings on the graph without use of ground truth
labels. Such node embeddings can be used as statistic properties of
the graph as [15], and be fed into a classifier for final prediction.

Pratically the random walk-based proximity measure [13] has
proven to achieve state-of-art results on many tasks like citation
networks, protein networks etc. We will report the empirical results
of such methods in experiments.

3 THE PROPOSED APPROACHES

In this section, we first describe the patterns we found in the real
data at Alipay, then discuss a motivated approach based on con-
nected subgraph components. Inspired from this intuitive approach,

we discuss the construction of a heterogeneous graph based on the
characteristics of the real data, and finally present the approach on
modeling malicious accounts.

3.1 Data Analysis

In this section we study the patterns of “Device aggregation” and
“Activity aggregation” demonstrated by the real data at Alipay.

Device aggregation. The basic idea of device aggregation is that
if an account signups or logins the same device or a common set of
devices together with a large number of other accounts, then such
accounts would be suspicious. One can simply calculate the size of
the connnected subgraph components [23] as a measure of risk for
each account.

Activity aggregation. The basic idea of activity aggregation is
that if accounts sharing the common devices behave in batches,
then those accounts are suspicious. One can simply define the inner
product of activities of two accounts sharing the same device as a
measure of affinity, i.e. SZ:" = (xj, xy). Apparently the consistent
behaviors over time between account i and i’ mean high degrees
of affinity. Such measures of affinity between two accounts can be
further used to split a giant connected subgraph to improve the
false positive rate [23].

We illustrate such two patterns from the data of Alipay in Figure 1
and Figure 2. Figure 1 shows account-device graphs accumulated
in 7 consecutive days. We do not differentiate the different types of
device in this graph. A blue dot means the account has behaviors
(signups or logins) associated with the corresponding device. For
normal accounts, the blue dots uniformly scatter over the account-
device graph, compared with malicious accounts, the blue dots
show strong signals that the specific device could connect with
huge number of accounts in various patterns. Figure 2 illustrates
the behavior patterns of each account over time, where each blue
dot denotes that there is an activity of account i at time ¢. The
behaviors of normal accounts in graph on the left show that each
newly registered normal accounts behave evenly in the next several
days, whereas the malicious accounts in the second graph show
that they tend to burst only in a short time.

The patterns analyzed in this section motivate us the considera-
tion of modeling malicious accounts in the view of graph.

3.2 A Motivation: Subgraph Components

The device aggregation pattern in Figure 1 and activity aggregation
pattern in Figure 2 inspired us the consideration of the problem in
graph.

We call our first attempt as “Connected Subgraph”. Our basic
idea is to build a graph of accounts, hopefully with edges connect a
gang of accounts. The “Connected Subgraph” approach consists of
three steps:

(1) Assume we have a graph G = (V, ), with N nodes include
accounts and devices, and a set of M edges {(i, j)} denote
login behaviors of account i on device j during a time period.
We aim to build a homogeneous graph G¢ = (V4,&9),
consists of only accounts as nodes. That is, we add an edge
(i,1”) if there exists (i, j) and (i’, j) that both account i and
i’ login the same device during a time period. As such, the
homogeneous graph G¢ consists of connected subgraphs
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accounts tend to be active only in a short term.

with each subgraph somehow captures a group of accounts.
The larger the group, the potentially higher risk this group
could be a gang of malicious accounts. However, the data
are naturally noisy in practice, and it is quite common that
different accounts login the same IP addresses and so on,
thus interwines normal accounts and malicious accounts.
(2) We further reduce and delete the edges as follows. As we see
from Figure. 2, the activities of a gang of accounts mostly
burst in a short period of a certain day. To measure the
similarity between two accounts in a subgraph of G¢, we
characterize each account i’s behavior as a vector x; =
[xi,1, ...,x,-,p]T, with p = 24 and each x; ; denote the fre-
quency of behaviors at the ¢-th hour. We could measure the
similarity between two accounts as the inner product x;" x;.
As such, we further delete edges (i, i’) of graph G¢ in case
x;'—xir < 0 where 0 is a hyperparameter controls the sparsity

of graph G4.

(3) Finally, we can score each account using the size of the
subgraph it belongs to. To determine the hyperparameter 0,
We can tune 6 on a validation set.

Even though this approach is intuitive and it can accurately
detect malicious accounts in the largest connected subgraphs, its
performance deteriorates seriously for those malicious accounts lie
in smaller subgraphs.

Is there any way of discerning malicious accounts from normal
accounts with a more machine learning oriented approach? Differ-
ent from traditional machine learning approach that people first
extract useful features X, then learn a discriminate function f(X)
to discern those accounts, can we directly learn a function (X, G)
that jointly utilizes the topology of the graph and features?

One observation is that the three steps involved in “Connected
Subgraph” essentially pre-define a score function g(-) on each node
based on (1) the “connectivities” around its neighborhood, and (2)
the sum operator that counts the nodes lie in the connectivities.



Figure 3: Visualization of one of connected subgraph com-
ponent from our data, a total of 210 vertices consists of 20
normal accounts (Blue), 7 malicious accounts (Yellow), and
rest of vertices correspond to 6 types of devices. The thick-
nesses of those edges denote the estimated attention coeffi-
cients will be discussed in section 4.3.4.

The connectivities depend both on the topology of graph G¢ (de-
vice aggregation), and the inner product among nodes (activity
aggregation) that further constrains the connectivities. The sum
operator measures the aggregated strength of the connectivities, i.e.
the size of the subgraph. Another observation is that we actually
have a function to transform the orginal account-device graph G to
account-account graph G¢. This step is important for “Connected
Subgraph” because else we have no way to measure the affinity
among different accounts, however, the transformation essentially
discards informations from the original graph.

In the following sections, we would like to learn a parameterized
score function based on the existing graph representation learning
literature. In particular, we are interested in embedding each node
into vector spaces, so as to imitate the sum of “connectivities” in
the space of G%.

3.3 Heterogeneous Graph Construction

Assuming N vertices include accounts and devices with each device
corresponds to one type d € D. We observe a set of M edges {(i,j)}
among accounts and devices over a time period [0, T). Each edge
denotes that the account i has activities, e.g. signup, login and so
on, on device j. As such, we have a graph G = (V, &) consists of
N accounts and devices, with edges connecting them. In terms of

linear algebra, this leads to an adjacency matrix A € {0, 1}V We
illustrate one of the connected subgraph of G from our dataset in
Figure 3.

For our convenience, we can further extract |D| subgraphs
{GD = (v, S(d))} each of which preserves all the vertices of
G, but ignores the edges containing devices that do not belong to
type d. This leads to |D| adjacency matrices {AD} Note that the
heterogeneous graph representation { G} lies in the same stor-
age complexity compared with original G because we only need to
store the sparse edges.

Note that the “device” here could be a much broader concept.
For example, the device could be an IP address, a phone number, or
even a like page in facebook. In our data, we collect various types
of device include phone number, User Machine ID (UMID)>, MAC
address, IMSI (International Mobile Subscriber Identity), APDID
(Alipay Device ID)® and TID?, thus results into a heterogeneous
graph. Such heterogeneous graphs allow us to understand different
implications of different devices.

Along with these graphs, we can further observe the activities
of each account. Assuming a N by p + |D| matrix X € RN-#+I21,
with each row x; denotes activities of vertex i if i is an account.
In practice, the activities of account i over a time period [0, T) can
be discretized into p time slots, where the value of each time slot
denotes the count of the activities in this time slot. For vertices
correspond to devices, we just encode x; as one hot vector using
the last |D| coordinates.

Our goal is to discriminate between malicous and normal ac-
counts. That is, given the adjacency matrix A and activities X during
time [0, T), and N, partially observed truth labels {y;} € {-1,1}
of accounts only over time [0,T — 1), we aim to learn a function
F({A?}, X) to correctly identify malicious accounts and generalize
well on data at time T.

3.4 Models

In the above sections, we discussed the patterns that we observed
in real data, and the construction of heterogeneous graphs include
accounts and various types of devices. We claimed that “Device
aggregation” and “Activity aggregation” can be learned as a function
of the adjacency matrix A and activities X. It remains to specify a
powerful representation of the function to capture those patterns.

In our problem, we hope to learn effective embeddings h; for
each vertex i by propagating transformed activities X on topology
of graphs {GD = (v, D)}

H? 0 (6)
for t=1,...,T

|D]
1
H® X Wt — N 4@ . gt-1) v
H,( DI .

where H) € RN-k denotes the embedding matrix at t-th layer with
the i-th row corresponds to h; of vertex i, o denotes a nonlinear

5The fingerprint built by Alibaba for uniquely identifying devices.

© The fingerprint built by Alipay for uniquely identifying device by considering IMEL,
IMSI, CPU, Bluetooth ADDR, ROM together.

7A random number generated via IMSI and IMEI (International Mobile Equipment
Identity)



activation, e.g. a rectifier linear unit activation function, W € RF*k

with P = p + |D| and {V;} € R¥k are parameters to control the
“shape” of the desired function given the connectivities and related
activities of accounts, with the hope that they can automatically
capture more effective patterns. We let k denote the embedding
size, and T denote the number of hops a vertex needs to look at, or
the number of hidden layers. As the layers being deeper, i.e. T being

larger, for example, hgs) € R¥ means aggregation of i’s neighbors
up to 5 hops away. We allow x; appears in each hidden layer as per
Eq. (6), that can somehow connect deep distant layers like in the
residual networks [14]. Empirically we set k = 16 and T = 5 in our
experiments. We normalize the impact of different types of devices
by averaging, i.e. ﬁ

Some explainations. In case we ignore the type of devices d
and extent of neighborhood T, the transformation HV in Eq. (6)
embeds each account i’s activities x; into a latent vector space,
then the operation AHV sums the 1-step neighborhood’s latent
vectors. As we iterate this layer after T steps, the operator essen-
tially sum over each node’s T-step neighborhood in latent vector
spaces, which is similar to the function g(-) defined in “Connected
Subgraph”, that sums the number of nodes lie in the reachable
“connectivities”. The difference is that, our approach works on the
original account-device graph, and embeds each node into a latent
vector space by summing over its T-step neighbors’ embedded ac-
tivities along the topology. As a result, we can learn a parameterized
function governed by only W and {V1, ..., V|p|} in a more machine
learning oriented manner. Without adjacency matrix A, our model
degenerates to a deep neural network with “skip connection” ar-
chitecture [14] that relies only on features X.

Optimization. To effectively learn W and {V1, ..., V‘ D] }, we link
those embeddings to a standard logistic loss function:

W, {Va}u

Nu
min LW, {(Vg}ou) = - Zlogo'(yi “Wh)) ()

where o denotes logistic function o(x) = ﬁ, u € R¥, and
the loss £ sums over partially observed N, accounts with known
labels. Our algorithm works interatively in an Expectation Max-
imization style. In e-step, we compute the embeddings based on
current parameters W, {V;} as in Eq (6). In m-step, we optimize
those parameters in Eq (7) while fixing embedings.

Our approach can be viewed as a variant of graph convolutional
networks [16]. However, the major difference lies in (1) we gener-
alize the algorithms to heterogeneous graphs; (2) the aggregation
operator defined on the neighborhood. Our models use the sum
operator for each type of graph G inspired by the “Device ag-
gregation” and “Activity aggregation” patterns, as well as use the
average operator for different types of graphs.

3.5 Attention Mechanism

Attention mechanisms have proven to be effective in many sequence-
based [2] or image-based tasks [10]. While we are dealing with dif-
ferent types of devices, typically we are unknown of the importance
of the transformed information comes from different subgraphs
G'D. Instead of simply averaging the information together in Eq. (6),
we adaptively estimate the attention coefficients in the learning

Table 1: Experimental Data Summary.

Count

#Vertices 8 x 100

#Edges 10 x 10°

#Labels in train 17 X 10°

#Labels in test 2 x 10°
#Features 374

procedure for different types of subgraphs. That is, we have:

H a(x W+ Z softmax(ay) - A@D . HED . v, (8)
deD
exp g

2iexpa;’
a free parameter need to be estimated.

where softmax(ay) = and a = [ay, -'-’O‘ID\]T e RIDI ig

4 EXPERIMENTS

In this section we show the experimental results of our approaches
deployed as a real system at Alipay.

4.1 Datasets

We deploy our approach at Alipay®, the world’s leading mobile
payment platform serving more than 450 millions of users. Our
system targets on hundred thousands of newly registered accounts
daily. For those accounts already been used in a long term, it is
much trivial to identify their risks because we have already collected
enough profiles for risk evaluations. To predict newly registered
accounts daily, everyday we build the graph using all the active
accounts and associated devices generated from past 7 days. We
further preprocess the data by deleting the accounts connected to
devices shared with no other accounts, i.e. isolated nodes. Such
accounts are either in a very low risk of being malicious ones, or
useless in propagating informations through the topology. Thus
we use the rest accounts and assoicated devices as vertices in the
preprocessed data.

To show the effectiveness, in our experiments, we use a period
of one month preprocessed dataset at Alipay. The rough statistics of
the experimental dataset are summarized in Table 1. We split the
data into 4 consecutive weeks, namly, “week 17, “week 2”, “week
3” and “week 4”. For each week, we build the heterogeneous graph
using the vertices (accounts and devices) and associated edges
(activities) during that week. All the partially labeled accounts
come from the first 6 days, and we aim to predict the accounts
newly registered at the end of each week. We show the results
from consecutive 4 weeks for the purpose of robustness. Due to
the policy of information sensitivity at Alipay, we will not reveal
the ratio of malicious accounts and normal accounts because those
numbers are extremely sensitive.

To get the activity features x;, we discretize the activities in
hours, i.e. p = 7 X 24 = 168 slots, with the value of each slot
as the counts of i having activities in the time slot. In addition,
we have 6 types of devices as discussed in section 3.3, as well as

8https://en.wikipedia.org/wiki/Ant_Financial



around 200 demographics features for each account, thus results
into 374 = 168 + 6 + 200 dimensional features.

4.2 Experimental Settings

We describe our experimental settings as follows.

Evaluation. Alipay first identifies suspicious newly registered
accounts and observes those accounts in a long term. Afterwards,
Alipay is able to give “ground truth” labels to those accounts with
the benefit of hindsight. In the following sections, we will report
the F-1° and AUC!? measure, and evaluate the precision and recall
curve on such “ground truth” labels.

The reason we care about precision and recall curve is that it is
required that the system should be able to detect malicious with
high confidence at least at the top of scored suspicious accounts, so
that the system will not interrupt and disturb most of normal users.
This is quite important for an Internet business company providing
financial services. On the other hand, we would like to avoid huge
capital loss as possible at the same time. The precision and recall
curves can tell under which threshold, our detection system could
well-balance the service experiences and cover ratio of malicious
accounts. Note that this is quite different from the threshold set as
0.5 in academia.

Comparison Methods. We compare our methods with four
baseline methods.

o Connected Subgraph, which is discussed in section 3.2. This
approach is similar to the approach introduced in [23]. The
method first builds an account-account graph, and we define
the weight of each edge as the inner product of two accounts
x; and x;7. The measure of such affinity can help us split out
normal accounts in a giant connected subgraph, to further
balance the trade-off between precision and recall. Finally,
we treat the corresponding component size as the score of
each account.

e GBDT+Graph, which is a machine learning-based method,
that we first calculate the statistic properties of the account-
account graph, e.g. the connected subgraph component size,
the in-degree, out-degree of each account, along with fea-
tures of each account, we feed those features to a very
competitive classifier Gradient Boosting Decision Tree [7]
(GBDT) which is widely used in industry.

e GBDT+Node2Vec [12], which is a type of random walk-based
node embedding methods described in section 2.2. The un-
supervised method first learn representations of each node
in our device-account graph with the purpose of preserving
the topology of the graph. After that, we feed the learned
embeddings along with original features to a GBDT classifier.
We treat all devices as the same type because this method
cannot deal with heterogeneous graph trivially.

e GCN [16], which is one of the classic graph convolutional
network based approach, that it aggregates the neighbor-
hood as per Eq. (1).

For graph convolutional network-style methods including our
methods, we set embedding size as 16 with a depth of the convo-
lution layers as 5, unless otherwise stated. For GBDT, we use 100
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Table 2: F-1 Score

week 1 week2 week3 week4

Connected Subgraphs  0.5033  0.5567 0.58 0.5421

GBDT+Graph 0.7423  0.7598 0.7693  0.6639
GBDT+Node2Vec 0.741 0.7571 0.769 0.6626
GCN 0.7729  0.7757  0.7957  0.6919

GEM (Ours) 0.7992  0.8066  0.8191 0.718

GEM-attention (Ours) 0.8165 0.8133 0.8244 0.7344

Table 3: AUC

week1 week2 week3 week4

Connected Subgraphs  0.6689  0.6692  0.665  0.6938

GBDT+Graph 0.8878  0.8835 0.8707  0.8778
GBDT+Node2Vec 0.8884 0.883 0.8711  0.8773
GCN 0.8995 0.8932  0.8922 0.881

GEM (Ours) 0.9159  0.9238 0.9193  0.9082

GEM-attention (Ours) 0.9364 0.9293 0.9259 0.9155

trees with learning rate as 0.1. For Node2Vec [12], we repeatedly
sample 100 paths for each node, with the length of each path as 50.

4.3 Results

4.3.1 Basic Measures. We first report the results of all the methods
in terms of standard classification measures, i.e. F-1 scores and AUC
in Table 2 and Table 3.

As can be seen, even though the connected subgraph component
method is quite intuitive, they are not doing well on this classifica-
tion problem. The reason is apparrent that large amount of benign
accounts interwined with malicious accounts in the device-account
graph due to noisy data in practice. There are malicious accouts
exist both in large and small connected subgraphs.

The result of GBDT+Graph method is quite similar compared
with GBDT+Node2Vec. This might be essentially Node2Vec aims
to learn the properties of the graph which is similar to our features
extracted in GBDT+Graph.

GCN works better than GBDT+Graph and GBDT+Node2Vec.
The reason might be: GCN directly learns node embeddings using
the responses of labels and activity features, while the embeddings
from Node2Vec or the graph statistics are not optimized for the
labels.

Our method GEM consistently outperforms GCN. The reason
is two-folds: (1) GEM deals with heterogeneous types of devices
compared with GCN that can only deal with homogeneous graphs
that GCN can not discern the different types of nodes in graph; (2)
GEM uses aggregator operator for each type of nodes instead of
normalized operator [16] so that it can well model the underlying
aggregation patterns as we discussed in section 3.1.

Finally, we find our GEM-attention with attention mechanism
that adaptively assigns different attention coefficients to each type
of device network performs the best. This is due to the reason that
instead of normalizing each type of devices as the same of impor-
tance, we should learn their importances from our data because (1)
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Figure 4: Precision-Recall Curves of GEM, GEM-attention, Connected Subgraph, GBDT+Graph, GBDT+Node2Vec and GCN on
test data: week 1 (first), week 2 (second), week 3 (third), week 4 (fourth) .

the different types of devices might be noisy in different degrees,
for example, IP addresses might be easily confused while UMID
could be more unique and accurate; (2) The certain device data
could be potentially missing.

4.3.2  Precision-Recall Curves. We report the Precision-Recall curve
of all the methods in Figure 4. As we can see, our proposed method
GEM significantly outperforms the comparison methods in terms
of the area beneath the Precision-Recall curve.

One of the largest connected subgraph consists of a total of 1538
accounts aggregating together in our experimental dataset. The
connected subgraph method can precisely identify most of accounts
in the largest connected subgraphs as malicious accounts due to
the strong signal. This leads to high precision at the very begining
of the curve. After that, the precision of the connected subgraph
method drops quickly. That is, it is extremely hard for such methods
to retain consistent high precision/recall curves when the size of
identified connected subgraphs tends to be small.

Our methods work similar or even better at the very begining
of the curve compared with the comparison methods. More impor-
tantly, our methods can accurately detect much more malicious

accounts (high recall) with still relative high precision, which is
quite promising.

4.3.3  Model Complexity. In this section, we study the model com-
plexity includes embedding sizes, the depth of hidden convolution
layers, and their impact on our task.

Varying Embedding Sizes. We vary embedding sizes from 8,
16, 32, 64 to 128. With larger embedding sizes, we need to add
slightly stronger regularizers on our models. With appropriate
regularizers, we do not find significant differences in terms of F-1
score.

Varying the Depths of Layers. Indeed, the depth of our hid-
den convolution layers influences the F-1 scores quite a lot. With
deeper hidden layers, our model tends to aggregate transformed
information from a neighborhood to a greater extent. We show the
F-1 scores with varying depths of hidden layers in Figure 5.

The F-1 score with a depth of 1 hidden layer does not work well
because of the heterogeneous graphs we have. Our model needs to
“exchange” information among accounts via devices, that requires
at least two hops of neighbors to look at.

4.3.4 Attention Coefficients. In this section, we study the contribu-
tions of each type of devices in identifying the malicious accounts
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Figure 5: F-1Score while varying the depths of hidden layers.

Table 4: Assigned attention coefficients estimated using
dataset “week 1”.

Devices Attention coefficients
UMID 0.4412
Phone Number 0.2952
MAC 0.13
APDID 0.1068
IMSI 0.0142
TID 0.0125

by illustrating the estimated attention coefficients using the dataset
“week 1”. We show those assigned attention coefficients in table 4.
The results show that different types of nodes in a heterogeneous
graph could have different impacts on the identification of malicious
accounts.

We illustrate one of connected subgraphs with the thicknesses
of edges as the corresponding attention coefficients in Figure 3.

4.3.5 Online Results. In practice, everyday we treat top ten thou-
sand scored newly registered accounts identified by our approach
as accounts at risk. Under this strategy, the precision evaluated
by the security department from Alipay is over 98% after a long
time observation. Compared with a former deployed rule-based
approach, our GEM can cover 10% more accounts. Thus, we are
able to capture more high risk accounts while maintaining very
competitive precision.

5 CONCLUSION

In this paper, we show our experiences on designing novel graph
neural networks to detect ten thousands malicious accounts daily at
Alipay. In particular, we summarize two fundamental weaknesses of
attackers, namely “Device aggregation” and “Activity aggregation”,
and naturally present a neural network approach based on hetero-
geneous account-device graphs. This is the first work that graph
neural network approach has ever been applied to fraud detection
problems. Our methods achieve promising precision-recall curves
compared with competitive methods. Furthermore, we discuss the
ideas of re-formulating the intuitive connected subgraph approach
to our graph neural network approach. In future, we are interested

in building a real-time malicious account detection system based
on dynamic graphs instead of the proposed daily detection system.
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