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ABSTRACT

Accurate and efficient entity resolution is an open challenge
of particular relevance to intelligence organisations that col-
lect large datasets from disparate sources with differing lev-
els of quality and standard. Starting from a first-principles
formulation of entity resolution, this paper presents a novel
Entity Resolution algorithm that introduces a data-driven
blocking and record linkage technique based on the proba-
bilistic identification of entity signatures in data. The scala-
bility and accuracy of the proposed algorithm are evaluated
using benchmark datasets and shown to achieve state-of-the-
art results. The proposed algorithm can be implemented
simply on modern parallel databases, which allows it to be
deployed with relative ease in large industrial applications.

1. INTRODUCTION

Entity resolution (ER) is the process of identifying records
that refer to the same real-world entity. Accurate and ef-
ficient ER is needed in various data-intensive applications,
including but not limited to health studies, fraud detection,
and national censuses [7]. More specifically, ER plays a piv-
otal role in the context of Australia’s whole-of-government
approach to tackle our most pressing social issues — including
terrorism and welfare fraud — by combining and analysing
datasets from multiple government agencies.

Two typical challenges in entity resolution are imperfect
data quality and large data size. Common data quality is-
sues that can introduce ambiguity in the ER process include:

e Incompleteness: Records with incomplete attribute
values or even missing attribute values.

e Incompatible formats: The formats of names, ad-
dresses, dates, numbers, etc., can be different between
countries, regions, and languages.
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e Errors: Records containing wrong information due to
either user or system errors, or deliberate attempts at
obfuscation are widely seen in databases.

e Timeliness: Records have become outdated due to
poor maintenance or data refresh practices, such as
people changing their name or address.

In databases containing upwards of tens to hundreds of
millions records, ER can also be challenging because exhaus-
tively comparing records in a pairwise manner is computa-
tionally infeasible [8]. In fact, any algorithm with time com-
plexity worse than linear is prohibitive on large databases.

In this paper, we present a simple and scalable ER al-
gorithm that addresses the challenges of performing ER on
poor quality and high volume data. The key ideas behind
our proposed approach are described next.

Using Redundancy to Overcome Data Quality Issues

The most common way to tackle data quality issues is to
standardise and cleanse raw data before the linking opera-
tion [7]. Standardisation and cleansing are umbrella terms
covering operations which can fill in incomplete data, unify
inconsistent formats, and remove errors in data.

The problem with standardisation and cleansing is that it
is in itself a challenging problem. For example, 01/02/2000
can be parsed as either 1st of Feb 2000 or 2nd of Jan 2000.
St can mean either Street or Saint in addresses. If a mistake
is made during standardisation and cleansing, it is usually
difficult to recover from it to perform linkage correctly.

Instead of standardising and cleansing data into canoni-
cal forms, we rely on redundancy in data to overcome data
quality issues. We say a record contains redundancy if one
of its subrecords can uniquely identify the same entity. For
example, if there is only one John Smith living in FEliza-
beth Street, then John Smith, 45 Elizabeth Street as a record
of a person contains redundancy, because specifying street
number 45 is not really necessary.

Redundancy exists widely in data. Not every country has
a city named Canberra. Not every bank has a branch in Bun-
gendore. As an extreme case, three numbers 23 2/ 5600 can
be sufficient to specify an address globally, if there is only
one address in the world containing these three numbers at
the same time. In this case, we do not even need to know
if 23 is a unit number or the first part of a street number.
Such seemingly extreme examples are actually quite com-
mon in practice. For example, 1,374,998 of the 13.9 million
Australian addresses in the Open Address [2] database can
be uniquely identified by just three numbers in them.



Redundancy simplifies ER. If two records share a common
subrecord that can be used to uniquely identify an entity,
then these two records can be linked no matter what data
quality issues they each have. We call such a subrecord a
signature of its entity. Probabilistic identification of signa-
tures in data and linking records using such probabilistic
signatures is the first key idea of our algorithm.

Data-Driven Blocking using Signatures

Blocking is a widely used technique to improve ER effi-
ciency [7]. Naively, linking two databases containing m and
n records respectively requires O(mn) record pair compar-
isons. Most of these comparisons lead to non-matches, i.e.
they correspond to two records that refer to different enti-
ties. To reject these non-matches with a lower cost, one may
first partition the raw records according to criteria selected
by a user. These criteria are called blocking keys [§]. Ex-
amples of blocking keys include attributes such as first and
last name, postcode, and so on. During linkage, comparison
is only carried out between records that fall into the same
partition, based on the assumption that records sharing no
blocking keys do not match with each other.

The efficiency and completeness of ER is largely deter-
mined by blocking-key selection, which again is challenging
in itself. If the keys are not distinctive between disparate en-
tities, many irrelevant records will be placed into the same
block, which gains little improvement in efficiency. If the
keys are not invariant with respect to records of the same
entities, records of the same entity will be inserted into dif-
ferent blocks and many true matching record pairs will be
missed. If the key values do not distribute evenly among
the records, the largest few blocks will form the bottleneck
of ER efficiency. When dealing with a large dataset, it is
challenging to balance all these concerns. Moreover, the
performance of blocking keys also depends on the accuracy
of any data standardisation and cleansing performed [7].

In an ideal world, we would like to use signatures as the
blocking key and place only records of the same entity into
the same block. In practice, we do not know which sub-
records are signatures but we can still approximate the strat-
egy by blocking on probabilistically identified signatures, as
we describe in Section[3] These probabilistic signatures tend
to be empirically distinctive and exhibit low-frequency in the
database, which allows small and accurate blocks to be con-
structed. The only risk is these blocking keys may not be
invariant with respect to records of the same entities. To ad-
dress this, we introduce an inter-block connected component
algorithm, which is explained next.

Connected Components for Transitive Linkage

As discussed above, the blocking-by-probabilistic-signature
technique leads to quite targetted blocking of records, with
high precision but possibly low recall. This is in contrast to
standard blocking techniques that tend to have low precision
but high recall [8]. To compensate for the loss in recall,
we allow each record to be inserted into multiple blocks,
using the fact that each record may contain multiple distinct
signatures. Moreover, to link records of the same entity that
do not share the same signature, we allow two records in
two different blocks to be linked if they are linked to the
same third record in their own blocks. To implement such
an indirect (transitive) link, we run a connected component

algorithm to assign records connected directly or indirectly
with the same label (entity identifier).

A particular challenge in our context is the size of the
graphs we have to deal with. There are as many nodes as
the number of records. Such a graph can be too large to fit
into main memory. Random access to nodes in the graph,
which is required by traditional depth/breadth-first search
algorithms, might therefore not be feasible. To addres this,
we propose a connected-component labelling algorithm that
fits large graphs that are stored in a distributed database.
The algorithm uses standard relational database operations,
such as grouping and join, in an iterative way and converges
in linear time. This connected component operation allows
us not only to use small-sized data blocks, but also to link
highly inconsistent records of the same entity transitively.

Implementation on Parallel Databases

Massively parallel processing databases like Teradata and
Greenplum have long supported parallelised SQL that scales
to large datasets. Recent advances in large-scale in-database
analytics platforms |20 41] have shown how sophisticated
machine learning algorithms can be implemented on top of
a declarative language like SQL or MapReduce to scale to
Petabyte-sized datasets on cluster computing.

One merit of our proposed method is it can be imple-
mented on parallelised SQL using around ten SQL state-
ments. As our experiments presented in Section [§] show, our
algorithm can link datasets containing thousands of records
in seconds, millions of records in minutes, and billions of
records in hours on medium-sized clusters built using inex-
pensive commodity hardware.

Paper Contributions
The contributions of this paper is a novel ER algorithm that

1. introduces a probabilistic technique to identify, from
unlabelled data, entity signatures derived from a first-
principles formulation of the ER problem;

2. introduces a new and effective data-driven blocking
technique based on the occurrence of common prob-
abilistic signatures in two records;

3. incorporates a scalable connected-component labelling
algorithm that uses inverted-index data structures and
parallel databases to compute transitive linkages in
large graphs (tens to hundreds of millions of nodes);

4. is simple and scalable, allowing the whole algorithm to
be written in ~10 standard SQL statements on modern
parallel data platforms like Greenplum and Spark;

5. achieves state-of-the-art performance on several bench-
mark datasets and pushes the scalability boundary of
existing ER algorithms.

Our paper also provides a positive answer to an open re-
search problem raised by [38] about the existence of scalable
and accurate data-driven blocking algorithms.

The paper is organised as follows. In Section [2] we formu-
late the ER problem precisely. In Section[3] we describe how
entity signatures can be identified in a probabilistic way. In
Section[d] we propose a scalable graph-labelling algorithm for
identifying transitive links. We present the overall algorithm
for signature-based ER in Section Experimental results
are presented in Section [ followed by a literature review
and discussion in Section [7] and conclusion in Section



2. PROBLEM FORMULATION

The ER problem is usually loosely defined as the prob-
lem of determining which records in a database refer to the
same entities. This informal definition can hide many as-
sumptions, especially on the meaning of the term “same
entities”. To avoid confusion, we now define our ER setting
in a more precise manner.

Definition 1. A possible world is a tuple (W, R, E, D),
where W denotes a set of words; R denotes the set of all
records, where a record r € R is a sequence of words from
W (i.e. order matters); E = {e1,ea,...} denotes a set of
entity identifiers; and D : ' X R is a subset of the Cartesian
product between E and R.

We say record r € R refers to entity e € E, if (e,r) € D.
Note that an entity may be referred to by multiple (possibly
inconsistent) records, and each record may refer to multiple
entities, i.e., there are ambiguous records. Some records may
belong to no entities in E. For example, John Smith, Sydney
is likely referring to several individuals named John Smith
who live in Sydney, and therefore this record is ambiguous
as it can refer to any of them. On the other hand, in real-
world databases there are often records that contain ran-
domly generated, faked, or corrupted values, such as those
used to test a system or that were intentionally modified
(for example John Doe or (123) 456-7890) by a user who
does not want to provide their actual personal details |9].

In practice, a possible world is only ‘knowable’ through a
(finite) set of observations sampled from it.

Definition 2. Given a possible world (W, R, E, D), we can
sample an (e, r) pair using some (usually unknown) proba-
bility distribution on D. By repeating the sampling n times,
we obtain a set of labelled observations of the possible
world, {(es,7:)}i=1...n. From labelled observations, we can
derive unlabelled observations by removing all the e;’s.

Roughly speaking, ER is the problem of reconstructing
labelled observations from unlabelled observations.

Definition 3. Given a set of unlabelled observations O
sampled from a possible world (W, R, E, D), entity res-
olution is the problem of constructing a partition of O

o=Jo

satisfying the following two properties: (1) for each O;, there
exists an e € F such that {(e,r)|r € O;} C D; and (2) the
number of partitions is minimised.

A trivial way to satisfy the first condition of Definition
is to assign each record in O to its own partition. The sec-
ond condition is needed to make sure records of the same
underlying entity are assigned to the same partition. ER as
defined above is an underconstrained optimisation problem.
For example, there could be multiple ways of partitioning
a set of unlabelled observations that all satisfy Definition [3]
because of the existence of ambiguous records that refer to
multiple entities. We need further assumptions on the struc-
ture of possible worlds, in particular the structure of D, to
be able to distinguish between possible solutions. The fol-
lowing are some common ways of refining the ER problem,
each with its own assumptions on D.

1. Supervised Learning Methods: The first class of
methods assume that a set of labelled observations is
available with which we can apply supervised learn-
ing techniques to label a much larger set of unlabelled
observations [7} 29]. In particular, these methods as-
sume the joint probability distribution of entities and
records P : E x R — [0,1] induced by the unknown
D and the observations’ sampling process have enough
structure, in the learning-theoretic sense of (3| 4], to be
learnable from finite sample sizes and suitable model
classes. Note the probability of learning good models
is with respect to a probability distribution on the pos-
sible worlds that are consistent with a set of labelled
observations.

2. Distance Based Methods: The second class of meth-
ods work only with unlabelled observations and as-
sume records can be embedded into a metric space,
where records of an entity fall in a compact region [24].
One first finds such a metric space in the form of a
suitable distance function that incorporates domain
knowledge on what constitutes records that likely be-
long to the same entity. Records are then clustered,
either exactly through a nearest-neighbour algorithm
or approximately using blocking or clustering tech-
niques [8], and then labelled based on some linkage
rule. This is by far the most common approach to ER
and has a long history going back nearly fifty years [16].
Distance based methods are sometimes used in con-
junction with supervised learning algorithms to deter-
mine the linkage rule or clustering thresholds [7].

Signature-Based Entity Resolution

We consider in this paper a family of signature-based meth-
ods, where we assume each entity has distinctive signatures
that can be detected from a set of unlabelled observations
(sampled from a possible world) and that the signatures
so-detected can be used to link records of the same enti-
ties. Compared to the other two types of methods described
above, signature-based methods make a number of alterna-
tive assumptions on the structure of possible worlds which
we now describe.

A sufficient condition for a record to be a signature is that
it belongs to one and only one entity in a possible world.
However, the condition is not a necessary one because a
signature of an entity e does not have to be a record of
e, but merely one computationally derivable from a record
belonging to e. We now formalise the idea.

Definition 4. Given a possible world (W, R, E, D) and a
computable relation T : R X R, record s is a signature of
an entity e subject to T iff

1. 3r € R such that (s,7) € T and (e,r) € D; and

2.Vf € E,Vr € R, if (f,r) € D and (s,r) € T, then
e=f.

One way to understand Definition [4] is that 7' defines a
computable transform of a record s into all its variants
{r|(s,r) € T}, and s is a signature of e if all its variants
obtained via 71" contain and only contain records belonging
to e. A signature provides sufficient condition to link two
records.
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Figure 1: A possible world of addresses of three en-
tities (e1, ez, e3) and their signatures as described in
Example where records of different entities are
shown in different colours, and thick outlines show
records/subrecords which are signatures subject to
the subrecord relation.

Proposition 1. Let P be a possible world, T' a relation,
and s a signature of an entity subject to 7. Two unlabelled
observations r,t sampled from P belong to the same entity
if (s,7) € T and (s,t) € T

ProoFr. By Definition there exists entities e,,e; € F
such that (e,,r) € D and (e, t) € D. By Definition 4] part[2]
we can infer e, = e from (s,r) € T and (er,r) € D, and
er = e from (s,t) € T and (e, t) € D. O

To familiarise readers with our formulation, we now de-
scribe some traditional ER algorithms with our concepts.

Ezample 1. Rule-based ER: link two records if they share
patterns predefined by some regular expressions, i.e., link r
and s if regexp(r) = regexp(s):

T = {(s,7) | regexp(s) = regexp(r)}

Ezample 2. Distance-based ER: link two records if their
distance is below a threshold 7 according to a selected/learned
distance function d [7]:

T={(s,r) | d(s,7) < T}

A common design in traditional ER algorithms is to find
a relation T which contains all pairs of records s and r re-
ferring to the same entities. Two records s and r are then
linked using the fact (s, s) € T, (s,r) € T and Proposition
The concept of signature is not explicitly used in this design
because every unambiguous record in a dataset will then be
a signature. The challenge is all about finding the relation
T.

In this paper, we follow a different strategy. Instead of
searching for an unknown relation 7', we start with one (or
more) known relation(s) 7" and then search for records which
are signatures subject to this known T’

A trivial example is when T is defined by equality: T =
{(s,7) | s = r}. Signatures subject to equality are those
records that belong to one and only one entity. These sig-
natures are not particularly interesting, as they can only be
used to find exact duplicate records in a database.

Signatures based on the Subrecord Relation

Consider now the more powerful T' defined by the subrecord
relation. Given a record r, we say s is a subrecord of 7,
denoted s < r, if s is a subsequence of r, i.e. s can be derived
from r by deleting some words without changing the order
of the remaining words. Equivalently, we sometimes say r
is a superrecord of s to mean s < r.

4 National 4 National Crt 4 National 4 National Crt
Circuit 2602 2602 Circuit 2602 2602
4 National
2602
No 4 National No 4 National No 4 National No 4 National
Circuit 2602 Crt ACT 2602 Circuit 2602 Crt ACT 2602
4 National
ACT
4 National No 4 National 4 National No 4 National
Circuit ACT Crt ACT Circuit ACT CrtACT
Figure 2: Left: linkage to be established by tradi-

tional ER methods; right: linkage to be established
by the proposed method.

Ezample 3. Define T = {(s,r) | s 2 r}. Suppose we have
the possible world shown in Figure [1} in which

o W={Victoria, Street, St, George}
o E={e1, €2, e3}

o D={(e1, “Victoria Street”), (e1, “Victoria St”),
(e2, “George Street”),  (e2, “George St”),
(e3, “St George Street”), (es, “St George St”)}.

Figure |1 shows the six records in D as well as their sub-
records. Records of different entities are shown in different
colours. We add thick outlines to records/subrecords which
are signatures subject to the subrecord relation. For exam-
ple, the word Victoria is a signature because all records in
D containing Victoria as a subrecord belong to the same
entity e;. We can therefore link these records during ER
despite their inconsistency. In contrast, Street is not a sig-
nature because it has three superrecords in D that belong
to three distinct entities. Since a record is a subrecord of
itself, some of the records appearing in D are signatures as
well. A special case is entity ez, which does not have any
signature subject to the subrecord relation because all its
records, George Street and George St, are subrecords of an-
other entity’s records as well. Therefore all their subrecords
are shared by at least two entities. However, entities like
this, whose records are all subrecords of other entities, are
rare in practice, especially when multiple attributes are con-
sidered.

From the example above, we can also see the following
distinction between our method and traditional ER meth-
ods. By explicitly introducing the concept of signatures, we
no longer deal with pairwise linkage between records in O,
but the linkage between records in O and signatures.

This distinction is illustrated in Figure |2 where records
are variants of the same address. Although both graphs de-
pict the same linkage solution, the one used by our method
(right-hand side) contains less links due to the usage of sig-
natures. This distinction partly explains why the proposed
method is more efficient.

Definition 5. Given a set O of unlabelled observations, we
define C to be the restriction of < to only terms that are
subrecords of observations in O.

C={(s,r)|Fo€O0.(s=rAr=<0)}

Definition 6. Given a set O of unlabelled observations, we
call a signature subject to C a C-signature.



Proposition 2. Given a set O of unlabelled observations,
if s is a C-signature of an entity e and s C r, then r is also
a C-signature of e.

PROOF. Part 1 of Definition @ Since s C r, there exists
o € O such that s < r and r < 0. We have s C o since <
is transitive and o € O. To show (e,0) € D, observe that
o € O implies there exists f such that (f,0) € D. Since s is
a C-signature of e and s C r, we have e = f.

Part 2 of Definition @} Consider any ¢ and f such that
r C ¢t and (f,t) € D. We have s C t since C is transitive
and s C r. Since s is a C-signature of e, we have f =e. []

In practical applications of ER, C-signatures are common.
For example, in a database where entities have unique iden-
tifiers such as passport numbers, driver’s licenses or tax file
numbers, each unique ID is a signature of its entity. (Recall
that the subrecord relation captures the equality relation as
a subset.) Even in the absence of such unique IDs, countries
like Australia have identity verification systems like the 100
point check [1] that allows a combination of possibly non-
unique attributes to be used as a person’s signature.

Given a set of unlabelled observations sampled from an
unknown possible world, in the following section we provide
an algorithm that can resolve, with high probability, those
entities that have (one or more) C-signatures. In the rest
of this paper, signatures always refer to C-signature unless
otherwise indicated.

3. IDENTIFICATION OF SIGNATURES

Our general strategy for ER is to probabilistically iden-
tify signatures from unlabelled observations and then tran-
sitively link records via the identified signatures.

Given a set of unlabelled observations O, our first step is
to remove all exact duplicate records to arrive at a dedupli-
cated set of records. In a deduplicated dataset containing
n records, a subrecord recurs m times if m out of the n
records are its superrecord. By definition, a signature is
unique to an entity. Further, a signature may not appear
in every record of the entity to which it belongs. A non-
signature, in contrast, can appear in many distinct records
of many distinct entities. Thus as more and more records of
are added to a dataset, after deduplication, the recurrence
frequency of a signature is upper bounded by the number of
distinct records of its entity. The recurrence frequency of a
non-signature, however, may keep on growing.

This is intuitively clear from Figure [I, where the recur-
rence frequencies of non-signature records like Street and
St increases much more quickly, upper-bounded only by the
size of the database, as more street names are added into the
database. This difference in recurrence frequency between
signatures and non-signatures is the major clue behind our
technique to (probablistically) separate them.

3.1 Probability of Observing a Signature

Empirically, setting the probability of a subrecord being
a signature to go down as its recurrence goes up using a
Poisson distribution with a low mean or a power-law distri-
bution appears sufficient. In the following, we attempt to
derive such a distribution from first principles, which at least
will provide an understanding of the inherent assumptions
we are making in using such a distribution.

Given a record s, the probability of a randomly sampled
record r satisfying s C r is given by a Bernoulli distribu-
tion with parameter ps. The probability for the given s
to recur k times as a subrecord in a deduplicated dataset
of size n is therefore governed by a Binomial distribution
binom(k; n, ps). Now consider the probability of a randomly
sampled subrecord to recur k times in a deduplicated dataset
of size n, which is given by

P(k) = ZP(t) - binom(k; n, ps). (1)

If the p,’s are mostly small, which is true in our case, then
one can show, from empirical simulations, that the pointwise
addition of Binomial distributions with different parameters
can be approximated by a Poisson distribution

AP
AH (2)

for a suitable A that can be estimated from data. Therefore,
the recurrence of a subrecord, whether a signature or not,
follows Poisson distributions. The difference between sig-
natures and non-signatures is with the average recurrence
frequency.

Denote the set of signatures with S. Let A and u be
the expected recurrence frequency of a signature and a non-
signature, respectively. The probability of observing a sig-
nature or a non-signature k times is therefore

Pk)=~e

Ak Mk
P(k|res8)= e**ﬁ and P(k|r¢S)=et"r (3)
By Bayes rule, when we observe a subrecord k times in a
dataset, the probability for this subrecord to be a signature
is given by

Pk|reS)P(res)

P(reS|k)= 0 ; (4)

where
P(k)=P(knreS)+P(kAr¢s) (5)
=P(k|reS)P(reS)+Pk|r¢S)P(r¢S). (6)

We also assume P(r € S) follows a Bernoulli distribution
with parameter c:

P(resS)=c (7
Substituting these into Equation (4)), we have
P(reS|k) (8)
_ P(k|r e S)P(r € S) o
Pk|reS)P(reS)+Pk|r¢S)P(ré¢s)
S (1)

Letting a = £ and b = 6)\7#17?’ we can state the result as
1

P S|k)= ——+ 12

(res|k)=1rr (12)

In practice, since there are more distinct signatures than
non-signatures, i.e. ¢ > 1 — ¢, and a non-signature appears
more frequently than a signature, i.e. u > A, we usually have
b <1 < a. We can understand the parameters of P(r € S |



a=1.2 a=1.5

Figure 3: Plot of Equation (12 by fixing either a or
b and changing the other.

k) by noting that a controls how fast P(r € S | k) decays as
k increases, and b controls the maximum of P(r € S | k), as
shown in Figure [3

3.2 Record Linkage via Common Signatures

So far we have worked out how to compute the probability
for a single record to be a signature given its recurrence. In
practice, computing the common subrecords between every
pair of records, checking the recurrence of these subrecords
in the database, and then computing the signature proba-
bilities is prohibitively expensive.

‘We now show how these probabilities can be approximated
efficiently in a large database. The main idea is to pre-
compute a set of subrecords — call them candidate signatures
— from each record in the database, as well as the probability
for each of these subrecords to be a signature. Given two
records r; and rj, we approximate the probability for them
to share a signature with the probability of at least one can-
didate signature shared by both records being a signature.
This approximation can be accelerated by inverted indices.

More specifically, let I = {(s, Rs,ps)} denote the inverted
index of a database, where each s (inverted index key) de-
notes a subrecord, Rs denotes the set of records that con-
tain s as a subrecord, and p;, = P(s € S | k = |Rs|) is
the probability of s being a signature. Computing linkage
probabilities consists of the following steps:

1. Generation: From each (s, Rs,ps) € I, generate all
tuples of the form of (r;,7;, s, ps) such that r;,7; € Rs.

2. Elimination: From all tuples (r;, 7}, s,ps) containing
the same r; and r;, we eliminate those tuples whose
s appears as a subrecord in another tuple. Following
Proposition [2| this is because if a subrecord is a signa-
ture, then all its superrecords must be signatures. We
therefore only need to assess the superrecords.

3. Product: We assume the probability for two sub-
records being signatures to be independent if they are
not a subrecord of each other. The probability of
r; and r; sharing a signature can then be computed
as 1 —J[,(1 — ps) over all s in the remaining tuples
(ri, 75, 8,ps) for the record pair r; and r;.

We can further improve the efficiency by setting a proba-
bility threshold during generation. That is, we only generate
tuples (ri, 75, s, ps) whose ps > p. In other words, when gen-
erating tuples we only consider subrecords whose probability
of being a signature exceeds the threshold p. This filtering
allows us to remove a large number of subrecords with low
probability of being signatures at an early stage.

The Elimination step above can be skipped, if the pre-
computed subrecords from each raw record by design do
not contain each other as subrecords.

After obtaining the probability for a pair of records to
share a signature, we can place the two in a block if this
probability exceeds the threshold 7. Note that blocks built
this way contain two and only two records each. One can
then employ any similarity function, such as Jaccard similar-
ity, edit distances like Levenhstein and Jaro, or some other
domain-specific functions [7], to decide whether to link them
at all. When the parameter a, b, and 7 are carefully tuned
using training data, one can simply link all pairs of records
sharing a probability higher than threshold .

4. CONNECTED COMPONENTS: A SCAL-
ABLE IN-DATABASE ALGORITHM

The previous section describes how pairs of records can be
linked via probabilistic identification of common signatures.
In this section, we present a scalable algorithm to assign a
consistent label (entity identifier) to records which are linked
either directly or indirectly. The problem is equivalent to the
problem of finding connected components in a general graph
|12], except that the graph in our case is too large to allow
random access. In the following, we propose a connected-
component labelling algorithm that works on large graphs
stored in a distributed, parallel database.

Without loss of generality, we will label each connected
component with the smallest node (record) identifier of the
component. Our algorithm contains two iterative steps. We
first transform the input graph into equivalent trees (a for-
est) such that nodes on each connected component are in
the same tree, and that the identifier of a descendant is al-
ways larger than that of its ancestors. We then transform
the forest into an equivalent forest in which the height of all
the trees is one. Upon convergence, all nodes in the same
connected component will be connected directly to the root
node, which can then be used as the consistent identifier for
all entities in the tree.

Figure [4| shows an example. The input (left) is a set
of node-pairs (e1,e2), (e1,e4), (e2,e3), (e2,e4), (e2,e5), and
(es,es5). Without losing generality, we always use the smaller
entity identifier as the first element in each pair. We know
this is not yet a forest because some nodes, such as nodes
e4 and es, have more than one parents. When a node has
more than one parents, namely when the node-pairs con-
tain patterns like (e1,e;), (e2,€;), ..., and (es;,e;), we do the
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Figure 4: Left: input graph; middle: transformed to
trees; right: reduce tree height to one.

following replacement:
(e1,€5), (e2,€5),...,(ei,e5) =
(e*,ej), (e",e1),(e",ea),..., (e ei) (13)
where
e* =min(e1,e2,...,6e;) . (14)

This is a grouping operation per node e; that can be im-
plemented efficiently in a parallel database. During the re-
placement we drop duplicated edges and self-loops (an edge
connecting a node to the node itself).

Through such a replacement, we guarantee that

1. the connections between ei, ea, ...
served; and
2. e;j ends up with a single parent.

, €i, €j are pre-

The newly added node pairs may introduce new parents to
existing nodes in the graph. We therefore apply the re-
placement step (Equation (I3)) recursively until every node
has a single parent. Convergence is guaranteed because the
sum of node identifiers in the list is non-negative and each
replacement always reduce this sum by a positive integer.
Upon convergence of the first replacement step, we obtain
the second graph (middle) in Figure [f] which is a forest with
node-pairs (e1,e2), (e1,e4), (e2,e3), and (ez,es).

A tree’s height is larger than one if its node-pairs contain
patterns like (e;,e;) and (ej,ex), namely a node exists as
a parent and a child at the same time. For a tree whose
height is larger than one, we iteratively do the following
replacement

(eire;), (ej,ex) = (e, €5), (ei, ex) (15)
until the height of all trees become one, as shown in the
right side of Figure |4l This is a join operation that can be
implemented efficiently in a parallel database. If we denote

by h the height of the highest tree in the forest, then the
above converges in log,(h) rounds.

5. THE P-SIGNATURE ALGORITHM

We are now ready to present our signature-based algo-
rithm for ER, which is given in Algorithm[I] The algorithm
requires these inputs:

e O = {r}, a set of unlabelled observations;

e U = {s}, a set of subrecords selected by users as can-
didate signatures based on domain knowledge;

e p and 7, thresholds: we consider a subrecord only if
its probability of being a signature exceeds p; and we
adopt a link if the probability for two records to share
a signature exceeds 7; and

Algorithm 1 Signature-based Entity Resolution
Require: O ={r}, U ={s}, p, 7, v

1: Build inverted index:

I+ (s,Rs,ps) , Vs €U, Rs CO,ps > p

2: Generate potential linkages:

K < (ri,75,5,ps) ,V(s, Rs,ps) €I, 7i,75 € Rs, 71 <71

3: Eliminate redundant linkages:
K = K\(ri,75,8,ps), V7i,7j,8,Ds
if (rs,75,8,ps) € K and s is a subrecord of 3.
4: Finalise pairwise linkages:
L+ (ri,rj)
for all r; and r; such that

I

(ri;rj,s,ps) EK

(1—-ps)>71

and v(r;, ;) = true

5: return c¢(L).

e v, an optional similarity function.

The first four steps of the algorithm are as described in
Section In the algorithm, < denotes the operation of
adding an element to a set and \ denotes the operation of
removing an element from a set.

In Step |1} I = {(s, Rs,ps)} denotes the inverted index
of O with respect to U, where s € U, Rs C O denotes
the set of records all containing s as a subrecord, and each
ps = P(s € S| k = |Rs|) is the probability of s being a
signature given that s appears in |R,| different records in the
database (see Equation ) In Step [2| the condition r; <
r; is there to ensure we don’t generate symmetric entries.
Step [3] can be done because of Proposition [2} Step [ selects
the final pairwise linkages based on the potential linkages
computed earlier. The first three steps can be thought of as
the blocking/indexing step in a standard ER framework, and
Step [4] can be thought of as the record comparison step. At
the end of Step[d} L = {(ri,7;)} holds all the detected links
between records in O. In Step [5} ¢ denotes the connected
components algorithm described in Section EL

Candidate Signatures

The ER algorithm above requires a user to specify a set of
candidate signatures as input. These candidate signatures
have an impact on both the accuracy and computational
complexity of the algorithm and should be chosen based on
domain knowledge about a database and can differ from
case to case. In Section @ we will provide some concrete
examples of candidate signature specifications and discuss
the issue of how to construct good candidate signatures.



Post-Verification Rules

An important but optional parameter in Algorithm [1] is v,
the post-verification rules. It is largely an optional param-
eter when training data is available to tune the other pa-
rameters. But when training data is not available, v is a
mechanism for the user to supply additional domain knowl-
edge to improve ER accuracy. The post-verification rules
can be as simple as a suitably thresholded distance function
like Jaccard or Jaro-Winkler. However, it is more commonly
used to resolve prickly and context-dependent cases like fam-
ily members that live in the same address, a person and his
company (e.g. John Smith and John Smith Pty Ltd), and
distinct franchisees that use a common bank account.

Computational Complexity and Implementation

The computational complexity of Algorithm [I|is dominated
by the first two steps, which have time and space complexity
O(m), where m is the number of distinct candidate signa-
tures extracted. Most natural choices of candidate signa-
tures leads to m ~ O(n), where n is the size of the (dedupli-
cated) dataset. The scalability of the algorithm is studied
empirically in Section [6]

We have two implementations of the algorithm, one in
SQL running on Greenplum, and one in Scala running on
Spark. The SQL code is similar in structure to that in
[43] and involves only joins (all efficiently executable us-
ing hash-join [42]) and straightforward group-by operations.
The Spark version has less than 100 lines of code and is the
one we use in a production system. Both the parallelised
SQL and Spark code are undergoing due dilligence to be
made open-source and available on Github.

6. EXPERIMENTAL EVALUATION

We use six different ER problems to empirically evaluate
the proposed algorithm. The entities in these six problems
range from academic publications and commercial products,
to individuals and organisations. The datasets range from
thousands to billions of records in size. There is also a large
diversity of data quality issues, including incompleteness,
incompatible formats, errors, and temporal inconsistency.
We use these datasets to benchmark the accuracy as well as
scalability of our proposed algorithm. All the experiments
are done using the open-source Greenplum Database run-
ning on 8 servers (1 master + 7 slaves), each with 20 cores,
320 GB, and 4.5 TB usable RAID10 space. The results are
summarised in Table [T

6.1 Entity Resolution Quality

In the first experiment, we apply our algorithm to the four
publicly available datasets evaluated in [29] where ground

truth is available: (1) DBLP-ACM, (2) DBLP-Google Scholar,

(3) Apt-Buy, and (4) Amazon-Google-Products. The enti-
ties in the first two datasets are academic publications, and
each record contains title, authors, venue, and year of pub-
lication. The entities in the third and fourth datasets are
consumer products, and each record contains name, descrip-
tion, manufacturer, and price.

For academia publications, we use the following two types
of subrecords as candidate signatures:

1. three consecutive words in title; and

2. two consecutive words in title, plus two random words
in authors.

For commercial products, we use the following three types
of candidate signatures:

1. one word from name;
2. two consecutive words from name; and

3. three consecutive words from name.

Following previous evaluation work [29], we run our algo-
rithm multiple times with varying parameters and then pick
the best-performing model. We use F-measure to quantify
the performance, which is defined as the harmonic mean of
precision and recall [7]. We note that the legitimacy of us-
ing the F-measure to evaluate ER algorithms is questioned
in a recent paper [17]. However, we use the F-measure here
because it allows direct comparisons with the earlier evalua-
tion presented in [29] (which does not include precision and
recall results).

The result of our method and five other algorithms, three
of which are supervised machine learning based classifica-
tion algorithms, are presented in Table[2] The performance
of the other algorithms is taken from [29]. The top per-
former for each dataset is highlighted in bold. Our proposed
method turns out to achieve state-of-the-art results on all
four datasets (tied for first in one case). Although the win-
ning margin may not always be statistically significant, the
consistent good performance across the four diverse datasets
is noteworthy, however.

Note also that the performance of our method is achieved
by fixed subrecord types as described above. It is possible
to further improve the current performance with other types
of subrecords that are customised for each dataset.

6.2 Entity Resolution Scalability

To test the scalability of our method, we employ it to
link records across two snapshots of the North Carolina
Voter Registration (NCVR) database (http://dl.ncsbe.
gov/). We used a snapshot from October 2014 and linked it
with a snapshot from October 2017. We used the following
information of each voter for the linkage:

e full name (first, middle, and last name);

e residential address (street, city, zipcode and state);
e mail address (street, city, zipcode and state);

e phone number;

e birth state; and

e birth age.

Note that there is a temporal aspect to this particular ER
problem, in that each attribute above for the same voter
may change over the three years, except birth state and birth
age (with age being increased by three from 2014 to 2017).
Among the 5,015,915 voters who appear in both datasets,
the percentage of voters who changed their name, residential
address, mail address, or phone number are 5%, 33%, 33%,
and 48%, respectively. Moreover, 3% of the voters changed
their birth state, and 6% of the voters have inconsistent age
(not differing by 3 years) in the two datasets. Each voter
also has an identifier (NCID), which is used to generate the
ground truth for ER.

We used the following subrecords as candidate signatures:

e two random words from name, two consecutive words
from residential address;


http://dl.ncsbe.gov/
http://dl.ncsbe.gov/

Table 1: A summary of the results of applying the proposed algorithm on benchmark datasets.

[ [ DBLP [ Scholar | DBLP | ACM [ Abt [ Buy [ Amazon | Google | NCVR-2014 | NCVR-2017 |
Records 2,616 64,263 2,616 2,294 1,081 1,092 1,363 3,226 5,616,368 7,861,249
Subrecords 547,722 | 6,052,597 | 742,952 | 558,731 | 24,348 | 25,179 21,037 77,787 131,218,277 162,115,747
Ground truth 5,347 2,224 1,097 1,300 5,015,915
Precision 91.0% 97.7% 87.9% 60.2% 96.3%
Recall 89.5% 97.4% 60.4% 66.1% 89.5%
F-measure 90.2% 97.6% 71.6% 63.0% 92.8%
Time 10 sec 6 sec 6 sec 10 sec 307 sec

Table 2: F-measure of our proposed method (C-signature) as well as five existing methods on four benchmark

datasets, as reported by [29]. The top performer of each dataset is presented in bold font.

FEBRL MARLIN MARLIN .
cozy FellegiSunter | F PPRE SVM | A hpee SVM L-Signature
DBLP-Scholar 82.9 81.9 87.6 82.9 89.4 90.2
DBLP-ACM 93.8 96.2 97.6 96.4 97.4 97.6
Abt-Buy 65.8 36.7 71.3 54.8 70.8 71.6
Amazon-Google 62.2 53.8 60.1 50.5 59.9 63.0

e two random words from name, two consecutive words
from mail address;

e two random words from name, last six digits from
phone number; and

e full name, birth state, birth age;

where birth age from NCVR-2014 is incremented by 3 to
align with that in NCVR-2017.

As Table [T] shows, while the size of the NCVR dataset is
about 1,000 times larger than the other benchmark datasets,
the total time used for ER only increased 30 to 50 times.

No previous ER work has been applied to the same NCVR
dataset at the scale we have done, which makes comparison
difficult. A relevant previous work is [22], which randomly
sampled subsets of size 5,000, 10,000, 50,000, and 100,000
from the NCVR dataset to implement temporal ER. As
[22| shows, the performance of the considered algorithms
monotonically declines as the size of the sampled dataset
increases. The top performer on the largest subset, which
contains 100,000 records, achieved an F-measure of 92% per
[22]. Our method is applied to the complete datasets be-
tween two time points and achieved comparable accuracy.

6.3 Large Scale Transitive ER

So far we only considered the scenarios where ER is be-
tween two different datasets in a pairwise manner. Now we
consider ER within a single dataset (deduplication). The
considered dataset is maintained by an Australian Govern-
ment agency, containing over 690 million reports submitted
by over 10,000 organisations over 10 years. More than 3.9
billion individuals and organisations appear in these reports.
Our aim is to identify records by the same individuals and
organisations and link them together.

When an entity appears in a report, some or all of the
following information may be provided: name, proof of ID
(such as driver’s license or passport), address, date of birth,
company number, telephone number, email, bank account
number. The format of each type of information differs from
report to report. In most reports, one or more attributes
are not available. Since we have no ground truth for this
dataset, we report only the scalability of our proposed algo-
rithm.

After removing exact duplicate records, the number of dis-
tinct records was reduced to around 300 millions. To handle
the poor data quality, we generated 13 types candidate sig-
natures from each record. In particular, the first 7 types of
candidate signatures contain two random words from name
followed by any of the following

two consecutive address words;

last six digits of ID number;

date of birth;

last six digits of company number;
last six digits of telephone, number;

email; and
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last six digits of account number.

The other 6 types of candidate signatures contain two con-
secutive address words followed by either of item 2-7 above.

We do not require two name words to be consecutive to
allow names in inconsistent formats to be compared. We
however require address words to maintain their input order
because the order of address words is more consistent than
that of name, and an address is usually much longer than a
name, and there would be too many unordered combinations
to consider. We use the last six digits of account number,
telephone number, and proof of ID, because these attributes
are usually longer than six digits, the ending parts of these
attributes usually have more consistent format than their
starting parts, and being identical in the last six digits rarely
leads to false matches especially when they are concatenated
with name.

One practical difficulty in applying the proposed algo-
rithm to a real and large dataset is that we have no labelled
data to tune our parameters. In our business context, a false
link usually has a much higher cost than a missing link. We
therefore adopted some post-verification rules such as Jac-
card distance on linked entities to further improve precision
at the cost of lower recall.

Some statistics of our proposed method on this large dataset
is given in Table[3] As can be seen, resolving over 3.9 billion
records with the proposed method takes around three and
a half hours. Compared to resolving 12 million records in



Table 3: Large-scale Transitive ER: size of each
intermediate output and the time taken
[ [ Size [ Time ]
Records 3,989,630,008
Distinct records 268,657,406 1,585 sec
Candidate signatures 4,084,438,114 626 sec
Pairwise links 1,002,675,163 6,839 sec
Verified links 623,498,453 3,083 sec
Connected components 148,163,665 496 sec
Overall on Greenplum 12,629 sec
[ Overall on SparkSQL | [ 5,044 sec |

the NCVR datasets in 307 seconds, our algorithm scales in
sublinear time.

Besides Greenplum, we also implement our algorithm with
SparkSQL and resolve the over 3.9 billion entities a server
which 4-time as large as the Greenplum server. The pro-
cessing time reduces to 5,044 seconds. Note that the 5,044
seconds include the time of saving output of each step to
HDFS for debugging purpose.

6.4 Practical Considerations

‘We now discuss several important practical considerations
of our approach.

Choice of Candidate Signatures: As stated earlier, the
choice of candidate signatures depends on domain knowledge
and has an impact on both the accuracy and computational
complexity of the ER algorithm. Here are some general
guidelines on setting this parameter.

1. A candidate signature should be short so that it has a
good chance of recurring in multiple records.

2. A candidate signature should be distinctive enough so
that it has a good chance to be a signature.

3. All (unambiguous) records should have at least one
non-empty signature.

The three guidelines can pull us in opposite directions.
As can be seen in Section @ we usually want to extract
small subrecords from key attributes in a record as candi-
date signatures, but these subrecords may not be sufficiently
distinctive on their own. An effective way to improve the
distinctive power of such short candidate signatures is to
concatenate subrecords from multiple attributes, such as us-
ing name+address, name+phone number, and so on.

To the extent possible, we want to make sure each record
in the dataset has at least one signature by making sure at
least one candidate signature with sufficiently high proba-
bility can be extracted from each record. This is not always
possible when there exist inherently ambiguous records like
(John, Sydney NSW) that cannot be adequately resolved no
matter what. But there are plenty of interesting cases in the
spectrum of distinctiveness that we would need to handle.
Examples of difficult cases include names like John James
Duncan (all common first names), names from certain eth-
nicity like Arabic and Vietnamese names, and addresses in
certain countries like India. In such situations, we should
take longer candidate signatures into consideration.

When prior knowledge is not available or inadequate, we
can generate candidate signatures randomly. Because of our
probabilistic formulation, randomly generated subrecords
are unlikely to cause false links but to fully link all rele-
vant records, we may need to generate a large number of
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candidate signatures. In such cases, we may resort to the
use of grammars |11} 30] to concisely define a search space of
candidate signatures that can be enumerated in a systematic
and exhaustive way for testing.

The sensitivity of our ER algorithm to the choice of can-
didate signatures is both a strength and a weakness. It is
a strength in that when good domain knowledge is present,
the candidate signatures provide a natural mechanism to
capture and exploit that domain knowledge to achieve good
accuracy and scalability. Many existing ER algorithms do
not have such a natural mechanism to exploit available do-
main knowledge. On the other hand, the sensitivity to the
choice of candidate signatures is obviously a weakness in
ER applications where no good domain knowledge is avail-
able, in which case other “parameter-free” algorithms may
be more suitable.

Efficiency Overkill? Do we really need an ER algorithm
that can process millions of records in a few hours? Ide-
ally, data volume at that scale are processed once using a
batch algorithm and then an incremental algorithm is used
to incorporate new data points as they appear. In practice,
many ER algorithms do not have an incremental version.
Even when they do, the results obtained from the batch
and incremental algorithms are usually not perfectly consis-
tent with each other. In our actual target application, up to
1 million new records are added to the database every day.
Incrementally resolving such large numbers of new records
in a manner that maintains consistency with the batch algo-
rithm — a key requirement in the intelligence domain where
analytical results can be used as evidence in court proceed-
ings — is as hard as the problem of performing batch ER on
the new full dataset. Having an ER algorithm that can be
rerun on the full dataset every day in a couple of hours is
thus important in our setting. Further, such an efficient al-
gorithm gives us the agility to make changes and experiment
with parameters during the development of the algorithm,
something impossible to do if the algorithm take days or
weeks to process the entire dataset.

Limitations of P-Signature: For efficiency, we choose
not to compute all the common subrecords between a pair
of records, but to approximate them with a set of precom-
puted subrecords, typically of limited length. When the
precomputed subrecords of a record are all non-distinctive,
we will not be able to link this record distinctively to other
records of the same entity. To improve the situation, one
may consider more diversified and longer candidate signa-
tures at the price of lower efficiency. Besides, the granularity
of our token set W also affects how robust our signatures
are against inconsistency. Currently words are the finest
granularity of our algorithm. That means, we will not be
able to link a record if it contains typos in every word. To
tackle this challenge, we need to define our vocabulary on
g-grams (character substrings of length ¢) or even individ-
ual characters instead. Yet in return, the distinctiveness
of each candidate-signature will be weaker. The challenge
is, following its current design, P-Signature can hardly link
Smith with Smithh, but not link Julie with Juliet at the
same time.

7. RELATED WORK AND DISCUSSION



We will start with a review of related work followed by
a discussion of key connections between our signature ER
framework and some existing ER techniques.

Related Work in Entity Resolution

Entity resolution (ER), also known as record linkage and
data matching [7], has a long history with first computer
based techniques being developed over five decades ago |16,
34]. The major challenges of linkage quality and scalabil-
ity have been ongoing as databases continue to grow in
size and complexity, and more diverse databases have to be
linked [13]. ER is a topic of research in a variety of domains,
ranging from computer science |7} |13} [33] and statistics [21]
to the health and social sciences [18]. While traditionally
ER has been applied on relational databases, more recently
the resolution of entities in Web data [10] has become an
important topic where the aim is to for example facilitate
entity-centric search. The lack of well defined schemas and
data heterogeneity [19], as well as dynamic data and the
sheer size of Web data, are challenging traditional ER ap-
proaches in this domain [10].

The general ER process can be viewed to consist of three
major steps |7]: blocking/indexing, record comparison, and
classification, which is sometimes followed by a merging step
[5}[10] where the records identified to refer to the same entity
are combined into a new, consistent, single record.

In the first step, as discussed earlier, the databases are
split into blocks (or clusters), and in the second step pairs
of records within the same blocks are compared with each
other. Even after data cleansing and standardisation of the
input databases (if applied) there can still be variations
of and errors in the attribute values to be compared, and
therefore approximate string comparison functions (such as
edit distance, the Jaro-Winkler comparator, or Jaccard sim-
ilarity |7, [33]) are employed to compare pairs of records.
Each compared record pair results in a vector of similarities
(one similarity per attribute compared), and these similarity
vectors are then used to classify record pairs into matches
(where it is assumed the two records in a pair correspond
to the same entity) and non-matches (where the records
are assumed to correspond to two different entities). Vari-
ous classification methods have been employed in ER |7} [13|
33|, ranging from simple threshold-based to sophisticated
clustering and supervised classification techniques, as well
as active learning approaches.

Traditional blocking [8] uses one or more attributes as
blocking key to insert records that share the same value in
their blocking key into the same block. Only records within
the same block are then compared with each other. To
overcome variations and misspellings, the attribute values
used in blocking keys are often phonetically encoded using
functions such as Soundex or Double-Metaphone |7] which
convert a string into a code according to how the string is
pronounced. The same code is assigned to similar sounding
names (such as ‘Dickson’ and ‘Dixon’). Multiple blocking
keys may also be used to deal with the problem of missing
attribute values [8].

An alternative to traditional blocking is the sorted neigh-
bourhood method |14} 32| |33], where the databases to be
linked are sorted according to a sorting key (usually a con-
catenation of the values from several attributes), and a slid-
ing window is moved over the databases. Only records
within the window are then compared with each other. An-
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other way to block databases is using canopy clustering [31],
where a computationally efficient similarity measure (such
as Jaccard similarity based on character g-grams as gener-
ated from attribute values [33|) is used to inserts records
into one or more overlapping clusters, and records that are
in the same cluster (block) are then compared with each
other.

While these existing blocking techniques are schema-based
and require a user to decide which attributes(s) to use for
blocking, sorting or clustering, more recent work has investi-
gated schema-agnostic approaches that generate some form
of signature for each record automatically from all attribute
values |10} (35, |36} |40]. While schema agnostic approaches
can be attractive as they do not require manual selection of
blocking or sorting keys by domain experts, they can lead to
sub-optimal blocking performance and might require addi-
tional meta-blocking steps |10} |15} [37] to achieve both high
effectiveness and efficiency by for example removing blocks
that are too large or that have a high overlap with other
blocks.

One schema-agnostic approach to blocking is Locality Sen-
sitive Hashing (LSH), as originally developed for efficient
nearest-neighbour search in high-dimensional spaces [23].
LSH has been employed for blocking in ER by hashing at-
tribute values multiple times and comparing records that
share some hash values. One ER approach based on Min-
Hash [6] and LSH is HARRA |27], which iteratively blocks,
compares, and then merges records, where merged records
are re-hashed to improve the overall ER quality. However,
a recent evaluation of blocking techniques has found [39],
blocking based on LLSH needs to be carefully tuned to a spe-
cific database in order to achieve both high effectiveness and
efficiency. This requires high quality training data which is
not available in many real-world ER applications.

With the increasing sizes of databases to be linked, there
have been various efforts to parallelize ER algorithms, where
both algorithmic [25, |26] as well as platform dependent (as-
suming for example Map Reduce) [15] |28] solutions have
been proposed. A major challenge for parallel ER is load
balancing due to the irregular distribution of the data, re-
sulting for example in blocks of very different sizes.

Compared to existing approaches to ER, the distinguish-
ing feature of our ER algorithm is a data-driven blocking-
by-signature technique that deliberately trade-off recall in
favour of high precision. This is in contrast to the stan-
dard practice of trading off precision in favour of high recall
in most existing blocking algorithms. To compensate for
potential low-recall resulting from our blocking technique,
we introduce an additional Global Connected Component
step into the ER process, which turns out to be efficiently
computable. As shown in Section [6] this slightly unusual
combination of ideas yielded a new, simple algorithm that
achieves state-of-the-art ER results on a range of datasets,
both in terms of accuracy and scalability.

Connections to the Signature ER Framework

Perhaps unsurprisingly, many existing ER techniques can
be understood in the signature framework described in Sec-
tion [2l We now point out a few such connections.

Standardisation and Cleansing: The most common ques-
tion on our ER algorithm from industry practitioners is the
(deliberate) avoidance of an explicit up-front data standard-
isation and cleansing step. We now address this. The canon-



ical form of each record obtained from standardisation and
cleansing is actually a type of signature. Whereas the trans-
form from a record to signatures is the generation of sub-
records in our algorithm, in traditional methods the trans-
forms are context- and data-dependent and usually imple-
mented using business rules that can become complicated
and hard-to-maintain over time. The main benefit of using
standardisation and cleansing transforms is that the derived
canonical form is almost guaranteed to be a signature.

In our method, by contrast, a derived subrecord is only
a signature with a certain probability. To compensate, we
generate many subrecords for each database record. An im-
portant benefit of generating many subrecords or signatures
is that two records will be linked if any of these signatures
are shared. In contrast, data standardisation methods pro-
duce only one signature from each record, and the signa-
ture/canonical form for two records of the same entity may
be quite different. This issue is then (partially) addressed
by allowing the signatures to be matched in a non-exact way
using similarity measures that capture different criteria.

To summarise, our method generates low-cost signatures
and match signatures exactly. We put uncertainty in whether
a generated subrecord is a signature and mitigate the risk
with a number of candidate signatures. Traditional ER
methods that rely on data-standardisation generate high-
cost signatures and match signatures approximately. They
put uncertainty in whether two signatures match or not.

MinHash and LSH: There are several connections be-
tween C-signatures and the signatures generated by Min-
Hash:

1. Two records have an identical MinHash band (an array
of MinHash values) if they both contain some words,
and not contain some other words, at the same time.
In our design, two records have an identical candi-
date C-signature, as long as they both contain some
words. MinHash signatures therefore better fit sce-
narios where global consistency between two records
matters, such as Jaccard similarity over large docu-
ments |7]. Our C-signatures better fits scenarios where
partial similarity matters, for example where records of
the same entity can contain significant inconsistency.

2. Both method generate multiple signatures from each
record. Each MinHash band and candidate signature
only captures partial (but important) information in
the original records. Therefore both methods allow
inconsistent records to be linked together.

3. To achieve good balance between accuracy and effi-
ciency, one can vary the length of signatures and the
length of each band in MinHash. As shown in [39],
finding suitable values of these two parameters that
lead to high quality ER results is context and data-
dependent and requires ground truth data to tune. In
our method, the choice of candidate signatures and
probability thresholds are parameters that can be sim-
ilary tuned to achieve the same balance.

4. Record linkage is probabilistic in both cases. MinHash
has a probabilistic explanation with respect to the Jac-
card similarity between two records [6]. Our method
has a probabilistic explanation with respect to the co-
occurrence of probable signatures in two records.
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Optimal Blocking: Our blocking approach is also related
to the blocking framework described in [37]. In particular,
our method can be perceived as providing an approximate
way to construct ideal blocks. The blocks generated by our
method always contains only two records, and the number of
blocks a record may appear in is also upper-bounded. These
criteria correspond to the optimal Comparison Cardinality
(CC) as discussed by Papadakis et al. [36]. Papadakis et
al. argue the optimal value for CC equals 2, which is when
every block contains exactly two records, and each record
appears in one and only one block. However, high CC is
only a necessary but not sufficient condition for high-quality
blocking. In practice, the higher CC is, the higher the risk
is of missing a true match. In our algorithm, blocks always
contain only two records, but a record can belong to multiple
blocks to minimise the risk of missing matches.

8. CONCLUSION

We have presented and evaluated in this paper a novel
Entity Resolution algorithm that

e introduces a data-driven blocking and record-linkage
technique based on the probabilistic identification of
C-signatures in data;

e incorporates an efficient connected-components algo-
rithm to link records across blocks;

e is scalable and robust against data-quality issues.

The simplicity and practicality of the algorithm allows it to
be implemented simply on modern parallel databases and
deployed easily in large-scale industrial applications, which
we have done in the financial intelligence domain.
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