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Abstract

Matching buyers with most suitable sellers providing relevant items (e.g., products) is essential for 

e-commerce platforms to guarantee customer experience. This matching process is usually 

achieved through modeling inter-group (buyer-seller) proximity by e-commerce ranking systems. 

However, current ranking systems often match buyers with sellers of various qualities, and the 
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mismatch is detrimental to not only buyers’ level of satisfaction but also the platforms’ return on 

investment (ROI). In this paper, we address this problem by incorporating intra-group structural 

information (e.g., buyer-buyer proximity implied by buyer attributes) into the ranking systems. 

Specifically, we propose Deep Graph Embedding (DEGREE), a deep learning based method, to 

exploit both inter-group and intra-group proximities jointly for structural learning. With a sparse 

filtering technique, DEGREE can significantly improve the matching performance with 

computation resources less than that of alternative deep learning based methods. Experimental 

results demonstrate that DEGREE outperforms state-of-the-art graph embedding methods on real-

world e-commence datasets. In particular, our solution boosts the average unit price in purchases 

during an online A/B test by up to 11.93%, leading to better operational efficiency and shopping 

experience.

Keywords

Deep Learning; Graph Embedding; Structure Learning; E-commerce Ranking; Customer 
Matching; A/B Test

1 INTRODUCTION

Providing efficient shopping experience with quality items (e.g., products) is an important 

goal of e-commerce platforms [28]. This task is achieved through the design of e-commerce 

ranking system to match buyers with items based on relevance of items as well as preference 

of buyers. For example, as shown in Figure 1, a ranking system first forwards the buyer’s 

query to a recall module, which can identify relevant items from large database by 

understanding user’s intentions with nature language processing (NLP) algorithms. Then, a 

ranking module will predict click/purchase probabilities for the relevant items with 

algorithms such as Wide & Deep learning [10], Reinforcement Learning [23], Gradient 

Boosted Decision Tree (GBDT) [15], and Long ShortTerm Memory (LSTM) [32]. Finally, 

the ranking system will display the relevant items to the buyer with descending click/

purchase probabilities of the items. Following this general workflow, the ranking system can 

improve shopping efficiency on e-commerce platforms.

However, current e-commerce ranking system might match a buyer with items and sellers of 

various qualities. To investigate such issues, we quantify the quality of buyers and sellers 

with buyer scores and seller scores, respectively. These scores are predicted by supervised 

machine learning models with training data labeled by human experts. Generally speaking, a 

buyer (or seller) is labeled and predicted with high quality score if the buyer (or seller) often 

clicks/purchases (or sells) items with high price or items from luxury brands. With these 

scores, we examine the distribution of transaction volume between buyers and sellers of 

different qualities. As shown in Figure 2(a), we can tell that our current ranking system often 

match a buyer with sellers of various quality. Nonetheless, high-score buyers expecting high 

quality products and services may not want to be exposed to or purchase items from low-

score sellers. Meanwhile, it might not be a pleasant experience if low-score buyers are 

matched with items containing better yet unaffordable items that render more suitable items 
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less attractive. In both cases, the mismatches between buyers and sellers could result in sub-

optimal shopping experiences as well as loss of sale opportunities.

Intuitively, shopping experience can be improved by reducing these less suitable matches. To 

validate this intuition we conducted an online A/B test for high-score buyers. In the A/B test, 

buyers are divided into two groups, i.e. a control group and a experiment group. In the 

control group, the matches are generated by the current ranking system while in the 

experiment group items from low-score sellers are removed from the matching results. 

Figure 2(b) shows that, by reducing less-suitable matches, both the transaction volume and 

the average unit price would increase with matched items tailored to the taste of buyers. We 

also observed that, this strategy enhances coherence in the matching results: similarly-scored 

buyers (or sellers) have close proximity in their profiles, and should be matched with sellers 

(or buyers) who also have close proximity in profiles. By exploiting dominant interactions 

between buyers and sellers and enhancing such coherence in the matching results, we could 

systematically address the mismatching problems in the current e-commerce ranking system.

Therefore, we exploit proximity of buyers (and sellers) as intragroup structural information 

for better e-commerce matching to ensure quality shopping experience. In contrast, most 

current ranking systems focus on exploiting inter-group network structure of buyers and 

sellers from explicit buyer-seller proximity determined by transaction records. The general 

ideal of network structural learning is the so-called graph embedding, such as matrix 

factorization [3], SDNE [30], network reconstruction [21, 30], and graph clustering [11, 27, 

31, 33]. Each graph embedding method maps nodes in a network to low-dimensional 

embedding vectors by preserving certain network properties. There are three main categories 

of graph embedding approaches, namely factorization methods, random walks, and deep 

learning based methods. Factorization methods, such as locally linear embedding [24], graph 

factorization [3], Laplacian Eigenmaps [5], GraRep [8], and HOPE [21], maintain 

connection strengths in a network. Random walk approaches preserve community structure 

and allow computational parallelization. DeepWalk [22], node2vec [13] and APP [34] are 

representatives of this category. Deep learning based methods, such as SDNE [30] and 

DNGR [9], have recently attracted increasing attention by capturing non-linearity in 

networks. According to a recent survey [12], deep learning based methods outperform 

methods in other categories in many tasks, such as network clustering and visualization.

To address the mismatching problems, we design an effective deep learning framework by 

incorporating intra-group (buyer-buyer and seller-seller) information and learning non-linear 

network structures. The embedding produced by our framework tends to preserve: 1) intra-

group network structure of sellers (buyers) based on seller-seller (buyer-buyer) proximity 

implied by their attributes; 2) intergroup network structure based on a pair-wise matrix 

describing explicit interactions between buyers and sellers (e.g. transactions). The resulting 

embedding algorithm, Deep Graph Embedding or DEGREE, has two main advantages in 

comparison with current graph embedding methods. First, DEGREE obtains embedding 

vectors by learning both inter- and intra-group structures. Second, among deep learning 

based methods, DEGREE is scalable in both memory and running time with a sparse 

filtering technique. The sparse filtering uses sparse input for each vertex rather than rows of 

the interaction matrix, and learns fewer parameters due to a simpler network architecture.
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We have conducted experiments on real-world e-commerce datasets. The results indicate 

that DEGREE compares favorably with other graph embedding methods in terms of learning 

accuracy as well as ability to identify dominant interactions between buyers and sellers and 

eventually reduce less suitable matches. In addition, DEGREE scales much better than 

existing deep learning based methods for graph embedding. Finally, we have evaluated 

DEGREE in a real e-commerce market through large-scale online A/B test. The results show 

that DEGREE significantly increases the average unit price in purchases during the A/B test. 

This increase will lead to not only improved shopping experience of our customers but also 

better operational efficiency of our e-commerce platform. All these strong empirical results 

clear validate our research motivation in this study, and show that by considering implicit 

intra-group structures, our DEGREE algorithm can improve current ranking system for 

large-scale e-commerce services.

In summary, our contributions in this work are as follows:

• We propose DEGREE, a deep learning based method, to perform graph 

embedding of buyers and sellers in e-commerce network. Our method is effective 

not only in identifying dominant inter-group interactions but also in providing 

suitable e-commerce matches by preserving both inter-group and intra-group 

network structures.

• We develop a sparse filtering technique and use one-hot vertex representation as 

sparse input to improve scalability of the deep learning based graph embedding. 

As a result, DEGREE outperforms other deep learning based methods on both 

memory and running time.

• We have evaluated DEGREE in real-world e-commerce datasets and large-scale 

online A/B tests. According to the results, our method outperforms current 

ranking system by producing more tailed buyer-seller matches which 

significantly increase the average unit price in purchases and improve shopping 

experience.

The remainder of our paper is organized as follows. In Section 2 we present basic definitions 

and a review of related work. In Section 3 we introduce our method in detail. The 

experimental results are shown in Sections 4 and the online A/B test results are shown in 5. 

Finally, we conclude this paper in Section 6.

2 BACKGROUND AND RELATED WORK

In this section, we first define the graph embedding problem. Then we introduce existing 

non-deep learning based methods as well as deep learning based methods.

2.1 Definitions

DEFINITION 1. E-commerce network. Given a group of buyers VB, and a group of sellers 
VS from an e-commerce platform, where VB ={VB1, VB2,⋯ ,VBM} and VS = 

{VS1,VS2,⋯,VSN} , an e-commerce network with VB and VS is, defined as a graph G = (V, 
E), bipartite network on VB and VS, with nodes V = VB ∪ VS and edges E = {(VBi, VSj)} 

where VBi ∈ VB and VSj ∈ VS.
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In this e-commerce network, VB and VS are buyer and seller scores describing their 

attributes. Based on these scores, buyer-buyer proximity and seller-seller proximity can be 

derived, described as GB and GS, respectively. These proximities provide information to 

study intra-group structure of buyers and sellers. Moreover, connection strength describing 

historical transaction volume between VB and VS is denoted in a matrix R.

DEFINITION 2. Network Embedding. Given a bipartite network denoted as G = (VB ∪ VS, 

E), the network embedding consists of a mapping function

f B : VBi Bi ∈ ℝk

and a function

f S : VS j S j ∈ ℝk,

where k ≪ max(|B|, |S|). Objectives of fB and fS are to preserve the (i) inter-group structure 
between VB and VS denoted in matrix R; (ii) implicit intra-group structure of VB through 
GB; (iii) implicit intra-group structure of VS through GS.

2.2 Non-deep Learning Based Approaches

In this subsection, we introduce non-deep learning based approaches in three categories, i.e. 

factorization based, random walk based, and others not categorized. Factorization based 

methods represented pioneering work for network embedding. Both locally linear 

embedding [24] and graph factorization [3] maintain connection strengths in an adjacency 

matrix, whereas Laplacian Eigenmaps [5] approximate a Laplacian matrix. Random walk 

approaches, such as DeepWalk [22], node2vec [13], and APP [34], capture higher-order 

proximities and are especially useful in node prediction in partially visible networks. 

DeepWalk preserves community information by defining sequences of short random walks 

for each node. Its local exploration of networks allows computational parallelization and 

high accommodation of dynamic networks. node2vec, however, focuses more on flexible 

exploration of neighbors to learn richer representations. APP is short for asymmetric 

proximity preserving and is a random walk based method that can preserve asymmetric 

similarities between vertex pairs. LINE [29], is a not categorized method, defines joint 

probability distributions for attributes (i.e. embeddings and interactions in adjacency matrix) 

for each pair of nodes, then minimizes Kullback-Leibler divergence of these distributions. 

Note that for e-commerce networks, these methods only consider inter-group structure.

2.3 Deep Learning Based Approaches

Deep neural networks have outperformed others graph embedding methods [12] due to their 

ability to model non-linear relationships in large-scale data. For example, DNGR [9] first 

derives a pointwise mutual information (PMI) matrix [18], a dense matrix reflecting 

pairwise interactions of nodes. It then utilizes a deep auto-encoder, which is an unsupervised 

learning framework to learn low dimensional representations [4]. SDNE [30] further uses a 

semi-supervised framework to capture first- and second-order proximities in a network. The 

Chu et al. Page 5

Proc ACM Int Conf Inf Knowl Manag. Author manuscript; available in PMC 2019 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



unsupervised component uses a deep auto-encoder to learn embeddings, aiming at 

reconstructing neighbors for each node. The supervised component applies penalties when 

similar vertices are embedded far from each other. Their experiments showed that DNN-

based embedding methods outperformed non-deep methods in various tasks [6, 7, 19]. Note 

that DNGR is computationally expensive in the first step and its second step is the same as 

SDNE, i.e. taking rows of the adjacency matrix as input. When the number of vertices 

becomes large, these techniques face scalability problems. Most importantly, the implicit 

intra-group structure of each group involved in e-commerce bipartite networks is rarely 

learnt and considered.

3 DEEP GRAPH EMBEDDING

In this section, we propose a DNN model, DEGREE, to perform e-commerce bipartite 

network embedding. Fig. 3 illustrates our DNN model containing two kinds of blocks, one 

for capturing intra-group relationship within buyer objects (magenta) and the other for seller 

objects (green). To preserve inter-group structure between sellers and buyers, we build 

connections between these two kinds of blocks as classical network embedding techniques. 

A difference is that DEGREE takes one-hot encoding of vertex IDs as input. Through 

alternating between several fully connected layers and activation layers in each block, as 

well as a fully connected layer at the top, it learns valuable embedding vectors in the latent 

space at the last layer. During training, we conducted weight sharing within buyer seller 

blocks. By jointly optimizing the captured relationships in both blocks and the proximity 

between buyers and sellers, DEGREE can better learn bipartite network representations and 

is scalable to large networks. In the following, we introduce the implementation details of 

DEGREE with specific focus on how DEGREE solves the matching problem in e-

commerce.

3.1 Inter-group Structure

Our first goal is to ensure that the embedding capture well the interactions between buyers 

and sellers. We adapt the idea of MF to build the model. We assign one embedding vector Bi 

for each buyer vertex VBi, and one embedding vector Sj for each seller vertex VSj. Then, 

given the interaction matrix R ∈ ℝM × N, MF finds the matrices B ∈ ℝM × k and S ∈ ℝN × k

(k ≪ min(M, N)) such that

R ≈ B ⋅ ST (1)

However, MF can only find linear embeddings for vertices. In order to exploit non-linear 

embeddings, instead of directly applying typical MF, we propose to first perform non-linear 

embedding to the vertices through a DNN method, and then use the embedding results to 

approximate the interaction matrix. In particular, we build a multi-layer fully connected 

network with sigmoid activations[14]. We assign a one-hot encoding for each vertex. And 

then we use the one-hot encoding as input of DNN. For buyer vertex VBi and seller vertex 

VSj, the representation of each hidden layer is as follows:
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hBi
(1) = σ WB

(1)xBi + ϵB
(1)

hBi
(d) = σ WB

(d)hBi
(d − 1) + ϵB

(d)

hS j
(1) = σ WS

(1)xS j + ϵS
(1)

hS j
(d) = σ WS

(d)hS j
(d − 1) + ϵS

(d)

(2)

where xBi and xSj are the one-hot encoding of vertices VBi and VSj. σ(·) stands for the 

sigmoid function.

The representation of the last layer is defined as follows:

Bi = WB
(D)hBi

(D − 1) + ϵB
(D)

S j = WS
(D)hS j

(D − 1) + ϵS
(D)

(3)

The difference between the last layer and other layers is that we do not use an activation 

function in the last layer, such that the output of the last layer can be of any scale, rather than 

between 0 and 1, to approximate R. We use the output of the last layer as the non-linear 

embedding of each vertex. Then we define the loss function of learning the inter-group 

structure as follows:

LR = R − B ⋅ ST
F
2

(4)

3.2 Intra-group Structure

After discussing inter-group structural learning, we incorporate additional intra-group 

information, buyer-buyer proximity in GB and seller-seller proximity GS, into network 

embedding. In our target platform, each element GB(i, j) is the absolute difference between 

buyer scores of buyers VBi and VBj. Similarly, we build the pairwise seller-seller proximity 

matrix GS for sellers.

We use the matrices GB and GS in the model and propose the following loss function for 

intra-group structure:

LBS = λBLB + λSLS, (5)

Where

LB = BBT − GB F
2 ,

and
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LS = SST − GS F
2 ,

The term LB (LS) aims to guarantee that the representation vectors of buyers (sellers) in the 

latent space can preserve the original intra-group structure. We integrate these intra-group 

regularization terms for better structural learning in an e-commerce network. Our 

experiments and online A/B tests will show that DEGREE reduces the less suitable matches 

between buyers and sellers and improves shopping experience on the e-commerce platform.

3.3 Sparse Filtering

In the loss function eq.(5), both matrices GB and GS are dense. Their sizes are quadratic to 

the number of vertices in the graph, which significantly decreases the scalability of our 

method. In order to improve the scalability and reduce the storage cost, we propose a sparse 

filter on the dense matrices GB and GS such that after the filtering, we only need to calculate 

the values of two sparse matrices. The time cost is reduced to near-linear time.

For GB, instead of calculating the proximity between every pair of buyers, we only consider 

the proximity between pairs of buyers that have bought items from at least one common 

seller. This strategy can be achieved by finding each buyer’s neighbor set in the e-commerce 

network.

For each buyer, we call the set of buyers that have common neighbors with this buyer as the 

2-hop neighbor set. With this set, we only need to calculate proximities between this buyer 

and each 2-hop neighbor, rather than all the buyers. This method effectively reduces 

computation, however, one problem is that the number of neighbors of each buyer can vary 

from tens to thousands. The imbalance deteriorates in the 2-hop neighbors because a buyer 

with more neighbors will have an even larger number of 2-hop neighbors. To alleviate the 

data imbalance and to further reduce the data size, we sampled from the 2-hop neighbor set 

of each buyer. In particular, in each 2-hop neighbor set, we first sorted the buyers based on 

the Adamic/Adar Similarity (Adar) [2], which is defined as follows:

Adar(u, v) = ∑
w ∈ Γ(u) ∩ Γ(v)

1
log Γ(w) (6)

where Γ(u) is the neighbor set of vertex u in the graph. The Adar similarity is widely applied 

to calculate the similarity between vertices in a graph. It yields high similarity to two 

vertices that share some rare neighbors, and is more effective than similarity metrics that 

only consider the count of common neighbors. We select the set of buyers with top K Adar 

values, and only calculate the proximity between each buyer and each of the 2-hop 

neighbors with top K Adar values.

We perform a similar sampling strategy on GS. Then we define two sparse matrices QB and 

QS such that QB(i, j)= 1 if the buyer pair (VBi,VBj) is selected by our sampling process, and 

QB (i, j)= 0 otherwise. These two matrices work as sparse filters to the dense matrices GB 
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and GS, respectively. Given QB, QS, the loss function of intra-group structure is re-defined as 

follows:

LBS = λB QB ⊙ BBT − GB F
2 + λS QS ⊙ SST − GS F

2
(7)

where ⊙ is the Hadamard product.

The sparse filtering slightly increases the computational overhead, but it significantly 

reduces space cost of our method. Taking a buyer vertex as an example, we present the cost 

analysis in the following. The time cost of finding neighbors for each VBi is O(M|R|). The 

cost time of finding 2-hop neighbor sets is O M ⋅ Nmax
2 , Where Nmax is the maximum 

number of neighbors of any vertex in the graph. We only calculate the proximity between 

the buyer-seller pairs that are selected by the sparse filter, and the time cost is O(MK). Since 

the rating graph is highly sparse, we have Nmax ≪ min{M, N}. Therefore, the dominating 

time cost for computing proximity with sparse filtering is O(M2). We find that the time 

complexity of sparse filtering is higher than that of directly computing the pairwise 

proximity because |R| > M. However, without sparse filtering, the entire proximity matrix 

would be used in calculating the loss in each iteration, and the time complexity is O(M2). 

With sparse filtering, the time complexity is merely O(MK) because only the sampled 

proximity values are used. Moreover, sparse filtering significantly reduces the space cost 

because it only needs to store the sparse proximity matrix, instead of the entire dense matrix. 

In practice, we find that the computational overhead of sparse filtering is compensated by 

the time cost saved during the optimization process because of the sparse matrix. The 

memory cost is also significantly reduced.

3.4 Scalability

Scalability is a critical problem in large scale graph embedding [20, 25, 26]. In the 

following, we use three methods to improve the scalability of our approach. First, we convert 

the input of the model to a sparse format. For input VBi′, VBi, VS j, VS j′, we use one-hot 

encoding of the vertex IDs and stored each batch of input in the sparse format. In this way, 

we eliminate large adjacency matrices, or dense PPMI matrices, which are used in previous 

work such as SDNE and DNGR. When the number of buyers/sellers increases, the memory 

cost increases quadratic in SDNE and DNGR, but the memory cost of DEGREE only 

increases linearly. Second, supervised learning of R, GB, and GS in DEGREE avoids the 

need to store large dense matrices as intermediate results in DNN. In contrast, deep auto-

encoders used in SDNE and DNGR output dense matrices at the output layer. As such, our 

DEGREE’s memory consumption is orders of magnitude lower than both SDNE’s and 

DNGR’s. Third, to obtain embedding vectors of the same dimension, fully-connected neural 

networks in our DNN model have a simpler network architecture than deep auto-encoders in 

unsupervised learning. Fewer layers and weights further largely speed up the training 

process.
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3.5 Optimization

We add regularization on the embedding vectors and model parameters to prevent 

overfitting:

Lreg1 = 1
2 WB F

2 + WS F
2 ,

Lreg2 = 1
2 B F

2 + S F
2

(8)

The complete loss function is defined as follows:

L = LR + LBS + α1Lreg1 + α2Lreg2 (9)

The components LR, LBS, Lreg1 and Lreg2 are calculated respectively in eq.(4), eq.(7) and eq.

(8), respectively. We choose the adaptive gradient descent method Adam [16] as the 

optimization algorithm.

4 EXPERIMENTS

We conduct experiments on three real world e-commerce datasets. Our proposed model 

DEGREE is compared with several existing methods. All experiments are executed on a 

2.30GHz Intel(R) Xeon(R) CPU with 64 GB memory, running on Fedora 7.2. All methods 

are implemented using Python with Tensorflow [1].

4.1 Datasets

The three datasets are provided by a real world e-commerce platform. They are collected 

from three item categories, namely Women Apparel, Women Shoes, and Digital Products. 

Each dataset contains all the transactions of 100,000 buyers that are randomly selected from 

the pool of all buyers. Each data record consists of a buyer ID VBi, a seller ID VSi and the 

transaction volume between them Rij. We also have scores for each seller and buyer in the 

datasets which are used to model intra-group structure in our method. Not all pairs of buyers 

and sellers are considered in modeling. Only those pairs determined by sparse filtering in 

Section 3.3 are used, resulting in sparse GB and GS. The basic information of the dataset is 

shown in Table 2. Note that missing values in GB, GS, and R are not modeled. Different 

graph embedding methods have different format of training data. Specifically, each sample 

of input data for DEGREE is a four-element tuple VBi′, VBi, VS j, VS j′ , with a matched three-

element output GBii′, Ri j, GS j j′  (Fig. 3).

4.2 Existing Methods

We compared DEGREE with the following existing methods:

1. MF.—MF is frequently used in recommendation systems [3, 17]. Every piece of input 

data for MF is a two-element tuple (VBi, VSj), with a matched Rij as output.
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2. Graph Regularized Matrix Factorization (GRMF).—GRMF is an extension of 

MF that considers both inter-group structure and intra-group structure. GRMF has similar 

input and output data with DEGREE.

3. SDNE.—SDNE [30] learns graph embeddings which preserves the first-order and 

second-order proximity. It is powerful in graph representation through introducing auto-

encoders to model second-order proximities. However, it only considers the inter-group 

structure as MF does. SDNE performs supervised and unsupervised learning on rows of an 

adjacency matrix which is usually large and sparse in e-commerce networks. Instead of 

directly storing an M × N adjacency matrix, we implemented SDNE-sparse, and feed the 

sparse format of adjacency rows to SDNE auto-encoders. In the following, we will use 

SDNE and SDNE-sparse interchangeably. SDNE has similar input and output data with MF.

4. DNGR.—DNGR [9] is a graph embedding method based on deep neural networks. It 

first computes a PPMI matrix based on random surfing. The PPMI matrix is then fed to a 

stacked denoising auto-encoder to learn the node embeddings. It suffers from the problem of 

high computation complexity and memory cost either in calculating the PPMI matrix or in 

modeling the auto-encoder.

Parameter Setting:  The parameters in all of the methods are manually tuned to the best 

performance. The embedding size of all the methods is set to 16. In MF, the learning rate is 

set to 0.05. In GRMF, the learning rate is also 0.05, and the parameter controlling the intra-

group regularization is set to 1.0. In SDNE, we use three layers, each containing 64, 32, and 

16 neurons respectively. The other parameters of SDNE are the same as those in the original 

work. DEGREE also uses 3 layers, each with 64, 32, and 16 neurons. The parameters α1 and 

α2 are both set to 10−5. For simplicity, λB is set to be equal to λS. We do not perform 

DNGR experiments because of the problem of memory cost and computation complexity. 

However, we compare its memory cost in the experimental result.

4.3 Metrics for Performance Evaluations

RMSE (root mean square error) is introduced to measure the effectiveness of maintaining 

explicit inter-group structure between buyers and sellers in the network. To further evaluate 

the capability of uncovering dominant interactions, we compare the proportions of less 

suitable matches derived by all methods, i.e. the areas of top left and bottom right in Fig. 2 

(a).

Buyers and sellers are matched by the K-nearest neighbors in the network, i.e. we keep K-

nearest buyers for each seller and K-nearest sellers for each buyer. The K is set to 50 in the 

experiments. To calculate the proportion of unsuitable matches, we first split buyers and 

sellers into ten ordered bins based on their scores. For each pair of buyer bin i and seller bin 

j, we calculate the pair’s transaction volume T (i, j) as the sum of all the transaction volumes 

generated by each buyer and his K-nearest sellers.

Based on the transaction volume T, we define the target proportion as Less Suitable Match 

Ratio (LSMR) as follows:
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LSMR =
∑ i − j > = δT(i, j)

∑i, j = 1
10 T(i, j)

(10)

4.4 Performance

The RMSE results are presented in Table 3. DEGREE achieves the lowest RMSE on all the 

datasets whereas GRMF performed better than MF. The reason is that the rich information 

embedded in buyer scores and seller scores can be useful to uncover the explicit interactions 

between buyers and sellers in the network. Since DEGREE and GRMF both exploit the 

inter-group and intra-group structures, they outperform MF. Moreover, DEGREE is able to 

capture the non-linearity in the buyer-seller network, it performs even better than GRMF.

Note that RMSE of SDNE is not presented in Table 3. The reason is that the objective of 

SDNE is different from other methods. SDNE considers the explicit interactions, i.e. 

transaction volumes in experimental datasets, as the weights of edges in the buyer-seller 

network. It is not designed to predict the edge weight.

We also draw heat maps of T(i, j) for buyer bin i and seller bin j for each method in Fig. 4. 

The results are obtained on the Women Apparel dataset. The heat map generated by 

DEGREE shows a clear diagonal characteristic whereas those of the other methods do not. 

The results indicate that DEGREE performs best in reducing less suitable matches and in 

uncovering dominant interactions between sellers and buyers. As clearly visible in Table 4, 

DEGREE outperforms other methods LSMR with δ setting to five. Moreover, GRMF 

outperforms MF and SDNE because similar to DEGREE, GRMF considers inter-group and 

intra-group structure. DEGREE outperforms GRMF in that it uses a DNN-based model to 

exploit non-linear structure, whereas GRMF can only learn linear structure. In the interest of 

space, we do not present LSMR with all possible δ values though DEGREE still achieves 

the smallest LSMR with other δ settings.

4.5 Parameter Sensitivity

The key parameters of our model are λB and λS. In the experiments, we simply set the two 

parameters to be equal. We compare the diagonal ratio with different parameter settings in 

Table 5. We find that the optimal parameter settings for different datasets may vary. The 

LSMR values of DEGREE alter slightly and are always lower than those of the other 

methods, as shown in Table 4.

4.6 Memory Consumption and Running Time

To illustrate the scalability of DEGREE, in Table 6 we compare the memory consumption 

and running time of each method based on the Women Apparel dataset. The methods MF, 

GRMF, SDNE, and DEGREE all consider an adjacency matrix in their loss functions. 

However, our experiment dataset contains more than 100,000 vertices, which requires as 

much as over 90 GB of space for the corresponding adjacency matrix. To improve the 

scalability, we convert the adjacency matrix into a sparse format first and feed it to the 

model. The time and space cost shown in Table 6 is the cost required after the improvement. 
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However, DNGR requires a dense PPMI matrix, so that its space cost cannot be reduced in 

this way.

We compare the memory consumption and running time of each method under different 

settings of batch size. We find that in Table 6, the memory and time cost generally increases 

with the model complexity. Both of the memory and time cost of DEGREE is higher than 

that of GRMF, and GRMF’s cost is higher than MF’s cost, since DEGREE is more complex 

in model structure than the other two methods. Despite these differences, the costs of these 

three methods are of the same order of magnitude. However, both memory and time costs of 

SDNE are orders of magnitude higher than that of DEGREE. The reason of the expensive 

memory cost is that SDNE takes the entire adjacency matrix of the graph as direct input and 

introduces auto-encoder loss in the loss function. Though the input adjacency matrix can be 

compressed into sparse format, the auto-encoder loss can not. In addition to the computation 

of auto-encoder loss, the neural network structure of auto-encoder used by SDNE is much 

more complex than that of DEGREE, which further increases running time cost. The 

memory consumption of DNGR, also presented in Table 6, is even greater, since DNGR uses 

a dense PPMI matrix as input. Additionally, the calculation of PPMI matrix is high in 

computational complexity and space complexity. For these reasons, we did not perform 

other experiments using DNGR. The running time of SDNE with batch size as 10000 is not 

presented because the memory cost in this case is too high to run on our machine. Therefore, 

though the time cost and space cost of DEGREE is higher than the simple linear models, 

DEGREE is much more efficient than the existing deep learning models. As the batch size 

increases from 500 to 10000, the time cost of DEGREE increases slowly, from 0.066 sec/

batch to 0.099 sec/batch.

5 ONLINE A/B TEST

We have performed an online A/B test for two weeks to evaluate the effectiveness of 

DEGREE on a real-world e-commerce platform. For simplicity, the test is focused on high-

score buyers. The ranking results for queries of the control group in the test are provided by 

the original ranking system, which are ranked according to ranking scores of items. The 

results of the experiment group contain more items from closely embedded sellers of the 

buyers, which is achieved by adding an positive constant c0 to ranking scores when sellers 

are among the K-nearest sellers of the buyers in the embedding space. Here c0 is determined 

by human experts and is set the same for both GRMF and DEGREE for fair comparison.

The ranking results suggest that our approach can improve the shopping experience of 

buyers by ranking more items from suitably matched sellers at the top. As we can see in Fig. 

5, compared with the control group, the median price of the top 50 items in the experiment 

group is much higher in the ranking results of query Dresses. In addition, the ranking results 

of the experiment group contain famous brands of women apparel at the top such as 

MO&Co, whereas the control group only presents dresses of brands that are not so well-

known. The results in the experiment group are more suitable for quality shopping 

experience since high-score buyers tend to have high purchasing power, prefer sellers that 

are selling high quality products.

Chu et al. Page 13

Proc ACM Int Conf Inf Knowl Manag. Author manuscript; available in PMC 2019 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We show the metrics measured in online A/B test in Table 7 and the detailed results in Table 

8. We find that both GRMF and DEGREE increase the average unit price, yet DEGREE 

outperforms GRMF by increasing average unit price by 11.93% and by sacrificing less 

transaction volume1. The result demonstrates that DEGREE can improve the shopping 

experience of high-score buyers by exposing more quality items without reducing revenue of 

the e-commerce platform. This leads to several desired effects. First, the operational 

efficiency of the e-commerce platform (e.g., logistic and transportation) are improved since 

the number of sold items decreases when average unit price increases and total transaction 

volume remains flat. Second, DEGREE achieves greater increase in terms of DAHSB (daily 

active HSB), ACHSB (average clicks of HSB), HSB (number of high-score buyers), and IPV 

(item page viewed). The greater increase means that even though exposed items are more 

expensive in the experiment group, high-score buyers are more likely to be active on the e-

commerce platform and to view more items, signaling more loyalty to the platform. Overall, 

our approach can improve not only shopping experience of our customers but also 

operational efficiency of our platform.

6 CONCLUSION

In this paper, we propose DEGREE, a DNN-based graph embedding method to learn 

effective embeddings for buyers and sellers in e-commerce network and alleviate the 

problem of less suitable matches in the current ranking system in e-commerce market. 

DEGREE introduces new factors in the graph embedding loss function and enables the 

embeddings to preserve not only the inter-group structure between buyers and sellers but 

also the underlying intra-group structure of buyers (or sellers). Inter-group structure is 

interpreted as interactive activities between buyers and sellers whereas the intra-group 

structure is incorporated in the loss function through scores of buyers and sellers provided 

by the e-commerce platform. The resulting embedding vectors play an important role in 

identifying dominant interactions and providing better matches, especially for inactive 

buyers who have rare activities in the e-commerce market. A sparse filtering technique is 

adopted to reduce computational complexity and space complexity. As a result, the memory 

and time cost of DEGREE is orders of magnitude lower than that of existing DNN-based 

graph embedding methods. Results of experiments on real e-commerce datasets show that 

DEGREE outperforms existing methods in terms of RMSE and the capability of reducing 

less suitable matches and uncovering dominant interactions between buyers and sellers. The 

results of an online A/B test indicate that dominant interactions obtained by DEGREE can 

boost current ranking system on improving shopping experience and increasing the loyalty 

of targeted buyers.

As future work, we consider extending DEGREE to apply on more buyers in e-commerce 

platforms, rather than only on high-score buyers. We also consider to learn embeddings for 

vertices in more complex networks in e-commerce, where the edges and the vertices may be 

multi-typed.
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Figure 1: 
A general workflow of current ranking system. It consists of a query module to allow buyers 

to search items of interest, a recall module to identify items relevant to the query, and a 

ranking module to predict click/purchase probabilities of the identified items.
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Figure 2: 
(a) The heat map displays transaction volumes between buyers and sellers across score 

levels (from low to high). The transaction volumes in the upper left and bottom right areas 

are considered less suitable matches. (b) The increase of the average unit price and the 

transaction volume in an online A/B test in which items from low-score sellers are removed 

in the ranking results for high-score buyers.
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Figure 3: 
Deep neural network architecture of DEGREE. The leftmost block (magenta) learns buyer-

buyer proximity in GB, the rightmost block (green) learns seller-seller proximity in GS, and 

the block in the center learns buyer-seller proximity in R. “FC” stands for fully-connected 

layer. The activation function used in DNN is a sigmoid function.
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Figure 4: 
The heat map of transaction volumes between matched buyers and sellers. The result of 

DEGREE shows peak volumes along the diagonal whereas the other three methods do not, 

indicating that DEGREE better boosts the transaction volumes between buyers and sellers of 

similar score levels in the latent space.
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Figure 5: 
Comparison of ranking results on experiment group and control group. (a) Top items in 

experiment group with DEGREE. Average price is CNY 764.60 and median price is CNY 

639.00. (b) Top items in control group. Average price is CNY 417.50 and median price is 

CNY 386.00.

Chu et al. Page 22

Proc ACM Int Conf Inf Knowl Manag. Author manuscript; available in PMC 2019 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chu et al. Page 23

Table 1:

Terms and notations.

Symbols Definition

M,N Number of buyers, sellers

k Embedding dimension

D Depth of DNN

R Interaction matrix

GB, GS Buyer/seller proximity matrix

XB, XS One-hot encoding matrix of B, S

HB
d

, HS
d Output of d-th hidden layer

WB
d

, WS
d

, ϵB
d

, ϵS
d The d-th layer weight and bias

B,S Embedding for buyers, sellers
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Table 2:

Basic information of datasets.

# of Buyers # of Sellers # of Records

Women Apparel 100000 85856 583365

Women Shoes 100000 45952 579224

Digital Products 100000 40780 536038
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Table 3:

The RMSE of each method on each dataset.

MF GRMF SDNE DEGREE

Women Apparel 1.612 1.314 N/A 0.995

Women Shoes 1.162 1.005 N/A 0.970

Digital Products 0.884 0.831 N/A 0.824
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Table 4:

LSMR of each method on each dataset. A lower value indicates a better result on reducing less suitable 

matches.

MF GRMF SDNE DEGREE

Women Apparel 0.178 0.176 0.250 0.145

Women Shoes 0.272 0.112 0.209 0.066

Digital Products 0.224 0.212 0.372 0.121

Proc ACM Int Conf Inf Knowl Manag. Author manuscript; available in PMC 2019 January 13.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chu et al. Page 27

Table 5:

LSMR of DEGREE with different parameters.

λBλS 0.01 0.1 1.0

Women Apparel 0.161 0.153 0.145

Women Shoes 0.049 0.051 0.066

Digital Products 0.129 0.112 0.121
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Table 6:

Comparison of memory usage and running time.

Memory

MF GRMF DEGREE SDNE DNGR

130M 250M 320M 4G >100G

Running time/batch

Batch size MF GRMF DEGREE SDNE

10000 0.047s 0.064s 0.099s N/A

3000 0.015s 0.021s 0.077s 20.27s

500 0.0031s 0.0049s 0.066s 3.03s
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Table 7:

Metrics measured in online A/B test

Metric Meaning

Price Mean unit price of items bought by high-score buyer

DAHSB Number of daily active high-score buyer

ACHSB Average clicks per high-score buyer

HSB Number of high-score buyers who have clicked items

IPV Number of clicks

Trans. V Total transaction volumes of high-score buyers

Proc ACM Int Conf Inf Knowl Manag. Author manuscript; available in PMC 2019 January 13.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chu et al. Page 30

Table 8:

Results of online A/B test of GRMF and DEGREE. The values are the increasing percentages of the 

experiment group over the control group.

Price DAHSB ACHSB HSB IPV Trans. V

GRMF 7.46 1.46 1.51 1.37 1.83 −1.13

DEGREE 11.93 2.27 2.78 2.29 3.78 −0.71
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