
REUSABLE Ada PRODUCTS FOR INFORMATION SYSTEMS
(RAPID)

Reuse - Year 2000

DEVELOPMENT

Jack Rothrock

U.S. Army Information Systems Software Development Center - Washington
ATTN: ASQB-IWS-R STOP H-4

Fort Belvoir, VA. 22060-5456
Autovon 356-6202 Commercial (703) 285-9043

INTRODUCTION

The next century, out of necessity, wi11 see a
tremendous increase in software reuse. Fiscal and
manpower constraints wil l require innovative ways
to "do more with less." The advent of new software
engineering methodologies combined with the Ada
programming language has created an environment in
which significant reuse appears achievable. Few
have challenged the fact that there is significant
productivity, quality, and cost savings potential
associated with large scale reuse. However,
whether or not large scale reuse is achievable
remains controversial.

Reduced DoD budgets w i l l increase
automation needs to reduce ineff iciencies
and personne] costs, thus creating further
demands on software. Affordabi l i ty wi l l
drive DoD toward common modular
components, with f lexible software
support. Dod Software Master Plan
(Preliminary Draft, lggo)

Software development organizations have been
practicing forms of reuse for many years. Many of
the world's leading technology companies, to
include IBM [9], GTE [6], Toshiba [8], MITRE [2],
and Raytheon [7] have published works on the
virtues of reuse since the mid 1980's. In 1981,
computer l iterature was already boasting
significant productivity improvements with reuse
[11]. The Software Productivity Consortium (SPC),

COPYRIGHT 1990 BY THE ASSOCIATION FOR COMPUTING
MACHINERY, INC. Permission to copy without fee all or part
of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise,
or to republish, requires a fee and or specific permission.

established in Reston, Virginia, is focusing on
making prototyping and reuse a routine part of the
development and maintenance of complex, embedded
software systems. Fourteen major United States
aerospace companies currently financing the SPC are
banking on signif icant ly improved productivity,
quality, r e l i ab i l i t y , and maintainabil ity as a
result of their ef forts [13].

I t is safe to say that reuse is not a new
philosophy. Why, after a l l these years, has i t
been so d i f f i cu l t tomake reuse an integral part of
the DoD's software development efforts? The answer
is complex and could easily be the subject of a
future research paper. However, le t 's look forward
to the next century at RAPID's vision of the
future. What issues do we in the RAPID program
view as our major challenges of today in order to
met the requirements of the future?

RAPID AND REUSE - YEAR 2000

This 21st century Systems Support Environment (SSE)
wt] l provide "cradle-to-grave" l i fe cycle support
for systems. "Systems" is emphasized because the
integration of "systems engineering" rather than
"software engineering" wt l l become the norm.
Recognition of the interrelationships between the
hardware, software and people making up the system
wi11 become cr i t i ca l for successful design and
development of tomorrow's systems. We wi l l move
away from the concept of developing software as
only a col|ection of software parts.

An enormous amount of knowledge must be available
to those developing systems in the future. Thus,
the most signif icant at t r ibute of the SSE wi l l be
the avai lab i l i ty of knowledge that can be applied
throughout the system's l i f e cycle. SSE knowledge
of past development ef forts as well as knowledge of

Washington Ada Symposium Proceedings. June 1990

http://crossmark.crossref.org/dialog/?doi=10.1145%2F327011.327020&domain=pdf&date_stamp=1990-07-01

a11 current "assets" available for reuse will be
coupled with an intelligent interface to the
developer. This avai|ability of knowledge will
a11ow the developer the opportunity to accurately
assess alternatives provided by the SSE throughout
a11 phases of systems development. Prototyped
alternatives can be generated automatlcally and
evaluated for system performance characteristics as
well as on a variety of other requested metrics.
The availability of knowledge coupled with powerful
automated prototyping capability wi11 be used
effectively to determine the user's true
requirements as well as for negotiating design and
development alternatives on the basis of cost,
complexity, resource requirements, and time to
develop. Based on the selected prototyped design,
the SSE will generate standardized code,
documentation, and test scripts. Actual reuse of
l ife cycle products will eventually become
transparent to the developer. A11 information from
the requirements specification to the final user's
manual is mapped together and therefore traceable.

There will be three significant changes in systems
development philosophy in the next century:

1. In i t ia l user requiremenl s specifications wi l l
become short and concise. The SSE will evaluate
the specifications and provide prototyped
alternatives based on reusable knowledge. These
alternatives will document resource and cost
requirements, performance issues, and required
development time. Detailed requirements will be
automatically generated by the SSE.

2. Maintenance organizations wi l l cease to exist
as we know them today. System change (enhancement
and modification) wi l l be expected. F lex ib i l i ty to
accommodate change wi l l be bui l t into the system.
Maintenance wi l l consist of only repairing "latent"
errors found in the system. All enhancements and
modifications wi l l be considered new development
and be accomplished through the SSE. This wi l l not
only provide information on alternatives to the
developer, but wi l l provide complete traceabil i ty
and automatic generation of changed l i fe cycle
products.

3. Documentation will be streamlined, machine
readable, and nearly paperless. Due to the cost
associated with the tonnage of "never-read" paper
documentation, OoD will totally revamp their
documentation requirements providing for automatic
generation of concise documentation by SSEs.

This is obviously a very high level overview of a

technically complex future system. Speculating on
future systems is easy and exciting. The challenge
remains that wemust resolve significant management
and technical issues to make the future become
real i ty. RAPID ts dealing with these issues to
make reuse an integral part of systems development
in the next century.

IS TECHNOLOGY THE ANSWER?

Technology has been at the forefront of the
headlines and has gained tremendous ground in
support of software development. Research,
development, and insertion of new technology at the
pace witnessed in recent years seems to spawn a
feeding frenzy of the "power hungry" technologists.
This "frenzy" is readily accepted and endorsed by
management (as long as the "other guy" pays the R&D
bi l l) who are eager to find new solutions to
increasingly complex and diff icult problems. Let's
look at technology from four perspectives;

Environments

Significant work is being done by the Software
Engineering Institute (SEI) on Ada Programming
Support Environments (APSE) and in 1988 they
published their "Perspective on Reuse" [12] which
spawned new strategies and methodologies for
software development. The Software Technology for
Adaptable Reliable Systems (STARS) program is on
the forefront of developing powerful Software
Engineering Environments supporting the development
of highly complex, real time embedded systems.
RAPID is working with STARS to investigate methods
to access the STARS national repository using tools
such as RAPID. Both SEI and STARS integrate the
concept of reuse throughout their environments.

The TRW Corporation. in development of the Army
WWMCCS Information System (AWIS), has created a
sophisticated programming support environment [15]
where designs are conceptually modeled in graphic
format. Compilable Ada Design language is
automatically generated by the system to evaluate
design alternatives through prototyping. Designing
for reuse plays an important role throughout TRW's
development effort .

These are but a few examples of the tremendous
interest and technological advancement in
programming support environments. This appears to
be a natural evolutionary step toward the "systems"
support environment of the future.

2 Washington Ada Symposium Proceedings. June 1990

Enqineerinq Standards

"Engineering" is becoming common place and has been
firmly attached to the word "software." This
semantical association of software and engineering
has not been defined clearly though everyone admits
its importance. Classical "applied science"
engineering methods such as modeling through
abstraction and reuse is becoming common place. I t
has been stated that "reuse is not a goal, but a
byproduct of classical engineering" [4]. RAPID
continues to promote the advantages of
"engineering" software with the resulting benefits
of quality, re l iab i l i ty , and maintainability that
engineering and reuse provide.

The sense of classical engineering we are beginning
to apply to software development today wil l lead to
classical systems engineering in the next century.
Adherence to the rigor of engineering wil l propel
the requirements for reusable knowledge to great
heights. RAPID must continue to be evolutionary
and dynamic to meet these future requirements.
Certified reusable knowledge wil l be the key
ingredient to successful systems development in the
next century.

Tools

The draft DoD Software Master Plan has stated that
"software tools are beginning to play a major role
in the support of system design, development, test,
evaluation, operations, and maintenance processes"
[3]. This is no surprise. The lack of tools and
eff icient compilers supporting Ada development has
been a significant problem for several years.
Technology, however, is moving quickly to alleviate
past shortcomings in this area.

RAPID has been involved in several in-depth reviews
of a variety of CASE tools supporting software
development and reuse. As a result, several tools
are being enhanced to better support reuse. RAPID
requires tools that allow detailed evaluation of
graphical designs and source code. Since RAPID's
primary sources of reusable components are existing
systems, reverse engineering tools are also needed.
RAPID is finding that the quality and capabil ity of
CASE tools is improving dramettcally.
Based on the number of advertised tools, the level
of interest at symposiums and expositions, and
RAPID's own experience in evaluating a wide variety
of tools, i t appears that tool and compiler
development may now be one of the fastest growing
segments in the commercial Ada market.

There is a tremendous amount of work being put into
the establishment of standards. Rightly so,
because the establishment of standards is key and
requisite to supporting distributed APSEs,
accessing distributed reusable resources, and the
concept of portabi l i ty . Progress is being made to
standardize areas such as: data dictionaries,
Portable Operating System Interface for Computer
Environments (POSIX), Government Open Systems
Interconnect Prof i le (GOSIP), Ada Programming
Support Environments (APSE), Common APSE Interface
Set (CAIS), documentation (DoD Standard 2167A and
7935A), portabi l i ty, Ada/SQL binding, and others.

RAPID has drafted a command-wide reuse policy that
is currently being staffed. This is a major step
to formalizing an organizational reuse program that
incorporates specific reuse standards and
procedures for software development.

The emergence of new technologies wi l l continue to
prol i ferate. The establishment of standards wi l l
allow integration of tools such as RAPID into
systems support environments. This wi l l also
provide the capabil i ty to access distributed
reusable resources which wi l l provide power and
f l e x i b i l i t y for systems development in the future.

RAPID firmly believes that technology wi l l provide
the "high powered" tools necessary to support
sophisticated systems development and reuse in the
future. The question is . . . w i l l management be
prepared?

MANAGEMENT' S ROLE

Management issues are rarely in the headlines and
are normally found in the shadows of technology's
l imelight. Technology wi l l give us the tools and
environments to make true systems engineering a
rea l i ty but themost c r i t i ca l resource is s t i l l the
people who use those tools and environments to
specify, design, code, test and integrate systems.

In the March 1990 issue of Communications of the
ACM [14] an interesting "software cr is is" analogy
was presented based on the Chinese character for
cr is is. The character for cr is is is composed of
characters thatmake up both Chinese characters for
danger and opportunity. The wisdom of this is ever
present in the software development community. We
are at a point of transit ion where management most
assess a variety of risks, react appropriately to

Washington Ada Symposium Proceedings. June 1990 3

~ ~ Z = < ~ - ~ , ~-~ ~

not only minimize the danger but to enhance our
opportunities for success. Management actions
based on the assessment of risk associated with
training, methodologies, incentives, and legal
issues wil l drive the success or failure of reuse
and true systems engineering in the future.

Traininq

There is continued emphasis on the development of
sophisticated tools and integrated programming
support environments to eventually solve the vast
majority of our software engineering woes. This is
well jus t i f ied in the realm of technology
advancement, however, we must keep technology in
perspective. Tools only support highly skilled
engineers that design and develop systems. Skilled
craftsmen can build wonderful things using powerful
tools however, a child with a power saw is destined
for tragedy. Ensuring that our software, hardware,
and system engineers have the training and ski l ls
to keep pace with technology is v i ta l . The primary
emphasis should be placed on integrating systems
engineering curriculum at the undergraduate level.
Academia must take the lead to maet this challenge.

It is essential that we educate our users and
developers on what reuse is, how i t works, and what
benefits wi l l be achieved as a result of reusing
l i fe cycle components. RAPID has placed a
tremendous amount of emphasis on ensuring that both
our customers, programmer/engineers, and managers
are thoroughly familiar with each project's reuse
strategy. This strategy encompasses the following
areas:

1. Reuse goals and objectives
2. Identification of reuse opportunities (domain
analysis)
3. Design approach
4. Reusable component resources
5. Development of reusable components
6. Reuse standards and guidelines
7. Use of the RAPID center
8. Incentives and legal requirements

I f the systems development community does not
understand the benefits of reuse, then getting
reuse integrated into the systems development
methodology wi l l not happen. RAPID wil l continue
to be an "aggressive advocate" of software
engineering and reuse. I t is imperative that we
maintain the momentum until the philosophy of
engineering and reuse becomes a natural extension
of our development mentality.

Methodoloq7

Technology is providing an assortment of
sophisticated tools and environments that can
support a variety of development methodo)ogies.
Once again, the role of management is cr i t ical in
determining how reuse is being integrated into that
environment.

RAPID continues to emphasize the philosophy that
reuse is essential to the entire systems
development process. Management must understand
the role reuse wi l l play in their methodology and
must move beyond the assumption that reuse applies
only to code. Reuse of knowledge and components is
an effective means of technology transfer. It is
intuit ive that the reuse of quality knowledge and
information leads to quality decision making. It
is equally intuit ive that we can apply that same
principle to our systems development methodologies.

RAPID continues to develop processes that support
effective reuse and the integration of those
processes into the development methodology. Most
importantly, the process of domain analysis which
determines potential reuse areas within and across
systems. Once domain analysis has been
accomplished RAPID has developed processes to
identify potential sources of reusable components
and support the actual reuse of the components.
Our emphasis today is on reuse of design components
which are linked to the implementing code,
documentation, and test data that support the
design. Evaluating lessons learned during this
phase of RAPID's program wil l give us the
information necessary to evolve toward the reuse of
requirements and eventually the reuse of
"knowledge" in the systems support environment.

Incentives

This is probably the most d i f f i c u l t issue that
impacts on successful reuse. How can we create an
environment where both the contractor and the OoD
wi l l benefit? Can we achieve reuse between
contractors? How do we get beyond the "not
invented here syndrome?" Relatively simple
questions on the surface but the solutions can
quickly become extremely complex and d i f f i cu l t .

There are two things that must happen to
incentivize reuse successfully. First, this is a
capital ist ic society and reuse must be profitable.
Second, i t must be easier to "reuse" than to build
i t from scratch.

4 Washington Ada Symposium Proceedings. June 1990

The government wi l l move, out of necessity, toward
relinquishing the requirement for unlimited rights
to all delivered software products. As defined in
Subpart 227.471 of the Defense Federa] Acquisition
Regulation, Government Purpose License Rights
(GPLR) wil l l ikely become the norm. Thls gives the
government unlimited rights for "government use
only" but allows the freedom of "commercialization"
to the contractor.

Contracts must change. A Cost-Plus contract is a
great incentive to redevelop rather than reuse. A
Firm Fixed Price contract is an incentive to reuse
existing components, however, i t is also a
disincentive to develop reusable components because
i t costs mere. Does i t make sense to pay for
"lines of code"? RAPID doesn't think so. New
contractual methods, such as paying for delivered
functionality, are being explored. Considerable
work remains to resolve themany issues surrounding
contracts and reuse.

RAPID is working closely with the Joint Integrated
Avionics Working Group (JIAWG) which is tasked Dy
DoD to implement the reuse of avionics and
communications software between three major
platforms; the Navy A-12, the Air Force Advanced
Technology Fighter (ATF) and the Army's Light
Helicopter Experimental (LHX). JIAWG and the Ada
Joint User's Group (AdaJUG) are on the leading edge
of contractual and incentive issues. Their task is
to find ways to obligate and incentivize a
multitude of contractors to provide reusable
components across these three development efforts.
They are investigating ways to allow each
contractor tomaintain restricted rights to certain
developed components, provide those components to a
competitor (for a price), and have the competitor
use the component in their application (and receive
an incentive award from the government for doing
so). The expected outcome is:

1. The commercial incentive to build quality
reusable components is there.

2. The incentive for a competitor to use the
component is also there because:

a. I t is more profitable for them to use the
competitor's component than to develop i t from
scratch.

b. They receive an incentive award from the
government for doing so.

3. The government wins because:

a. Contractors are developing higher quali ty
reusable components.

b. Components can be reused by other contractors
at a reduced cost.

c. Systems maintainabil ity Is improved.

d. Life cycle costs are reduced through improved
re l i ab i l i t y .

Most incentive questions remain yet unresolved.
This is an area that wi l l require significant
emphasis in the future. Many of the incentive
issues are tied closely with the legal issues
because of requirements in the Federal Acquisition
Regulation (FAR) and the Defense Federal
Acquisition Regulation (DFAR). As RAPID works
closely with our Beta sites and Army customers, we
must create a win-win environment where reuse is
good for the customer, the contractor, the
government, and the system.

Legal

Legal problems associated with reusing software and
technical data are brought up constantly as a major
obstacle to reuse. These can significantly impact
on our abi l i ty to integrate reuse into our systems
support methodology of the future. RAPID has
developed an interim non-disclosure/restricted
rights policy to continue with our proactive
approach to reuse. The policy includes the
fo I lowi ng prov i s ions:

I. The legal policy must be read by all RAPID
users. The policy includes the following
information:

a. Definitions. Few people understand that the
rights given to software do not apply to the
documentation that supports i t (documentation is
considered technical data and fal ls under different
provisions of the FAR/DFAR).

b. Commercial Off-the-Shelf (COTS) Software,
Technical Data and a11 Restrlcted/Limited Rights
Data. This requires that al l software and
technical data placed in the RAPID library must
have the originator's copyright, trade secret
notices, and/or restrictive legends imbedded at the
beginning of each Ada specification, Ada body, and
associated technical data (documentation).

c. Responsibilities. What is required of the
user, project manager, RAPID Center manager,

Washington Ada Symposium Proceedings. June 1990

quality assurance, and configuration management.

2. A non-disclosure statement must be signed
before becoming an authorized RAPID user. The non-
disclosure statement requires the user to abide by
a l l r es t r i c t i ve markings as well as provides
specif ic guidance on how to handle the
incorporation of a component with restr ic ted r ights
into other software or technical data. I t requires
the user to adopt reasonable operating and physical
securi ty measures to protect extracted data from
unauthorized disclosure to th i rd part ies. F ina l ly ,
i t states that components are provided without
warrantee and the government w i l l not he held
l iab le as a resul t of use or misuse of components.

Legal issues that impact on reuse wil l continue to
be problematic for several years. I t is incumbent
upon the industry and government to take interim
steps now. I f not, the fear of legal unknowns may
obscure the opportunity to bring true engineering
to systems development in the future.

CONCLUSION

The excitement of new technology w i l l continue to
grow as industry provides us with a never ending
array of sophisticated tools and environments.
Standards wi11 allow greater inter-operability and
communications capability than ever before. Reuse
of knowledge and technology in systems development
wil l propel the quality, re l iab i l i ty , and
maintainability of future systems to new heights.
Reuse of that same available knowledge and
technology wil l allow us to build systems that meet
the requirements of the user the f i rs t time.
Technology wil l be ready for the 21st century.

Technology is not the answer. Management must
ensure that their most valued resource is prepared
to effectively use 21st century technology. People
are that resource. RAPID and others are moving
forward to promote a solid engineering approach to
systems development and reuse. Ranagement in
academia, industry and government must make a
commitment to support the training and education
required to keep pace with technologlcal
advancement. We cannot expect technology to build
systems for us. Smart people can do extraordinary
things provided they are given the tools and
resources. We need to make people smart, provide
them with a methodology to do things smart, create
an environment where they want to do things smart,
and make sure legal and contractual issues won't
prevent them from doing i t .

REFERENCES

1. Basili, Victor R. Viewing maintenance as
reuse-oriented software development. IEEE
Software, 1990, v7nl, 19(7).

2. Clapp, J. Software reusability: a management
view. Proceedinqs of IEEE Computer Society's Eiqhth
International Computer Software and Applications
Conference, 1984, 419-480.

3. Department of Defense. Software Master Plan
(Preliminary Draft), February g, 1990,
Volume I .

4. D'Ippolito, Richard S. Us ing Models in
Software Engineering. Proceedings of Tri-Ada '8g,
1989, 256-265.

5. Hooper, James W; Chester, Rowena O. Software
Reuse: Managerial and Technical Guidelines.
Proceeding of the Eighth Annual National Conference
on Ada Technology, IggO, 424-435.

6. Jones, 6. Software reusab i l i t y : approaches and
issues. Proceedinqs of IEEE Computer Society's
Eighth Internationa) Computer Software and
Applications Conference, 1984, 476-478.

7. Lanergan, Robert G.; Grasso, Charles A.
Software Engineering with Reusable Designs and
Code. IEEE Transactions on Software Enqineering,
1984, vSE-IOnS, 498-501.

8. Matsumoto, Yoshihiro. Some Experiences in
Promoting Reusable Software: Presentation in Higher
Abstract Levels. IEEE Transactions on Software
Enqineerinq, 1984, vSE-1OnS, 502-513.

9. McCain, R. A software development methodology
for reusable components. Proceedings of the
Eiqhteenth Hawaii International Conference on
System Sciences, 1985, Volume 2, 319-324.

10. Road, Jeff. Maintaining the Competitive Edge.
Datamation, February 15, 1990, 61-66.

11. Paul, Lois. Reusable Code Prescribed for
Software Productivity. Computerworld, 1981,
v15n19, 15.

12. Perry, J.M. Perspective on Software Reuse.
SEI Technical Report CMU/SEI-88-TR-22f ESD-TR-88-
023, 1988.

6 Washington Ada Sympos ium Proceed ings . June 1990

13. Redwine, S.T., Jr.; Riddle, W.E. Representing
and Enacting the Software Process. Proceedings of
the 4th International Software Process Workshop,
lg8g, 133-135.

14. Scaling Up: A Research Agenda for Software
Engineering. Communications of the ACM, Ig90,
v33n3, 281-293.

15. Woodward, Herbert P. A Better Approach to
Software Engineering. Proceedings of the Eiqhth
Annual National Conference on Ada Technology, lggO,
343-348.

ABOUT THE AUTHOR

Jack Rothrock is a captain in the United States
Army assigned to the RAPID project at Software
Development Center Washington. He is actively
involved in the development of the RAPID program
and is responsible for establ|shlng and
administering all RAPID Beta Test Sites. Captain
Rothrock received his Master of Science degree in
Information Systems Management from Eastern
Washington University and is a member of the ACM.
He currently chairs the ACM SIGAda Reuse Subgroup
on management and legal issues.

Washington Ada Symposium Proceedings. June 1990 7

