
On Designing Parametrized Systems Using Ada

Michael Stark

Goddard Space Flight Center

1. Introduction

A oarametriz~ system is a software system that can be
configured by selecting generalized models and providing
specific parameter values to fit those models into a
standardized design. This is in contrast to the top-down
development approach where a system is designed first, and
software is reused only when it fits into the design. The term
reconfieurable is used interchangeably with parametrized
throughout the paper. 'This concept is particularly useful in a
development environment such as the Goddard Space Flight
Center (GSFC) Flight Dynamics Division (FDD), where
successive systems have similar characteristics.

The FDD's Software Engineering Laboratory (SEL) has been
examining reuse issues associated with Ada from the beginning
of its Ada research in 1985. The lessons learned have been
applied to operational Ada systems, leading to an immediate
trend towards greater reuse than is typical for FORTRAN
systems [McGarry 1989]. In addition, the Genedc Simulator
prototyping project (GENSIM) was a first effort at designing a
parametrized simulator system. The lessons learned through
the use of Ado and the GENSIM prototype are being applied to
the Combined Operational Mission Planning and Attitude
Support System (COMPASS), which is to be a reconfigurable
system for a much larger portion of the flight dynamics domain.
This paper will discuss the lessons learned from the GENSIM
project, some of the reconfiguration concepts planned for
COMPASS, and will define a model for the development of
reconfigurable systems. This model provides techniques for
realizing the potential for "Domain-Directed Reuse", as defined
by Braun and Prieto-Diaz [Braun 1989].

The major motive for reconfigurable systems in the FDD is cost
reduction. Having a well-tested set of reusable components may
also increase reliability and shorten development schedules, but
cost is the primary factor in this environment. Research done by

COPYRIGHT 1990 BY THE ASSOCIATION FOR COMPUTING
MACHINERY, INC. Permission to copy without fee all or part
of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise,
or to republish, requires a fee and or specific permission.

the SEL indicates that verbatim ~0ftw6re reuse (rouse without
modification) can produce major cost savings. The cost of
integrating a component that is reused verbatim is approximately
10 per cent of the cost of developing a new component from
scratch [Solomon t987J. Analysis done for GENSIM indicated
that approximately 70 to 80 per cent of the code could be roused
verbatim, and that this should cut simulator development costs in
half [Markley 198'7].

2. Reconfigurable Systems

This section focuses on the approaches taken and lessons
learned from the GENSIM and COMPASS projects. These
lessons influenced the reuse concepts and techniques defined in
the subsequent sections of the paper.

2.1 GENSIM Overview

The GENSIM project was started in late 1986, and divided into
two major phases. The first phase lasted until mid-1988, with
the major products being the cost analysis cited above,
mathematical specifications, and the high level system design.
From mid-1988 to mid-1989 a small development team started
implementing prototype software. The project was terminated
before the prototype system was completed and evaluated, as
COMPASS incorporates simulation requirements into its broader
domain. Nonetheless, enough development work was done to
learn some useful lessons.

The generic simulator design consists of a set of =modules" that
plug into a standardized simulator architecture. Each of these
modules was expected to have a corresponding mathematical
specification, design data (object diagrams and Ada package
specifications), and source code. The use of standardized
specifications was intended to prevent the slight differences in
specifications that often impede verbatim reuse. In addition, the
GENSIM project intended to maintain test plans, data, and
software for each module, so that changes in standard modules
could be tested rapidly.

The simulator architecture is based on the designs of the first
two Ado simulators developed in the FDD. The enhancements

Washington Ada Symposium Proceedings. June 1990 9

http://crossmark.crossref.org/dialog/?doi=10.1145%2F327011.327021&domain=pdf&date_stamp=1990-07-01

S imu la to r A rch i tec tu re

Simulation

F igure 1

Sub=ystem

Dependency

and changes to this architecture were intended to allow different
sets of modules to be configured into a system, depending on
the simulation requirements for a given satellite. It was possible

generalize the eady designs, but because these were eady
designs, GENSIM incorporated some design flaws, even as
others were removed. The major results of GENSIM were

1) The concept of reusing products from all life cycle
phases presented no problems, and provided the anticipated
benefit of standardizing mathematical specifications. The
GENSIM team thoroughly specifies the individual simulator
modules. However, the connections between modules were
made at design time, despite the fact that they represented
dependencies inherent in the problem. Note capturing these
dependencies in the specification was not a problem, since the
GENSIM team happened to be knowledgable enough to assure
that a function needed by one module was provided by another.
Nonetheless, problem domain dependencies should preferably
be captured in the specifications, so that developers with less
domain expertise will have the information they need. The
COMPASS team is representing problem domain dependencies
in their standardized specifications.

2) The configuration of a system is done by instantiating all
the necessary generic Ada packages in the correct order. The
GENSIM team instantiated each package as a library unit. In
cases where the same.,,..C.t of packages are used in each system,
generics can be combined so that a subsystem can be
"instantiated" through the instantiation of a single generic

package.

3) The legacy of the previous simulator architectures made
the implementation of standardized components more difficult.
In particular, the storage of inputs and results for a given
simulation scenario could not be adequately generalized. This
lesson is discussed in more detail in the next section.

2.2 GENSIM as a Standardized Architecture

The purpose of the flight dynamics simulators generalized by
GENSIM is to test the flight dynamics control algorithms for a
satellite before it is launched. Figure 1 shows the architecture
for a spacecraft simulator built from GENSIM modules. This
diagram shows the dependencies between major simulator
subsystems. The Truth Model represents the "true" response of
a spacecraft to its control system, and is configured using the
components needed for a specific satellite. The Spacecraft
Control subsystem contains new code that implements a
particular satellite's control laws. The remaining subsystems are
built to support these two subsystems, and must also be
configurable to support varying sets of modules. This
reconfigurability became especially cumbersome for the Case
Interface, which is the subsystem that manages input data and
results for simulation scenarios (cases). Figure 2 shows the two
major parts of Case Interface. All simulation inputs are
managed by Parameter Interface, and all results are managed
by Results Interface. These two subsystems are accessed by
both the user and the two simulation subsystems.

S u b s v s t e m

P=arr~tor ~ _ /
FDle ~

E GenericJnt erface-Types 3

"typeo package"
(cluclamllone oNy)

..................... {Ill.
generic ImtanlIMIon

10 W a s h i n g t o n A d a S y m p o s i u m P r o c e e d i n g s . J u n e 1990

FSS Module's View of the Case

Executive,
Sr~ceu~t
Control

0
Interlace Types Interface Tyl:x~$ Interface Types

Fiaure 3 O

Package

Off-pege
dependency

The GENSIM configuration concept called for the subsystems of
the Case Interface to be built from components associated with
each module. Figure 3 shows how a parameter and results
database is created for a Fine Sun Sensor (FSS) module by
instantiating standardized generics. The "FSS_Database"
package is used by the module's initialization routine to get initial
parameters, and the "FSS_Results" package is used by the
module's computation routines to store simulated results. The
shaded areas show that the individual components fit into the
Case Interface packages. Figure 4 shows how several module
databases fit into the Parameter Interface subsystem.

The advantage of ~is approach is that the packages
InterfaceTypes and FSS_Types contain all the declarative
information needed to include a module in a simulator
configuration, and that standard types and protocols are used to
achieve this. The configuration parameters include default
values for module input parameters, flags indicating which
parameters a user is allowed to change, and similar flags
indicating what results a user may display during a simulation or
print after a simulation. The disadvantages of this design
approach are

1) the developer of a flight dynamics module has to be
aware of all the complexities inherent in the simulator
architecture, and all the dependencies shown in Figures 3 and
4, and

2) the parameters passed in and out of a package are
limited to the data types defined by Interlace Types. Module
specific enumeration types (such as "type FSS_POWER is
(OFF,ON)') cannot passed to the user except by using the 'POS
attribute to convert to an integer which is then displayed.

Figure 5 shows an improvement to the architecture that
addresses the first disadvantage. The package FSS ADT
exports an abstract data type (ADT) that implements all the
modeling of the fine sun sensor. Now the state of the FSS
module is based on this abstract data type, and the module's
functionality is implemented by calling the operations on the
type. This allows package FSS_ADT to be implemented by a
developer who is aware of all the nuances of fine sun sensor
modeling, and the FSS module can be implemented by a
developer who is aware of all the nuances of the simulator
architecture. In addition, FSS ADT and all the other abstract
data types defined for the flight dynamics simulation domain can
be used to build a system with a completely different
architecture, without changing a line of code in the packages
that implement the modeling of the flight dynamics problem. An
architecture that addresses the limitations imposed by
InterfaceTypes can be built around such abstract data types, as
is shown in section 4. The separation of problem domain and
system architecture considerations is a key element of the reuse
models described in section 3.

Parameter Interface
D e s i a n

Module 1 FSS Module 9 User Interface

I A D==,~ I

'"".'".@".","2-2"2"2".-.'.--" ".';'2"2"""'"'".'." • '"

.... '":'":"'"'",,i,, ,i,,Y '':'''!''I

[,.,.,.c.

!
~G~,neric Inlerface T y ~

Washington Ada Symposium Proceedings. June 1990 11

FSS Module's View of the Case
.Lm.e.d.a.~,.

Executive,

Figure 5

2.3 COMPASS

COMPASS is the second FD,D project that is developing
reconfigurable software. It has the same cost reduction goal as
GENSIM, but covers a much larger problem domain.

COMPASS is intended to support the flight dynamics
simulations area, mission planning and analysis both before and
after launch, and spacecraft attitude support systems for
mission operations. The estimated size of COMPASS is over a
million lines (counting all carriage returns) of Ada source code,
and is targeted to run on several different computers. This
implies both being able to configure systems to run as
distributed systems, and to be able to target the same functions
to different platforms. These considerations have prompted
refinements to the reuse model defined in [Booth 1989].

COMPASS has also involves defining standardized
specifications to promote verbatim reuse. Unlike GENSIM, a
standard specification methodology has been defined for
COMPASS [Seidewitz 1989]. The COMPASS specification
concepts are object-oriented, but contain restrictions tied to both
reconfigurability and to project standards. For example, there is
a restriction on the number of levels of superclasses and
subclasses allowed in an inheritance hierarchy.

3. Reuse Concepts

To be able to design reconfigurable systems, it is necessary to
have some undedying principles that can be used as design
guidelines. The major concept defined in this paper is a layered
Reuse Model that categorizes components by function and
defines dependencies among these components. The initial
model was developed as a result of the work done on GENSIM
and on an operational system, Ihe Upper Atmosphere Research
Satellite (UARS) Telemetry Simulator (UARSTELS) [Booth
1989]. This model was primarily driven by the need to separate
problem domain and system architecture considerations, as is
discussed in section 2. This modef does not address how to
incorporate very general components that have potential use
across several problem domains and/or architectures, nor does
it address the separation of system dependent features from
potentially portable code. The latter omission became obvious
when a multiplatform system such as COMPASS was
considered.

The Layered R~LI~e Model

Major Layers Levele Exarnptee

Architecture
Levels

Problem
Domain
Levels

Service
Levels

System
Architecture
Templates

System Modules

Domain
Definition
Classes

Domain Language
Classes

System
Incks, p,endent
Services

System
Dependent
Services

Ca.se_lnterface

FSS_MOdule

FSS_ADT
(Fine sun sensor
abstract data type)

Linear_Algebra

Booch
~ m p o n e n ~ M)

DEC math library
package

Figure 6

To address the above issues, a "services" layer was added to
the model. This services layer is split into a system dependent
and a system independent layer. The updated reuse model is
shown in Figure 6. A component in a given layer can only
depend on components in layers below it, as is the case in any
good layered model. The layers are defined as follows:

System Architecture TemDlat~, ~ - Components at this level
provide a template into which modules fit. These can be
reconfigurable subsystems such as the GENSIM Case Interface
discussed above, or they can be standard components that do
not depend on the particular configuration. In GENSIM the
Display Interface and the Plot Interface were designed to be

12 W a s h i n g t o n A d a S y m p o s i u m P r o c e e d i n g s . J u n e 1990

standard software, with any needed configuration data being
provided by input files, rather than generic instantiation.

System Modules -- This layer contains components that are
designed to fit into a standard design. These modules are built
trom components at the problem domain and service levels.

Domain Definition Classes - These components define classes
in the problem domain that are identified through domain
analysis. They are generally implemented as Ada packages
exporting abstract data types, as is discussed above.

Domain Lanouaoe Classes -- Components at this level capture
the vocabulary of a particular domain, in other words, these
classes capture the knowledge and language that domain
experts use to express the specifications for domain definition
classes, tn the flight dynamics domain, such classes would
include "vector', "matrix", "orbit", and "attitude,'. The domain
analyst would use these simpler classes to define more complex
classes such as "Fine Sun Sensor".

System Independent Services - This layer contains
components that can be used in implementing both the problem
domain layer and architecture layer components. They are
usually usable in more than one problem domain and/or more
than one system architecture. Components at this level include
the generic data structures and tools provided by the Booch
Components (TM) [Booch 1987], as well as portable interfaces
to general services such as DEC's screen management
routines. These portable interfaces can be moved to different
computers, and new code or a different commercial product can
be used to implement the same functions. Thus one ends up
with multiple non-portable implementations of a single
abstraction. Calls to this package should act the same, even if
they are implemented in a machine dependent manner.

Svstem Deoendent Services - This layer contains all the
components that are dependent on a particular cemputer or
operating system. This generally includes all non-Ada code, as
most other languages have different non-standard extensions on
different machines. This also includes Ada code that
incorporates system dependent features such as Direct_lO files
created with a non-null FORM parameter. These system
dependent features should have system independent interfaces
at a higher level.

The improved model takes an object-orlanted approach to
specifying the problem domain. The domain definition classes
and domain language classes form the two major groupings
within the problem domain. Each of these two groups are also
organized with the more domain specific classes depending on
the more general classes. For example, the flight-dynamics
classes "orbit" and "attitude" depend on the more general
classes "vector" and "matrix'.

The layered reuse model does not depend on Ada, but the Ada
language contains features that support this model well. The
use of generic packages allows each of the problem domain
classes to be implemented as a generic unit that is completely
decoupled from all other classes. In addition, the generic formal
definitions associated with a package capture all the information
about dependencies in a single location, as well as distributing
external references throughout the code. Another useful feature
is the separation of package specifications (and subprogram

and task speci~-.,,ations as well) from their implementations. This
is useful in hiding system dependent services, which can then
have the system independent part defined at the appropriate
layer. For example, the interface to a system dependent math
library would be classified within the problem domain, and the
interface to system-dependent screen management routines
could be system independent services. The 5 top levels in this
model would then contain system independent Ada code, which
would be expected to be completely portable. This is not a
consequence of attempting to, make the highest layers portable,
but rather is a benefit of isolating the known system
dependencies, and using a standardized programming
language. Using Ada leads naturally to having most reusable
components also be portable. Similar portability ~ be
attainable using C. It is almost certainly not attainable with
FORTRAN, as the dialects vary too greatly between machines.

4. Example

This section presents an improved GENSIM design as an
example of how to use the layered model. This new design is
presented at the same level of detail as the original GENSIM
design presented in section 2. Figure 7 shows the improved
simulator design.

Improved Simulator
Architectu re

Archlte

Se, , i ce \ ~ Layer ~ . ~

Fiaure 7

The key differences in this design are the location of the Case
Interface subsystem and the new I/O services subsystem. In
additon, the Spacecraft Control, Truth Model, and Utilities
subsystem are cembined into the Simulator subsystem. Figure
8 shows that the dependencies between these three subsystems
are the same as in the original architecture (Figure 1), but that
now none of these subsystems depends on Case Interface.

W a s h i n g t o n A d a S y m p o s i u m P r o c e e d i n g s . J u n e 1990 13

This extra design level is not carried through to
implementation. Subsystems may be implemented as a single
package which provides an interface to all the subsystem's
components, but in this case the Simulator subsystem is merely

Simulator Subsystem

Spacecraft
Control

Truth
Model

Utilities
Fiaure 8

initialization of simulation parameters, rather than the simulator
components requesting intial values from a database contained
within the Case Interface.

In this example, the use of the layered model removes the Truth
Model's complex dependencies on the Case Interface packages
shown in Figure 3. This enables the Simulator subsystem
components to be usable within more than one architecture.
The placing of the system architecture subsystems above the
Simulator subsystem also allows general purpose service layer
components to be enhanced as needed to integrate a given
module into the system architecture. The
FSS_Parameter_Display demonstrates this concept by using
Enumeration_lO to add to the general IO services.

FS$ Module Desian
User Interlace

Execulive.
,.~pacecralt Co~11rol,
Case Interlace

! { ,
I/O Serv~es 6

Enumeraiion"~'lO

a logical grouping intended to reduce the design complexity.

Figure 7 also shows the three major layers of the rouse model.
In this design, the I/O services consist of standard Ada packages
such as Text IO or Direct_lO, and an interface to DEC's Screen
Management Guidelines (SMG) routines. Figure 9 shows the

interrelationship between the FSS module and the simulator
architecture. Here the abstract data type for a sensor is created
by instantiating a generic package. The generic ADT is
designed so that all external dependencies are captured in the
generic formal part. These dependencies include types provided
by the simulator's Math_Types package, and functions to select
information from the Sun and Dynamics modules. The
FS$ Objects package uses the ADT (private type) exported by
the FSS_ADT package to define its package state, and the
FSS_Parameters_Display package uses visible types exported
by FSS_ADT to define parameter screens. The
FSS.ParameterDisplays package also instantiates
Enumeration_lO using "type FSS_POWER is (OFF,ON)" as the
actual parameter. This removes the reliance on using the 'POS
attribute of enumerated types that has been a feature of all FDD
simulators up until now.

Figure 10 shows how the FSS_Parameter Display package fits
into the design of the Case Editor subsystem. The Case Editor
subsystem is the part of the User_Interface that allows a user to
change any of the initial parameters for a simulation. The
Parameter_Editor package tracks which displays the user has
selected and calls the appropriate parameter display package.
The difference is that now the User_Interface controls the

Fiaure 9

/
i

/
_-=

Dynamics

MathTypes

5. Future Directions

This paper describes a general rouse model for designing
reconfigurable systems. The next step is to map the layered
rouse model to Ada design and implementation concepts. The
high-level designs presented in this paper use generic packages
to help parametrize systems. There are many possible ways to
incorporate generic packages into a larger design. These "reuse
in the small" techniques include nesting generic instantiations,
nesting generic definitions, and creating dependencies between
library instantiations [Booth 1989]. This paper has used the last
technique so that while generic instantiations are coupled, each
of the generic units is completely decoupled from the others.

The layered reuse model provides a sound basis for project
management. By strictly separating the problem domain issues
from the system architecture issues, a manager can assign the
appropriate experts to implement ped~ages within each layer of
the model. Improving the allocation of personnel to tasks should

14 Wash ing ton Ada Sympos ium P r o c e e d i n g s . June 1990

improve both productivity and software quality. As this model is
used, an understanding of what proportion of a system falls into

User Interface Case Editor
.D_e.sJgo.

IO
Services

Fioure 1 0

which layer will evolve.

The layered reuse model also can be used to understand which
software is most critical. Layered models have seen the most
use in operating system design. The kemel of an operating
system typically requires the most attention, despite the fact it is
a relatively small proportion of the code. This is because all
other layers depend on its correctness and efficiency. The
analogous layers in the reuse model are the service layers and
the domain language layer. Additional evidence for the
assertion is that the FDD has observed performance
degradation in its Ada simulators due to the inefficient
implementation of mathematical utilities packages.

In addition to the performance problems observed above, there
is a concern that layered implementation models may be
inherently slow due to the addition of extra levels of procedure
calls to aocomplish the same work. The FDD encountered this
problem with a commercially provided graphics interface that
provides the same FORTRAN interface routines on a VAX or an
IBM mainframe. Whether this is due to extra procedure calls or
generally inefficient implementation is unclear. Ada addresses
the former problem by providing pragma Inline. The latter
problem must be addressed by improving the software. If the
software design and implementation is done properly, the
layered rouse model should not degrade performance.

6. Conclusion

In "DomaJn-Diracted Reuse", Braun and Prieto-Diaz extract
properties that are common to applications (such as compiler

design) where a high degree of rouse is already being obtained
[Braun 1989]. These properties are a focus on a particular
application domain, assumptions about system architecture
constraints, and a set of generalized and well defined interfaces.
The layered rouse modal provides design concepts for
examining applications domains and defining standardized
architectures. These techniques will help realize the potential
inherent in the concept of domain directed rouse.

References

[Beech 1987] Beech, G, ,,~.oftware Comoonents With Ada. Menlo
Park, Calif., Benjamin/Commings, 1987.

[Braun 1989] Braun, C. and R. Prieto-Diaz, "Domian-Directed
Reuse," Proceedings of the Fourteenth Annual Software
Enoineedno Workshoo. November, 1989.

[Booth 1989] Booth, E and M. Stark, "Using Ada Generics to
Maximize Verbatim Software Reuse," Proceedinos of TRI-Ada

October 1989.

[Markley 1988] Markley, F. L., C. Mendelsohn, M Stark and M.
Woodard, "impact Study of Generic Simulator Software
(GENSIM) on Attitude Dynamics Simulator Development Within
The Systems Development Branch," Unpublished FDD Study,
1988.

[McGarry 1989] McGarry, F., S. Waligora, and T. McDermott,
"Experiences in the Software Engineering Laboratory (SEL)
Applying Software Measurement," Proceedinos of the
Fovrteenth Annual Software Enoineerino Workshoo. November,
1989.

[Seidewitz 1989] Seidewitz, E. Combined Ooerafional Mission
Planni0g~n~ Attitude Su0Dort S vstemfCOMPASS~
Soecification Concepts. Goddard Space Flight Center Flight
Dynamics Division, COMPASS-102, 1989.

[Solomon 198'7] Solomon, D, and W. Agresti, "Profile of
Software Reuse in the Flight Dynamics Environment," Computer
Sdences Corporation, CSC/TM-87/6062, November 1987.

Washington Ada Symposium Proceedings. June 1990 15

