
On Designing Parametrized Systems Using Ada 

Michael Stark 

Goddard Space Flight Center 

1. Introduction 

A oarametriz~ system is a software system that can be 
configured by selecting generalized models and providing 
specific parameter values to fit those models into a 
standardized design. This is in contrast to the top-down 
development approach where a system is designed first, and 
software is reused only when it fits into the design. The term 
reconfieurable is used interchangeably with parametrized 
throughout the paper. 'This concept is particularly useful in a 
development environment such as the Goddard Space Flight 
Center (GSFC) Flight Dynamics Division (FDD), where 
successive systems have similar characteristics. 

The FDD's Software Engineering Laboratory (SEL) has been 
examining reuse issues associated with Ada from the beginning 
of its Ada research in 1985. The lessons learned have been 
applied to operational Ada systems, leading to an immediate 
trend towards greater reuse than is typical for FORTRAN 
systems [McGarry 1989]. In addition, the Genedc Simulator 
prototyping project (GENSIM) was a first effort at designing a 
parametrized simulator system. The lessons learned through 
the use of Ado and the GENSIM prototype are being applied to 
the Combined Operational Mission Planning and Attitude 
Support System (COMPASS), which is to be a reconfigurable 
system for a much larger portion of the flight dynamics domain. 
This paper will discuss the lessons learned from the GENSIM 
project, some of the reconfiguration concepts planned for 
COMPASS, and will define a model for the development of 
reconfigurable systems. This model provides techniques for 
realizing the potential for "Domain-Directed Reuse", as defined 
by Braun and Prieto-Diaz [Braun 1989]. 

The major motive for reconfigurable systems in the FDD is cost 
reduction. Having a well-tested set of reusable components may 
also increase reliability and shorten development schedules, but 
cost is the primary factor in this environment. Research done by 
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the SEL indicates that verbatim ~0ftw6re reuse (rouse without 
modification) can produce major cost savings. The cost of 
integrating a component that is reused verbatim is approximately 
10 per cent of the cost of developing a new component from 
scratch [Solomon t987J. Analysis done for GENSIM indicated 
that approximately 70 to 80 per cent of the code could be roused 
verbatim, and that this should cut simulator development costs in 
half [Markley 198'7]. 

2. Reconfigurable Systems 

This section focuses on the approaches taken and lessons 
learned from the GENSIM and COMPASS projects. These 
lessons influenced the reuse concepts and techniques defined in 
the subsequent sections of the paper. 

2.1 GENSIM Overview 

The GENSIM project was started in late 1986, and divided into 
two major phases. The first phase lasted until mid-1988, with 
the major products being the cost analysis cited above, 
mathematical specifications, and the high level system design. 
From mid-1988 to mid-1989 a small development team started 
implementing prototype software. The project was terminated 
before the prototype system was completed and evaluated, as 
COMPASS incorporates simulation requirements into its broader 
domain. Nonetheless, enough development work was done to 
learn some useful lessons. 

The generic simulator design consists of a set of =modules" that 
plug into a standardized simulator architecture. Each of these 
modules was expected to have a corresponding mathematical 
specification, design data (object diagrams and Ada package 
specifications), and source code. The use of standardized 
specifications was intended to prevent the slight differences in 
specifications that often impede verbatim reuse. In addition, the 
GENSIM project intended to maintain test plans, data, and 
software for each module, so that changes in standard modules 
could be tested rapidly. 

The simulator architecture is based on the designs of the first 
two Ado simulators developed in the FDD. The enhancements 
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and changes to this architecture were intended to allow different 
sets of modules to be configured into a system, depending on 
the simulation requirements for a given satellite. It was possible 

generalize the eady designs, but because these were eady 
designs, GENSIM incorporated some design flaws, even as 
others were removed. The major results of GENSIM were 

1) The concept of reusing products from all life cycle 
phases presented no problems, and provided the anticipated 
benefit of standardizing mathematical specifications. The 
GENSIM team thoroughly specifies the individual simulator 
modules. However, the connections between modules were 
made at design time, despite the fact that they represented 
dependencies inherent in the problem. Note capturing these 
dependencies in the specification was not a problem, since the 
GENSIM team happened to be knowledgable enough to assure 
that a function needed by one module was provided by another. 
Nonetheless, problem domain dependencies should preferably 
be captured in the specifications, so that developers with less 
domain expertise will have the information they need. The 
COMPASS team is representing problem domain dependencies 
in their standardized specifications. 

2) The configuration of a system is done by instantiating all 
the necessary generic Ada packages in the correct order. The 
GENSIM team instantiated each package as a library unit. In 
cases where the same.,,..C.t of packages are used in each system, 
generics can be combined so that a subsystem can be 
"instantiated" through the instantiation of a single generic 

package. 

3) The legacy of the previous simulator architectures made 
the implementation of standardized components more difficult. 
In particular, the storage of inputs and results for a given 
simulation scenario could not be adequately generalized. This 
lesson is discussed in more detail in the next section. 

2.2 GENSIM as a Standardized Architecture 

The purpose of the flight dynamics simulators generalized by 
GENSIM is to test the flight dynamics control algorithms for a 
satellite before it is launched. Figure 1 shows the architecture 
for a spacecraft simulator built from GENSIM modules. This 
diagram shows the dependencies between major simulator 
subsystems. The Truth Model represents the "true" response of 
a spacecraft to its control system, and is configured using the 
components needed for a specific satellite. The Spacecraft 
Control subsystem contains new code that implements a 
particular satellite's control laws. The remaining subsystems are 
built to support these two subsystems, and must also be 
configurable to support varying sets of modules. This 
reconfigurability became especially cumbersome for the Case 
Interface, which is the subsystem that manages input data and 
results for simulation scenarios (cases). Figure 2 shows the two 
major parts of Case Interface. All simulation inputs are 
managed by Parameter Interface, and all results are managed 
by Results Interface. These two subsystems are accessed by 
both the user and the two simulation subsystems. 
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The GENSIM configuration concept called for the subsystems of 
the Case Interface to be built from components associated with 
each module. Figure 3 shows how a parameter and results 
database is created for a Fine Sun Sensor (FSS) module by 
instantiating standardized generics. The "FSS_Database" 
package is used by the module's initialization routine to get initial 
parameters, and the "FSS_Results" package is used by the 
module's computation routines to store simulated results. The 
shaded areas show that the individual components fit into the 
Case Interface packages. Figure 4 shows how several module 
databases fit into the Parameter Interface subsystem. 

The advantage of ~is approach is that the packages 
InterfaceTypes and FSS_Types contain all the declarative 
information needed to include a module in a simulator 
configuration, and that standard types and protocols are used to 
achieve this. The configuration parameters include default 
values for module input parameters, flags indicating which 
parameters a user is allowed to change, and similar flags 
indicating what results a user may display during a simulation or 
print after a simulation. The disadvantages of this design 
approach are 

1 ) the developer of a flight dynamics module has to be 
aware of all the complexities inherent in the simulator 
architecture, and all the dependencies shown in Figures 3 and 
4, and 

2) the parameters passed in and out of a package are 
limited to the data types defined by Interlace Types. Module 
specific enumeration types (such as "type FSS_POWER is 
(OFF,ON)') cannot passed to the user except by using the 'POS 
attribute to convert to an integer which is then displayed. 

Figure 5 shows an improvement to the architecture that 
addresses the first disadvantage. The package FSS ADT 
exports an abstract data type (ADT) that implements all the 
modeling of the fine sun sensor. Now the state of the FSS 
module is based on this abstract data type, and the module's 
functionality is implemented by calling the operations on the 
type. This allows package FSS_ADT to be implemented by a 
developer who is aware of all the nuances of fine sun sensor 
modeling, and the FSS module can be implemented by a 
developer who is aware of all the nuances of the simulator 
architecture. In addition, FSS ADT and all the other abstract 
data types defined for the flight dynamics simulation domain can 
be used to build a system with a completely different 
architecture, without changing a line of code in the packages 
that implement the modeling of the flight dynamics problem. An 
architecture that addresses the limitations imposed by 
InterfaceTypes can be built around such abstract data types, as 
is shown in section 4. The separation of problem domain and 
system architecture considerations is a key element of the reuse 
models described in section 3. 
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2.3 COMPASS 

COMPASS is the second FD,D project that is developing 
reconfigurable software. It has the same cost reduction goal as 
GENSIM, but covers a much larger problem domain. 

COMPASS is intended to support the flight dynamics 
simulations area, mission planning and analysis both before and 
after launch, and spacecraft attitude support systems for 
mission operations. The estimated size of COMPASS is over a 
million lines (counting all carriage returns) of Ada source code, 
and is targeted to run on several different computers. This 
implies both being able to configure systems to run as 
distributed systems, and to be able to target the same functions 
to different platforms. These considerations have prompted 
refinements to the reuse model defined in [Booth 1989]. 

COMPASS has also involves defining standardized 
specifications to promote verbatim reuse. Unlike GENSIM, a 
standard specification methodology has been defined for 
COMPASS [Seidewitz 1989]. The COMPASS specification 
concepts are object-oriented, but contain restrictions tied to both 
reconfigurability and to project standards. For example, there is 
a restriction on the number of levels of superclasses and 
subclasses allowed in an inheritance hierarchy. 

3. Reuse Concepts 

To be able to design reconfigurable systems, it is necessary to 
have some undedying principles that can be used as design 
guidelines. The major concept defined in this paper is a layered 
Reuse Model that categorizes components by function and 
defines dependencies among these components. The initial 
model was developed as a result of the work done on GENSIM 
and on an operational system, Ihe Upper Atmosphere Research 
Satellite (UARS) Telemetry Simulator (UARSTELS) [Booth 
1989]. This model was primarily driven by the need to separate 
problem domain and system architecture considerations, as is 
discussed in section 2. This modef does not address how to 
incorporate very general components that have potential use 
across several problem domains and/or architectures, nor does 
it address the separation of system dependent features from 
potentially portable code. The latter omission became obvious 
when a multiplatform system such as COMPASS was 
considered. 

The Layered R~LI~e Model 
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To address the above issues, a "services" layer was added to 
the model. This services layer is split into a system dependent 
and a system independent layer. The updated reuse model is 
shown in Figure 6. A component in a given layer can only 
depend on components in layers below it, as is the case in any 
good layered model. The layers are defined as follows: 

System Architecture TemDlat~, ~ - Components at this level 
provide a template into which modules fit. These can be 
reconfigurable subsystems such as the GENSIM Case Interface 
discussed above, or they can be standard components that do 
not depend on the particular configuration. In GENSIM the 
Display Interface and the Plot Interface were designed to be 
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standard software, with any needed configuration data being 
provided by input files, rather than generic instantiation. 

System Modules -- This layer contains components that are 
designed to fit into a standard design. These modules are built 
trom components at the problem domain and service levels. 

Domain Definition Classes - These components define classes 
in the problem domain that are identified through domain 
analysis. They are generally implemented as Ada packages 
exporting abstract data types, as is discussed above. 

Domain Lanouaoe Classes -- Components at this level capture 
the vocabulary of a particular domain, in other words, these 
classes capture the knowledge and language that domain 
experts use to express the specifications for domain definition 
classes, tn the flight dynamics domain, such classes would 
include "vector', "matrix", "orbit", and "attitude,'. The domain 
analyst would use these simpler classes to define more complex 
classes such as "Fine Sun Sensor". 

System Independent Services - This layer contains 
components that can be used in implementing both the problem 
domain layer and architecture layer components. They are 
usually usable in more than one problem domain and/or more 
than one system architecture. Components at this level include 
the generic data structures and tools provided by the Booch 
Components (TM) [Booch 1987], as well as portable interfaces 
to general services such as DEC's screen management 
routines. These portable interfaces can be moved to different 
computers, and new code or a different commercial product can 
be used to implement the same functions. Thus one ends up 
with multiple non-portable implementations of a single 
abstraction. Calls to this package should act the same, even if 
they are implemented in a machine dependent manner. 

Svstem Deoendent Services - This layer contains all the 
components that are dependent on a particular cemputer or 
operating system. This generally includes all non-Ada code, as 
most other languages have different non-standard extensions on 
different machines. This also includes Ada code that 
incorporates system dependent features such as Direct_lO files 
created with a non-null FORM parameter. These system 
dependent features should have system independent interfaces 
at a higher level. 

The improved model takes an object-orlanted approach to 
specifying the problem domain. The domain definition classes 
and domain language classes form the two major groupings 
within the problem domain. Each of these two groups are also 
organized with the more domain specific classes depending on 
the more general classes. For example, the flight-dynamics 
classes "orbit" and "attitude" depend on the more general 
classes "vector" and "matrix'. 

The layered reuse model does not depend on Ada, but the Ada 
language contains features that support this model well. The 
use of generic packages allows each of the problem domain 
classes to be implemented as a generic unit that is completely 
decoupled from all other classes. In addition, the generic formal 
definitions associated with a package capture all the information 
about dependencies in a single location, as well as distributing 
external references throughout the code. Another useful feature 
is the separation of package specifications (and subprogram 

and task speci~-.,,ations as well) from their implementations. This 
is useful in hiding system dependent services, which can then 
have the system independent part defined at the appropriate 
layer. For example, the interface to a system dependent math 
library would be classified within the problem domain, and the 
interface to system-dependent screen management routines 
could be system independent services. The 5 top levels in this 
model would then contain system independent Ada code, which 
would be expected to be completely portable. This is not a 
consequence of attempting to, make the highest layers portable, 
but rather is a benefit of isolating the known system 
dependencies, and using a standardized programming 
language. Using Ada leads naturally to having most reusable 
components also be portable. Similar portability ~ be 
attainable using C. It is almost certainly not attainable with 
FORTRAN, as the dialects vary too greatly between machines. 

4. Example 

This section presents an improved GENSIM design as an 
example of how to use the layered model. This new design is 
presented at the same level of detail as the original GENSIM 
design presented in section 2. Figure 7 shows the improved 
simulator design. 

Improved Simulator 
Architectu re 

Archlte 

Se, , i ce  \ ~ Layer ~ . ~  

Fiaure 7 

The key differences in this design are the location of the Case 
Interface subsystem and the new I/O services subsystem. In 
additon, the Spacecraft Control, Truth Model, and Utilities 
subsystem are cembined into the Simulator subsystem. Figure 
8 shows that the dependencies between these three subsystems 
are the same as in the original architecture (Figure 1), but that 
now none of these subsystems depends on Case Interface. 
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This extra design level is not carried through to 
implementation. Subsystems may be implemented as a single 
package which provides an interface to all the subsystem's 
components, but in this case the Simulator subsystem is merely 
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Truth 
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Utilities 
Fiaure 8 

initialization of simulation parameters, rather than the simulator 
components requesting intial values from a database contained 
within the Case Interface. 

In this example, the use of the layered model removes the Truth 
Model's complex dependencies on the Case Interface packages 
shown in Figure 3. This enables the Simulator subsystem 
components to be usable within more than one architecture. 
The placing of the system architecture subsystems above the 
Simulator subsystem also allows general purpose service layer 
components to be enhanced as needed to integrate a given 
module into the system architecture. The 
FSS_Parameter_Display demonstrates this concept by using 
Enumeration_lO to add to the general IO services. 

FS$ Module Desian 
User Interlace 

Execulive. 
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a logical grouping intended to reduce the design complexity. 

Figure 7 also shows the three major layers of the rouse model. 
In this design, the I/O services consist of standard Ada packages 
such as Text IO or Direct_lO, and an interface to DEC's Screen 
Management Guidelines (SMG) routines. Figure 9 shows the 

interrelationship between the FSS module and the simulator 
architecture. Here the abstract data type for a sensor is created 
by instantiating a generic package. The generic ADT is 
designed so that all external dependencies are captured in the 
generic formal part. These dependencies include types provided 
by the simulator's Math_Types package, and functions to select 
information from the Sun and Dynamics modules. The 
FS$ Objects package uses the ADT (private type) exported by 
the FSS_ADT package to define its package state, and the 
FSS_Parameters_Display package uses visible types exported 
by FSS_ADT to define parameter screens. The 
FSS.ParameterDisplays package also instantiates 
Enumeration_lO using "type FSS_POWER is (OFF,ON)" as the 
actual parameter. This removes the reliance on using the 'POS 
attribute of enumerated types that has been a feature of all FDD 
simulators up until now. 

Figure 10 shows how the FSS_Parameter Display package fits 
into the design of the Case Editor subsystem. The Case Editor 
subsystem is the part of the User_Interface that allows a user to 
change any of the initial parameters for a simulation. The 
Parameter_Editor package tracks which displays the user has 
selected and calls the appropriate parameter display package. 
The difference is that now the User_Interface controls the 

Fiaure 9 

/ 
i 

/ 
_-= 

Dynamics 

MathTypes 

5. Future Directions 

This paper describes a general rouse model for designing 
reconfigurable systems. The next step is to map the layered 
rouse model to Ada design and implementation concepts. The 
high-level designs presented in this paper use generic packages 
to help parametrize systems. There are many possible ways to 
incorporate generic packages into a larger design. These "reuse 
in the small" techniques include nesting generic instantiations, 
nesting generic definitions, and creating dependencies between 
library instantiations [Booth 1989]. This paper has used the last 
technique so that while generic instantiations are coupled, each 
of the generic units is completely decoupled from the others. 

The layered reuse model provides a sound basis for project 
management. By strictly separating the problem domain issues 
from the system architecture issues, a manager can assign the 
appropriate experts to implement ped~ages within each layer of 
the model. Improving the allocation of personnel to tasks should 
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improve both productivity and software quality. As this model is 
used, an understanding of what proportion of a system falls into 
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which layer will evolve. 

The layered reuse model also can be used to understand which 
software is most critical. Layered models have seen the most 
use in operating system design. The kemel of an operating 
system typically requires the most attention, despite the fact it is 
a relatively small proportion of the code. This is because all 
other layers depend on its correctness and efficiency. The 
analogous layers in the reuse model are the service layers and 
the domain language layer. Additional evidence for the 
assertion is that the FDD has observed performance 
degradation in its Ada simulators due to the inefficient 
implementation of mathematical utilities packages. 

In addition to the performance problems observed above, there 
is a concern that layered implementation models may be 
inherently slow due to the addition of extra levels of procedure 
calls to aocomplish the same work. The FDD encountered this 
problem with a commercially provided graphics interface that 
provides the same FORTRAN interface routines on a VAX or an 
IBM mainframe. Whether this is due to extra procedure calls or 
generally inefficient implementation is unclear. Ada addresses 
the former problem by providing pragma Inline. The latter 
problem must be addressed by improving the software. If the 
software design and implementation is done properly, the 
layered rouse model should not degrade performance. 

6. Conclusion 

In "DomaJn-Diracted Reuse", Braun and Prieto-Diaz extract 
properties that are common to applications (such as compiler 

design) where a high degree of rouse is already being obtained 
[Braun 1989]. These properties are a focus on a particular 
application domain, assumptions about system architecture 
constraints, and a set of generalized and well defined interfaces. 
The layered rouse modal provides design concepts for 
examining applications domains and defining standardized 
architectures. These techniques will help realize the potential 
inherent in the concept of domain directed rouse. 
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