
Evolving Concepts
o r

W h y U s e r s O f t e n D o n ' t R e c o g n i z e

t h e S o f t w a r e T h e y A s k e d F o r

Gary Mrenak

Top-Down Software, Inc.
1335 Carlsbad Drive

Gaithersburg, Maryland 20879

ABSTRACT

When a development project delivers a software
product that is not usable without modtfications,
it is because the product does not serve the current
needs of the product users. Since only trivial
problems are fully grasped at first consideration,
users will always Jind it necessary to modi~ their
early concepts of what they need In the
traditional linear development mode~ the early
needs of users are captured during the system and
software requirements definition phase, but the
evolving needs of users are effectively ignored
through the development phases. An improved
development model will be user driven and
responsive to changing requirements whenever
they occur.

I N T R O D U C T I O N

There are two difficult problems in software development: figuring
out what to do, and figuring out how to do it. Up to now, the
software industry has spent nearly all of its time on the second
problem: figuring out how to translate requirements into code. Pick
up any popular text on software engineering, say {1], and compare
the depth of material devoted to requirement capturing vs the exten-
sive discussions of post-requirements development: planning, design,
coding and test. It's not surprising that the industry has chosen to
approach the problems in this order, since there would be little
reason to know precisely what has to be done if it was not possible to
do it. But to accomplish the task of learning how to do it, the
industry has taken a stationary view of the first difficult problem -
what is to be done. It has regarded the concepts of system and
software requirements as static and determinable at the beginning of
the process, and it has used these formally determined requirements
as the foundation of the software development process (See Figure
1). It formalized this view by embracing the linear software
development model with its phases, milestones, reviews and

COPYRIGHT 1990 BY THE ASSOCIATION FOR COMPUTING
MACHINERY, INC. Permission to copy without fee all or part
of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise,
or to republish, requires a fee and or specific permission.

baselines. The linear model resists any modifications to assumptions
or conclusions that have been "approved" in an earlier phase of the
process. This is a development model with limited user interactions.
It is a model that's responsive to a snapshot of perceived require-
ments taken early in the process. The result has been gradually
increased productivity in the software development process, but, pre-
dictably, little increase in the usability of the products.

Software products are not usable because they do not serve the
current needs of the users. When the user's needs were first
examined in the requirements analysis phase of the traditional
process, they may have been captured in careful and explicit detail.
But, as Frederick Brooks observed in [2], "Much of present
-day software-acquisition procedures rests upon the assumption that
one can specify a satisfactory system in advance, get bids for its
construction, have it built, and install it. I think this assumption is
fundamentally wrong, and that many software-acquisition problems
spring from that fallacy ... it is really impossible for a client ... to
specify completely, precisely, and correctly the exact requirements of
a modem software product before trying some versions of the
product." So users rarely have well defined needs, least of all in the
early stages of the product's development.

Software engineering will continue to improve our understanding of
the translation process, improving productivity by continuing to

Test]

t I
I Software Requirements I

I System Requirements

[User Requirements]

Figure t. User requirements undedy the traditional linear
software development process model, They must remain
substantially static to support the remaining process phases.

Washington Ada Sympos ium Proceed ings . June 1990 17

http://crossmark.crossref.org/dialog/?doi=10.1145%2F327011.327022&domain=pdf&date_stamp=1990-07-01

automate more and more of the process. But improvements to the
efficiency of the process will have to be accompanied by improve-
ments in the usefulness of the software that is produced, which
implies an improved method of capturing what is to be done. In the
terms suggested in this paper, this means improved methods of
capturing the changing perceptions, preferences, and conceptions of
users. It means replacing the stationary model of software require-
ments with a more effective model of dynamic requirements and a
development process that is responsive to these evolving require-
ments.

There have been, of course, several recent development models that
attempt to improve the quality of the requirements that support a
software product, such as rapid prototyping [3] and incremental
development. These models generally implement a specify-build-try
approach that encourages users to improve their understanding of
what they want by interacting with "working" software. Although
these and other improved models are an important step forward,
there is more to be understood about how users can interact more
effectively with the software development process, and how to make
a process respond more effectively to changing requirements.

U S E R S : T h e C r i t i c a l E l e m e n t

Users are the seed for most software development projects. They are
the first to perceive the need for a computer-based solution and the
first to conceive of the possible forms and functions of these
solutions. Even when a new software product solves problems that a
whole community of users may not have even perceived - for
example, spreadsheets for acccountants, word processors for secreta-
ries, DBMSs for managers - someone intimately familiar with the
problem, a user, first recognized it and conceived the solution.

We have paid very little attention to the user constituency and the
nature of their contributions to the software development process.
We know relatively little about:

how users interact with their problem environment to
form perceptions and to conceive solutions,

how concepts mature and evolve through both internal
processes of thought and external influences,

how perceptions are influenced by internal biases,

how to access the user's changing concepts effectively, so
that the final software product reflects current needs.

We have paid little attention to users in the process because, in part,
we have regarded the solutions to computer system problems as
largely determinate and stationary. We have assumed that the
correct solution to any problem exists, is independent of time, and
only remains to be discovered by the appliccation of a scheduled,
semi-rigorous regimen known as "requirements analysis."

Following the analysis phases, where narrative requirements and
specifications are typieally generated, traditional processes con-
centrate on the management of the project - documentation,
schedules, measurements, and budgets. Once requirements have
been "approved" by the user, projects focus on their implementa-
tion, and contractually discourage all user involvement that may
result in changes to "baseline" agreements. Users wait months or
even years to exercise a non-narrative model produced by the

software process, which, unfortunately, is likely to heavily represent
only his early concepts and solutions.

In the traditional process, the user's internal concepts - complex,
unstable, evolving, directly relevant to the perceived problem,
usually supplemented by no more than occasional paper representa-
tions - are the only developmental mechanisms available until the
software development process can provide external realizations.
Meanwhile, using their internal concept models, spreadsheets, and
doing some off-hours hacking with their favorite PC language, users
continue to interact with their real-world problem. They continue to
explore and improve their understanding and continue to refine their
concept of a useful solution. Their ideas of a useful software product
are evolving.

C O N C E P T H A N D O F F S

By "concept" we mean the model of a problem that exists in the
minds of individual people. According to Carroll and Olson in [4], a
menta l model "is ... a rich and elaborate structure, reflecting the
user's understanding of what the system contains, how it works, and
why it works that way." Concepts reflect personal perceptions,
perspectives and experience, and they evolve as the individual
explores and thinks about the real-world problem. They are
influenced by the related concepts of other individuals when they are
encountered and when those concepts alter and improve the under-
standing of the problem. Concepts are elusive and difficult to access:

it is difficult for one person to communicate a complex or
poorly understood concept to someone else. Even if there
were a suitable external mechanism to concisely express
the concept - say, a universal symbol calculus - the dy-
namic vagueness of the concept would make that task
impossible;

an individual's concept tends to evolve over time, so that
Thursday's communication of the concept - even if it was a
coherent communication - is likely to describe a substan-
tially different idea from Tuesday's.

Users generate early concepts of problems and solutions. For small
problems, where time permits, users personally develop and
translate these early concepts into software solutions themselves. In
such circumstances, the "software developer" is continuously aware
of the "user 's" evolving concepts as a realization of these concepts is
produced. On the other hand, for large or complex problems in
traditional circumstances, particularly in the DoD, users do not
directly develop these solutions, and instead hand off these percep-
tions and concepts to other individuals in the process - acquisition
agents and software developers - who establish and conduct the
software development project on the user's behalf. This hand off
creates multiple concepts of the solution that are individually
evolving, and raises the question of which concepts are reflected in
the software realization that is produced by the process.

There are three groups of individuals that are usually involved with
the software development process:

the users group: those individuals with a direct or indirect
interest in the software product and the real-world
problem solved by the software product. User concepts
reflect the most relevant perceptions, experience and
preferences because they are most strongly influenced by
the real-world problem and because it is the user who will

18 Washington Ada Symposium Proceedings. June 1990

eventually apply the software product.

the acquisition agents, common in military software
developments, who manage the acquisition of the software
product on behalf of the users group. These agents can
sometimes contribute their experiences from acquisitions
with similar requirements, but they are most interested in
establishing a manageable software development contract
and conducting the process according to lhe contract.

the software developer, usually not associated with the
users group, who translates the requirements of the
problem into a computer and software solution. Software
developers are interested in fulfilling the requirements of
the software development contract.

These groups cooperate during a standard series of program steps:

the problem is recognized and the need for solution is es-
tablished. In the early period of this step, users informally
hand off their concepts to other users, and, less informally,
to acquisition agents near the end of the step.

the boundaries of the problem and the requirements of
the solution are defined and documented. Users and
agents formally hand off concepts to developers in the
form of written requirements.

the solution is developed and implemented.

Each concept handoff between individuals or groups of individuals
is, of course, subject to misunderstanding and misinterpretation.
But, in addition, the concepts of the users are changing throughout
these steps, adding a "half-life" parameter to every concept handoff
that continuously degrades its relevance to the process.

CONCEPT DISCONNECTS

When establishing the requirements of a software product for a
development process where users and developers are separate,
concept disconnects are fundamental problems. These disconnects
are failures to anticipate, discover and communicate all system and
software requirements, and can be categorized as incomplete
concept recognition, inadequate concept communication, and
evolving concepts that diverge. They are the principle reasons that
software products fail to meet user expectations.

Incomplete concept recognition

The problem of incomplete concept recognition has two compo-
nents:

1) the identified user constituency may be incomplete, and,

2) the identified user constituency may be under-represented.

A user constituency that is incomplete is a failure to recognize all
direct and indirect users of the computer system solution. Where the
scope of the real-world problem is not well understood the early
identification of all users may be difficult or impossible. The
problem may be new, or the problem may be only a component of a

larger undetected problem with an expanded set of interested users.
An incomplete user constituency will lead to a concept of a software
product that does not address the perceptions, views and preferences
of all users.

An under-represented user constituency is a failure of all identified
users to participate in the development process. Under-represented
users have been identified but they do not participate effectively.
They are either unprepared to participate because of other demands
on their time, they may be indirect users who do not fu.lly grasp the
implications of the proposed concepts, they may be biased against
the software developl'nent and resist constructive participation, or,
more commonly, they are simply never asked to participate. Users
may be under-represented when they communicate with their
acquisition agents to produce a tangible problem model that reflects
their conceptual models, and in communications with the developer
when they evaluate the interim software products during periodic
reviews.

In a recent software development project, the developer was asked
by the customer, the manager of a financial analysis group, to
develop a computer-based system that centralized and enforced data
integrity for data that was shared by a number of separate analysts in
the group. Each analyst used a separate spreadsheet on separate
PCs, and each spreadsheet contained information that was common
to the tasks of several other analysts, but was separately and
manually entered by each analyst as the information was needed.
The developer carefully noted and included the requirements of the
department manager and the liaison analyst that was assigned to help
the developer, but failed to solicit the thoughts and preferences of
the other analysts in the group. The developer chose to implement a
relational database management system with a customized shell of
menu selections. When the new system was delivered, it fulfilled the
data management requirement beautifully and it handled some of
the requirements of the liaison analyst reasonably well, but it was
extremely slow and failed to match the spreadsheet flexibilities that
some analysts relied on. The system, along with six months develop-
ment time and over $200K development costs, was unusable and
promptly shelved.

Inadequate concept communication

Even when all users have been identified, it is difficult to communi-
cate with other individuals because of the nature of mental concepts
and because they do not exist in a convenient form for narrative
expression. The following characteristics of conceptual models are
described in [4]:

initial models may be crude, erroneous and filled with
superstitious beliefs

the rules of formal logic are not necessarily followed

models change to account for new experiences

aspects of an early model may be highly resistant to
change because of deep-seated expectations or stere-
otypes

models may be incomplete

We would add the following characteristics:

when exercised mentally, they work, even though the
problem may be poorly understood at first. Inconsisten-

Washington Ada Symposium Proceedings. June 1990 19

cies are overlooked and missing functionality is magically
created and inserted where needed.

they are graphical. Exercising the model proceeds as a
motion picture of actions and results, not as a series of
paragraphs composed of sentences.

they are simple at first, hiding complexities behind a vague
mental gauze to be developed later in the evolution of the
concept

they are dynamic, changing as the conceptualizer con-
siders the problem and reorganizes the model

they can only be validated through instantiation.

To communicate a conceptual model, the model must be instanti-
ated in some external form. Usually it is translated to narrative
explanations, block diagrams, flow charts or other physical
representations that can be observed and considered by an audience.
But there are further complications. The quality of these com-
munications depends on several factors, some of which are unrelated
to the concepts themselves, such as:

the narrative skills of the communicator
the ability of the audience to comprehend the concept
the conceptual divergence that has occurred since the last
communication
the complexity of the concept
the clarity of the concept in the communicator's mind
the communication tools available
the degree of user representation
the degree of user participation
the communicative qualities of the review material
the amount of new material to be communicated
the consistency of the review material

So effective communication between individuals is a very complex
matter that software engineers must address. Typical individuals in
the software development process are no more likely to be skilled in
communicating effectively than anyone else. Yet our traditional
development models rely on early conceptual communications
between many individuals to establish the bedrock requirements
foundation for subsequent development.

Evolving concepts that diverge

Compounding the issues of incomplete concept recognition and
inadequate concept communication is the reality of evolving
perceptions and concepts. Since only trivial problems are fully
grasped at first consideration, individuals will always find it necessary
to modify or discard early concepts and understandings. When users
hand off their concepts during system definition, the developer's
concepts are formed and carried forward. In the linear development
model, user and developer concepts evolve in separate contexts
between well defined reviews: the user's concepts in the context of
the real-world problem; the developer's concepts in the context of
the development contract. Because the contexts of each constituent
are significantly different, concepts evolves differently and tend to
diverge.

We can think of concepts evolving "horizontally" or "vertically,"
where the characteristics of horizontal concept evolution are:

concept changes result from problem-level perceptions
and considerations, instead of implementation difficulties
or constraints

concept changes tend to be broad, frequently extending
beyond the scope of the original problem. For example, if
the original problem was the development of a word
processor, a broad extension of the concept would
incorporate some of mathematical features of a spread-
sheet

And, by contrast, the characteristics of vertical concept evolution
are:

concept changes result from instantiation discoveries and
implications. Word processor software, for example, may
have to include virtual storage management because the
operating system specified does not provide the capability.

concept changes tend to be narrow, constrained by re-
quirements specifications and the scope of the contract.

User conceptual models evolve horizontally through continued
interactions with real world problems and through continued
conceptual explorations. The developer's conceptual model evolves
vertically in response to details of the development process, such as
discoveries from the design of the software solution, and the
constraints discovered from implementation and testing. With the
infrequent communication milestones of the traditional process,
users tend to approach each scheduled review with preferences,
perceptions and concepts that are horizontally different from those
from the last communication milestone and the requirements
specification. Yet developers have been instantiating vertically from
the requirements specification, unless contractually amended by
interim communication milestones.

Each of these components contributes to concept disconnect and, as
far as each is present, offers significant risk to the usability of the
software product. For software products to reflect the current needs
of users, those needs must be known to the developer. User concepts
are the most relevant concepts since they represent a direct
appreciation of the problem and the user's criteria for the eventual
acceptance of the product. But the concepts of the developer are the
most important, since the system and software products developed
will directly reflect the developer's concepts.

I M P R O V I N G T H E P R O C E S S

The traditional linear development process does not recognize the
possibility of concept disconnect. In fact, the probability of concept
disconnect is increased by the linear process in all but the most well
understood and stable linear development projects. Consider the
following observations of the process:

selected users are intimately involved only in the
definition of system requirements. After the requirements
definition phase, users are regarded as formal approval
signatures on contractually obligated documents.

after "baseline" system requirements are established, the

20 Washington Ada Symposium Proceedings. June 1990

participation of users is formally limited to reviews, and to
commenting on distributed review materials;

formal reviews tend to be uni-directional, tutorial
communications from the developer to the users and their
agents. Developers make "presentations" while agent/
users follow along in written "review packages;"

conceptual models developed during systems and software
requirements analysis are "baselined" and changes to
these baselines are discouraged by formal change proce-
dures and contract scope constraints;

communication of developer concepts is poor. Review
materials tend to be paper models consisting mainly of
narrative prose.

Today there is nearly a consensus in software engineering that the
linear model of software development is generally inadequate for all
but a few narrow circumstances, and there has been a growing quest
for substitute models. The most widely publicized has been the spiral
model of software development first published in [5]. In the spiral
model, Barry Boehm describes a risk-driven approach to the
software process that applies repetitive problem solving steps to the
long-poles in program risk, starting with the longest and spiraling
through the others until the product is delivered. The approach is
flexible and provides for adopting more conventional software
development models depending on the type of risk involved. The
spiral format does not restrict devoting as much attention as
necessary to reducing the risks of incomplete user concept recogni-
tion and inadequate concept recognition. But the application of the
spiral to the time.dependent risks of concept evolution and
divergence provides no guidance for handling the complications of
restarting the spiral when requirements change midway or late in the
process, or predicting when requirements are likely to have changed
and should be re-established.

There has also been increased attention to the user constituency. In
[61 Zahniser describes a system development technique invented by
IBM called "Joint Application Design" or JAD. The idea of JAD is
to get ".. the right people in a room together with a skilled neutral
facilitator and, in a week or less, find out exactly what the user
wants." The existence of techniques such as JAD show the growing
awareness that the difficulty of determining the user's "wants" needs
to be given more attention, although it still surrenders to the notion
that the user's needs are static and determinable in some defined
period of time.

The problems of concept handoffs and concept disconnects imply a
shift from a static model of project requirements to a new model that
anticipates changing user requirements. The new model would rule
out a formally defined period of requirements analysis that was
separate from design, implementation and testing, and in its place
substitute a user interactive process that encouraged the discovery
and expression of changed requirements whenever they occurred in
development. Instead of a "requirements phase," the new model
would have an "installation phase" where the network of users is
identified and the mechanisms for their interactive participation in
the process are developed and put in place.

In an improved process, a portion of the developer resources might
be distributed according to the network of users as part of his "on
call" staff. User interactions with working models of the software
and suggestions for adjustments to those models could be leveraged
by the direct assistance of developer personnel.

Communication in the improved process would minimize reliance on
narrative expressions. Several guidelines have been suggested [1]:

Consistency. Concept representations should reflect the
context of the user, incorporating what the user already
knows as the framework for communication.

Simplicity. Concept representations should provide clear
boundaries with a limited amount of functionality within
those boundaries.

Completeness. Concept representations should cover all
aspects of the concept, possibly using a layered repre-
sentation approach, proceeding from general to specific.

Anticipatory. Concept representations should anticipate
logical but erroneous user interpretations or perceptions
to help improve concept reconstruction.

An improved process could be broadly summarized as follows:

the software development process should surround the user.
Evolving user ideas should drive the evolution of requirements
and the user's ability to shake out requirements should be
leveraged by the process. The process will need to become user
driven; the software development staff amplifying the user's
ability to exercise changes in concepts.

the process should include a mechanism for identifying the user
constituency. It should never be assumed that the limited group
of individuals requesting the software development represents
the whole of the user constituency.

the process should include mechanisms to facilitate the partici-
pation of as many user constituents as possible. It is not enough
to simply identify the user constituency, their ability to
effectively participate in the process should be established
before beginning the process.

the process should provide frequent interactive communication
events between the user constituency and the developers.
Interactive communication events are distinguished from the
"reviews" of traditional processes insofar as their purpose is to
provide users with some form of active model of the software
solution that can be exercised and evaluated.

communication events within the process should provide
mechanisms for conceptual (graphical, visual) communication
methods in the user's environment.

communication events within the process should provide
mechanisms for hi-directional communications;

the process should include a mechanism for monitoring,
measuring and improving communication effectiveness.

Washington Ada Symposium Proceedings. June 1990 21

SUMMARY

We have discussed some of the reasons for the unpredictable quality
of software as it has been produced by the software engineering state
of the art, which include:

users rarely have well defined needs in the early stages of
software development, yet widely used development
models ignore user needs after the requirements analysis
phase is completed,

the linear development model increases the probability of
an unusable software product by discouraging changes to
requirements baselines

When a development project delivers a software product that is not
usable, it is because the product does not serve the current needs of
the product users. Since only trivial problems are fully grasped at
first consideration, users will always find it necessary to modify their
early concepts of what they need. In the traditional linear develop-
ment model, the early needs of users are captured during the system
and software requirements definition phase, but the evolving needs
of users are effectively ignored through the development phases.
Having dutifully conveyed their concepts for the software product
during analysis, users develop improvements to their concepts inde-
pendently from the development process and are given no effective
means of updating the process. Consequently, the delivered software
product may be seriously out of step with current user needs.

ABOUT THE AUTHOR

Gary Mrenak is president of Top-Down Software, Inc. an Ada and
software engineering consulting firm in Gaithersburg, MD. Mr.
Mrenak received a BS in electrical engineering from Carnegie
Mellon University in Pittsburgh, PA, and an MS in Computer
Science from Johns Hopkins University in Baltimore, MD. Mr.
Mrenak is a member of the IEEE Computer Society and the Asso-
ciation of Computing Machinery, and can be reached at
301.948.1645.

R E F E R E N C E S

1. RS Pressman, Software Engineering - A Practitioners
Approach, McGraw-Hill, Inc., 1987

2. FP Brooks, Jr., "No Silver Bullet - Essence and Accidents
of Software Engineering," IEEE Computer, April 1987.

3. JL Connell, LB Sharer, Structured Rapid Prototyping -
An Evolutionary Approach to Software Development,
Prentice-HaU, Inc., Englewood Cliffs, NJ, 1989.

4.

5.

6.

J Carroll, J Reitman, "Mental Models in Human-
Computer Interaction," Handbook of Human Computer
Interaction by M Helander, North-Holland, New York,
1988.

BW Boehm, "A Spiral Model of Software Development
and Enhancement," 1985, TRW Technical report 21-371-
85, TRW, Inc., 1 Space Park, Redondo Beach, CA

RA Zahniser, "How to speed development with group
sessions," 1EEE Software, May 1990.

22 Washington Ada Symposium Proceedings. June 1990

