
Functional Lists:
Object-Oriented Design Classes for MIS Applications

William R. Bitman

System Automation Corporation
8555 Sixteenth St., Silver Spring, MD 20910

ABSTRACT

An important process of object-oriented
engineering is the identification and definition of
objects and classes. Operationally, there are three
kinds of objects: fundamental, director, and design.
Classes define traits of objects. For Management
Information Systems (MIS), fundamental classes
are abstractions of stored and displayed data
referenced in the requirements. Director objects
serve as the glue that combines objects to
accomplish the requirements. Design classes are
defined by analysts to further modularize the
application, thereby reducing module complexity.
This paper formulates the functional list design
class. A functional list contains rules that
determine whether an item belongs on a list.
Fundamenta/list classes, in contrast, provide the
mechanical manipulation operations of lists and
list items. In many MIS systems, functional lists
help organize code into reusable operations of low
complexity. Functional lists are instantiations and
often implemented as derived types, thus utilizing
inheritance features.

COPYRIGHT 1990 BY THE ASSOCIATION FOR COMPUTING
MACHINERY, INC. Permission to copy without fee all or part
of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise,
or to republish, requires a fee and or specific permission.

Two objectives of software
engineering are reliable programs and
high productivity. One way to increase
reliability is to decrease software
complexity of the individual software units
of the system [8, 14]. A software unit is a
discrete collection of executable
statements called a module [9]. Low
module complexity makes testing easier
because a complete test suite consisting of
a manageable number of test cases can be
defined based on the limited number of
unique paths and critical data values [10].
Reliability of the system as a whole
increases when each module is thoroughly
tested. Productivity can be increased
through reuse of software units because
the total amount of code is reduced [1].
Thus, reuse and low complexity are means
to attaining software engineering goals.

Low module complexity can be
achieved by dividing a system into a
greater number of modules. This
distributes the inherent complexity,
thereby decreasing the average module
complexity [7, 12] . There are many
methods for dividing a system into more
parts. Among these, object-oriented
methods have the added benefit of
facilitating identification of common
algorithms, which increases reuse. Even

Wash ing ton Ada S y m p o s i u m P r o c e e d i n g s . June 1990 101

http://crossmark.crossref.org/dialog/?doi=10.1145%2F327011.327062&domain=pdf&date_stamp=1990-07-01

greater reuse can be achieved by using
code-reducing abstraction facilities of Ada,
such as genericity [6, 11] and derived
types [13].

By combining object engineering
with powerful Ada language features,
object-oriented Ada methods enable
significant increase both in reliability and
productivity by decreasing module
complexity and total size. Figure 1 displays
these relationships.

Reuse

IIProductivity ~I I Relia~

Object-
oriented
Methods

Icom,lexitY l

Reliability

Figure 1: Relationships of factors for
achieving engineering goals.

operations provide relevant capabilities.
Modules that need an object, "with" the
package that defines its type, and then can
declare variables (i.e. objects) of the
exported type and use its exported
operations. There are three major
categories of classes: (a) fundamental,
(b) director, and (c) design. Most
fundamental and director classes are
abstractions of the problem space and are
derived directly from requirements,
whereas design classes are created by
analysts to provide solution space items
[15].

Fundamental classes define the
basic data types in the system. In
Management Information Systems (MIS),
most fundamental classes are abstractions
of data stored on disk and data displayed
to the user. These can be simple,
composite, or structural. The data type of
a simple class does not have discernable
parts, whereas that of a composite class
does. Structural classes are lists, stacks,
queues, etc.

In Ada, a module is a subprogram.
Ada modules exist as stand-alone
subprograms or as collections of
subprograms in packages. A package of
subprograms may also export a type; if it
does, it is an abstraction of a class.

CLASSES

A class defines characteristics that
many objects share [4]. An object has a
value (or state) and a set of relevant
operations [3]. The Ada package is a
powerful implementation of a class. The
exported type defines the allowed values
for objects of that class, while exported

Director objects perform processing
that is readily understandable in terms of
end-user's objectives. Executable code in
directors is often referred to as glue that
binds modules to accomplish functional
objectives. This glue must be implemented
as large complex modules unless there are
supporting classes that distribute the
complexity. Design classes provide this
support.

DESIGN CLASSES

Design classes are generally not
directly evident from requirements. Most
arise during the design phase as products
of problem-solving activities, and,

102 Washington Ada Symposium Proceedings. June 1990

therefore, are purely solution space
classes. They are abstractions of
intermediate objects that handle data
processing and perform algorithms. In the
process of creating design classes to solve
requirements, new fundamental classes
also may be created.

FUNCTIONAL LIST CLASS

The functional list is proposed in
this paper as a design class category which
is advantageous for many MIS
applications. A functional list class is a
package which (a) exports a list type
which is specialized but whose element is
a basic type (e.g. college classroom
location list type is exported by a
functional list class whose element on the
list is a location, which is a fundamental
type used by many objects throughout the
system); and (b) exports operations that
give the list its characteristics in the
application (e.g. build a list of course
locations where this course, which needs
special equipment, can be scheduled).

Functional lists are advantageous
for applications in which many lists have
the same data type but are functionally
distinct and are utilized simultaneously.
Designers can insure that functionally
distinct lists are not accidently used for
unintended purposes. The use of strong
typing to create a functional list identity
utilizes the Ada compiler as a validity
checker.

Another benefit of functional lists
is that executable software becomes highly
organized. An alternative to having many
functional list classes which preserves this
benefit is to group all operations for an
element type (e.g. Location) into one list
package (e.g. Location_List). This

implementation maintains the advantage
of organizing code into small operations.
The major drawback is that compiler type
checking is no longer used to check
functional integrity. This problem will be
described under functional operations
package in the next section. A practical
problem is that the number of operations
that belong to such a general list package
grows at a very fast rate because so many
different requirements relate to it. The
specification changes often, and when it
does, an enormous number of units must
be recompiled.

The steps in the process of
identifying functional list classes are:

1. Determine a set of data lists with
which requirements can be satisfied.

2. For each list, identify relevant
operations.

3. For each list that has an element of a
composite nature, determine the set of
fields (e.g. record components) that
uniquely identifies an item on the list (i.e.
key).

4. Determine whether there is
unnecessary duplication of classes. A class
attains identity through the uniqueness of
its key and operations. If there are
operations relevant only to a subset of
objects, multiple list classes with identical
keys are justified.

5. Describe each operation of each list
class. The description, which can take the
form of prose, pseudocode, or code, gives
a clear idea of the complexity of the
module and identifies any additional
classes needed. An overly complex module
may be simplified by defining new
operations within existing classes or by
defining new classes. A cyclomatic

Washington Ada Symposium Proceedings. June 1990 103

complexity of 10 is considered the
reasonable limit for a module [10]. With
this method, complexity is monitored early
in the life-cycle so that it does not go
unnoticed and become difficult to manage
during or after implementation.

The above steps are performed
iteratively until a complete, correct, and
consistent system is designed.

IMPLEMENTATION

The implementat ion of functional
list classes can take many forms. These
are presented here in order of increasing
degree of abstraction and encapsulation.
The fundamental class and generic
fundamental list class first presented are
referenced throughout the examples.

package Thing is
type THING is (X, Y, Z) ;
procedure A

(This_Thing
: in THING ;

Some Data
: out I N T E G E R) ;

function B
(Something

: in I NTEGER)
return THING ;

end Thing ;

Listing 1: Fundamenta l Class

generic
type E L E M E N T is private ;

package List Structure is
type LIST is private ;
procedure Add

(This
: in E L E M E N T ;

To
: in out LIST) ;

procedure Delete ... ;
procedure Update ... ;
function Item ... ;
procedure Clear

(This
: in out LIST) ;

function Length
(Of List

•]n LIST)
return N A T U R A L ;

private
type N O D E ;
type LIST is access N O D E ;

end List Structure ;

Listing 2: Fundamental List Class

1. Basic List

A basic list is an instantiation of a
list structure with the desired data e lement
type. It serves as the starting point for
functional lists. List and e lement
manipulation functions are inherited from
the generic package, but it has no
operations additional to the fundamental
class.

104 Washington Ada Symposium Proceedings. June 1990

with Thing ;
with List Structure ;
package ~'hings is new

List Structure
(E L E M E N T

= > Thing.THING) ;

Listing 3: Basic List Class

2. Functional Operations Package

A functional operations package
exports operations that are relevant to a
discernable category of lists• For example,
a package can be defined as being
concerned with operations for lists of
office locations• Although it does not
export a type, member operations are
limited to those that deal with some
aspect of the list category for which the
package was created• However, list objects
and parameters in this package are typed
as the basic list type (e.g. Location_List).
This implementation has the advantage of
organizing code functionally around a
"conceptual" class, although the package is
not a true class because it does not export
a type.

In s o m e s i t u a t i o n s t h i s
i m p l e m e n t a t i o n is sufficient and
acceptable• The disadvantage is that the
capability of the compiler to act as an
integrity checker is lost. For example,
there is a functional operations package
which includes an operation to return the
business hours for each insurance agency
office location on a list. A calling module
can send a list of parking meter locations
to this operation because both the list of
office locations and the list of parking
m e t e r l o c a t i o n s a r e of t y p e

Location List.LIST and the compiler
cannot detect the context mismatch.

with Thing ;
with Things ;
package Functions_For_Things is

function Build
(Something

• in I N T E G E R)
return Things.LIST ;

procedure Sort
(List

• in out Things.LIST);
procedure Find

(This
• in Thing.THING ;

In List
• m Things.LIST,

Position
• out I N T E G E R ;

Count
• out N A T U R A L) ;

end Functions_For_Things ;

Listing 4: Functional Operations Package•

3. Visible Functional List

A visible functional list class is a
package that (a) exports a visible type
derived from the type exported by a basic
list class, and (b) exports its own unique
relevant operations. The level of
a b s t r a c t i o n a t t a i n e d by t h i s
implementation is the minimum necessary
to have a true functional list class. There
may be many functional lists derived from
the same original basic list. For example,
there are many reasons to build and use
lists of dates. Each identifiably different
reason should be implemented as a
separate class, each with its specific
exported list type.

Washington Ada Symposium Proceedings. June 1990 105

with Thing ;
with Things ;
package Functional_Things is

-- This is a derived type:
type FUNCTIONAI_~THINGS is new

Things.LIST ;

function Build
(Something

: in I N T E G E R)
return FUNCTIONAL THINGS ;

procedure Sort ... ;

procedure Find ... ;

end Functional_Things ;

Listing 5: Visible List

For example, in a college student
information system, there are many date
lists needed. Dates is a class which is an
instantiation Of a generic list with element
Date.DATE. Operations needed for
course dates of one-day seminars of
various titles are in one package. There
also are lists of dates of football games.
These operations are provided in a
d i f fe ren t package. Class package
S e m i n a r D a t e s e x p o r t s
SEMINAR DATES list type. Objects of
this type ha've items of type Date .DATE
on it because Seminar Dates is derived
from Dates.LIST (see the derived type in
Listing 5). The class exports operations
including Build which builds a list of
SEMINAR DATES on which an input
seminar oF a specific course title is
scheduled. Class Football Dates exports
its own type and has a Build Home
function which returns a list o f home
game dates for a given opposing team.

Although both lists have the same element
(i.e. Date.DATE), they are functionally
distinct and recognized as such by the
compiler. Therefore, a seminar date list
object cannot be submitted to the football
date list operations. However, dates on a
seminar date list can be directly compared
to dates in a football date list because
they are objects of the same type.

4. Private Functional List

A private functional list class is
similar to a visible functional list class
except that the list type is private, and,
therefore, all fundamental list operations
that the designer desires the caller to have
access to, must be explicitly exported. A
private functional list class is useful when
there are specific fundamental list
operations that must be prohibited from
the caller.

106 Washington Ada Symposium Proceedings. June 1990

with Thing ;
with Things ;
package Functional_Things is

type FUNCTIONAL THINGS
is private ;

function Build
(Something

: in Build)
return FUNCTIONAL THINGS ;

procedure Sort ... ;
procedure Find ... ;

-- The following operations
-- must be explicitly defined
-- because the type is
-- private.
procedure Add ... ;
procedure Delete ... ;
procedure Update ... ;
function Item ;
procedure Clear ... ;
procedure Length ... ;

private
type FUNCTIONAL THINGS is new

Things.LIST ;
end Functional_Things ;

Listing 6: Private List Class

5. Specialized Related Lists

A specialized type class exports a
list whose element type itself (not just the
list type) is derived from a fundamental
type. Elements of two different functional
list classes derived from the same basic
type cannot be directly compared. Explicit
conversion is needed for comparisons of
items on objects of different list classes.
Therefore, this implementation is most

appropriate when there is an inherent
difference between the two element types.

For example, there is a class
Pop_Center (population center) that
exports type POP CENTER. Class City
which exports typeCITY is derived from
Pop_Center.POP_CENTER and adds its
own operations. Package Cities is an
instantiation of a generic list package with
element City.CITY. Similarly, package
Town exports derived type TOWN and
various operations. Towns is the functional
list package. Items on a Towns.TOWNS
list and items on a City.CITY list are
different types, and, therefore, must be
processed through explici t type
conversions. This is in contrast to the
previous implementation approaches in
which, although the list types are different
types, the elements on the lists are the
same type.

6. Private Specialized Lists

The previous implementation level
can be extended to private type elements.
The reason for selecting private over
visible depends on the degree of selectivity
of fundamental operations. With a private
implementation, elements on lists must be
process through their own Construct and
Value operations before comparison and
assignment operations can be performed
between items of different types.

METRICS

There are two metrics of interest:
complexity and reusability.

Cyclomatic complexity is an
indication of software decisional logic. It is
easy to calculate for each module, and
therefore, can be measured by every coder
and checked by every project leader early

Washington Ada Symposium Proceedings. June 1990 107

in development. Cyclomatic complexity is
directly related to the number of test cases
needed to achieve acceptable reliability.
Keeping complexity low increases the
chance of finding errors early in the
development life-cycle. The further along
in the life-cycle an error is detected, the
costlier it is to correct [2]. Complexity on
the module level can be extended to
functional groups so that total complexity
can be easily measured also [10]. This
insures reliability tracking as integrated
testing incrementally proceeds.

The reusability of software is the
potential of a module to be reused and is
not an immediately calculable metric. At
the design stage, the level of expected
reuse can be estimated based on
knowledge of the application. The full
extent of reusability may be greater due to
usefulness to future projects. Reuse, on
the other hand, is the actual number of
times a module is used and is a more
concrete metric to deal with. However, a
module may be highly reusable, but may
in fact, never be used for a particular
project. During design, there are
guidelines that increase likely eventual
reuse. On a basic level, a package must
export most operations if reuse is to
become a reality. Only sensitive
capabilities should be kept local. A
pragmatic approach to quantify reuse is to
sum the number of additional times
modules are called in an application.

Functional lists were successfully
applied to a project for the Army in which
existing code for a training assignment
system was redesigned and implemented.
The original application was designed
using structural decomposition in a
conventional procedural (non-Ada)
language. Metrics of the design classes of

a discrete segment of the original
implementation of the application were
calculated and are summarized in Table I.
Each module is given a name code. The
number of executable statements, number
of nodes as defined by McCabe and
Butler [10], and the cyclomatic complexity
are shown. The requirements have a
cyclomatic complexity of 102, as noted by
the total complexity of the conventional
approach. The modules of the original
implementa t ion have an average
complexity of 26, well above the
acceptable limit.

!Executble' I
Module StatmentslNodes Complx

F1
F2
F3
F4

31
18
22
31

105 53
68 27
60 34

125 54

I Sum 358 168 102
Avg 90 42 26

Table I: Metrics of non-Ada code.

Metrics for the object-oriented Ada
implementation of this system are shown
in Table II. Seven classes were identified
by using a functional list design.
Complexity was divided into 18 modules,
with an average complexity of 4. Although
the Ada modules perform the same
functionality as the former system, they
have a total complexity of only 71. Note
that inherited operations of generic
instantiations (e.g. length, clear, item,
search, sort) were also used but are not
included because they form a library of
dependable, tested modules. Only design
classes are included.

108 Washington Ada Symposium Proceedings. June 1990

,Module

Ti B1
Ti--B2
T1 R1
T1 R2

T2 B1
T2 B2
T2 C

D1 B
D1 G

D2 B1
D2 B2

L1 B1
L1 B2

L2 B1
L2 B2
L2 B3

L3 B1
L3 B2

Sum
Avg

Executbl
Statmnts

15
18
5
7

24
22
37

20
9

14
7

21
8

7
26
14

Nodes

8
5
4
7

4
13
17

ii
8

9
22
12

14
12

280
16

4
2

138
8

Complx

4
3
2
5

3
2
8

fi
4

2
2

2
2

7
9
7

71
4

Table II: Metrics for Ada
implementation.

The module name code scheme is
based on class category and operations.
The first character signifies the class
category. There are two functional training
list classes, T1 and T2; two functional date
list classes D1 and D2; and three
functional location list classes L1, L2, and
L3. The fourth character position in the
name signifies the kind of operation of the
module. B is a list build. Note that many
classes have multiple build operations, one
for each set of qualifying rules used for
different purposes. R is an operation that
removes items from a list based on certain

criteria. G is a get range. Operation C is
a check operation in which the validity of
data after a passage of time is double-
checked.

Table III compares the metrics of
the two implementations. The Ada system
has almost 5 times as many modules, but
the total complexity is 30% less. This is
partly due to the reuse achieved by the
fact that four of the modules are called
twice, and one is called three times in this
particular application. Unit testing was
made easier and more concrete due to the
fact that the average module complexity is
a manageable value of 4.

Old Ada
System

Number of
Modules 4 18

Total
Complexity 102 71

Average
Module

i

Complexity , 26 4

modules
called 2x 0 4

modules
called 3x 0 1

Reuse Index 0 6

Table III: Comparison of metrics for Ada
system and the original non-Ada system.

In the application, the reusable
modules provided three independent paths
that the director software needed.
Integration testing was performed in an

Washington Ada Symposium Proceedings. June 1990 109

orderly fashion based on the body
dependencies. These are shown for each
of the three calling paths in Figures 2a, b,
and c. An arrow to a module is a call to
that module. Modules that have no
dependencies were tested first. They tend
to be placed along the outside edge of the
diagram. The next layer in was tested next,
etc. Many modules were called multiple
times within these calling paths. The
additional calls are indicated by asterisks.
The accrued benefit of reuse is strikingly
evident by the fact that operation T2 C in
Figure 2c depends completely on re'used
operations. So although testing T2 C is
based on its cyclomatic complexity of 8, it
has an effective functional complexity
(design complexity [10]) of 23. Testing is
manageable because all the other modules
have already been tested.

Figure 2a: Ada module execution
dependencies for the major functional
area in the Army application. Complexity
value is in brackets.

110 Washington Ada Symposium Proceedings. June 1990

L2_F * [<
I [1]

L2 B3

L1 B2i

> L1 B1
[3]

>[IL2 Bi*
It

Figure 2b: Ada module execution
dependencies for the second functional
area in the Army application. Complexity
value is in brackets.

L2 B1
[7]

II
Figure 2c: Ada module execution
dependencies for the third functional area
in the Army application. Complexity value
is in brackets.

EXAMPLE

The following example is patterned
after the military training assignment
system, to which functional lists were
applied. Many of the complex aspects of
the original application are conveyed to
some degree in the example.

Methodolo~ Steps

The following are the basic steps to
develop a program that uses objects to
accomplish requirements:

1. Determine the complete and consistent
functional requirements.

2. Code the fundamental class specs and
compile.

3. Code the director object.

4. Identify design classes and code specs.

5. Describe bodies of operations of
fundamental and design classes.

6. Add new fundamental and design
classes and/or new operations to existing
classes as needed.

7. Code bodies, compile and test as
needed operations become available.
Incremental integration testing occurs in
this step.

8. Repeat steps 4, 5, 6, & 7 until an
acceptably low complexity level is
achieved for each module.

9. Link the application and test.

Requirements

The following hypothetical
specification serves as an example on
which the principles of functional list
design class development will be applied
and illustrated.

Machiners Training Corp. (MTC)
offers courses in heavy machinery
operation and maintenance to employees
of other companies. There are 2
categories of training: basic (BT) and
special (ST). Each course lasts 1 week
from Monday to Friday. BT is given in 2
forms: heavy and light. Those people who

Washington Ada Symposium Proceedings. June 1990 111

m

cannot perform heavy lifting must take the
light training. There are 6 different
categories of ST, two of which require
heavy lifting. A person who wants to train
in a heavy-lifting ST must have taken
heavy-lifting BT.

BT is a prerequisite for any ST.
There are 3 employee situations: (a) those
new to the job who need only BT, (b)
those new to the job and need BT and an
ST, and (c) those who already have taken
BT, but now need ST. When both are
taken, it is preferable to have them taken
as close in time as possible. For a
particular employee, a company may
specify a prioritized list of specialties that
are acceptable. The company wants the
employee trained in the specialty of
highest priority, but does not want training
delayed more than four weeks if training
in a lower priority specialty is available
sooner.

MTC has 5 BT facilities throughout
the country. There is only one BT class
taught per location at any time and each
has a maximum seating capacity. Three of
them are fully equipped and can support
heavy or light training (but only one
category at a time), whereas 2 can support
only light training. Four of the ST facilities
are located at a BT location. Some BT
seats are set aside for people taking an ST
on the following week at the same site
(privileged seats). This is the preferred
arrangement because it reduces travel
costs for the client company. At a certain
number of days before a BT class starts,
unassigned privileged seats lose their
special status, in order to minimize wasted
seats. The threshold number of days
before the BT start date at which time this
occurs is different for each BT location.

In general, travel costs are to be
minimized. MTC updates a list of location
pairs. For each major city in the U.S.,
there is another city which is least
expensive to travel between. Likewise
there is a city that is second lowest in cost,
etc.

There are 8 ST locations. Many
have multiple classrooms. Each classroom
is equipped for a specific course.
However, some courses need only a subset
of the equipment of another course. Each
class has a maximum seating capacity.

Companies find that when
employees have been trained in
homogeneous groups, they have difficulty
dealing with others. Therefore, MTC tries
to schedule both men and women for all
classes. Also, in ST classes for which the
course does not require heavy lifting,
MTC tries to have both those who took
heavy-lifting BT and light-lifting BT.

MTC reserves seats on an as-come
basis. It does not save up a number of
training requests to batch-optimize
reservations. Usually, a client company
representative requests the reservation for
an employee and has the earliest start
date and a list of any dates the employee
cannot attend. The user enters the data
and receives a list of training possibilities
and selects one.

Design Strate~v

To start the design process, we may
either write the director object or we can
define the fundamental objects that are
apparent from the requirements. These
two steps are independent and can be
performed in parallel, if so desired. For

112 Washington Ada Symposium Proceedings. June 1990

this example, the an overview of the major
fundamental classes will be specified first•

Fundamental Classes

From the requirements, there are
many fundamenta l classes readily
identifiable• In an existing development
environment, many of these would already
be in reusable libraries• In order to form
a basis for the example, most of these
classes are sketched below. For each type
definition below, there is a package that
has the same name as the type. For many
of these classes, there are a number of
operations that can be identified from the
requirements• Some are specified here.

type BT CLASS is record
Start

: Date .DATE ;
Place

: Locat ion.LOCATION ;
Lifting_Required

: Weight .WEIGHT ;
Number Of Privilege_Seats

: N A T U R A L ;
Regular Seats Taken

: NATLTRAE;
Privilege Seats Taken

: N A T U R A L ~,
end record ;

type BT_CLASSROOM is record
Place

• Locat ion.LOCATION ;
Capacity

• N A T U R A L ;
Highest_Weight

• Weight .WEIGHT ;
Privi legefrhreshold
-- Number of days before
-- which, privilege
-- seats are no longer
-- special.

• NATURAL ;
end record ;

type DATE is record
The Month

: I~onth .MONTH ;
The_Day

: Day.Day ;
The Year

: Year .YEAR ;
end record ;

function Day_Name
-- Return the day name
-- of a date.

(Of This Date
• in DATE)

return
Day. Of Week.DAY_OF_WEEK;

function Next_Monday
-- Return the date of the
-- Monday after the entered
-- date. If the entered date
-- is Monday, it is returned.

(On Or After This
: in DATE)-

return DATE ;

Washington Ada Symposium Proceedings. June 1990 113

- 4 ~ ~ • c , . ~

funct ion Previous_Monday
(O n Or Before This

• B A R) -

r e t u r n D A T E ;

funct ion Di f fe rence
-- Calculate the n u m b e r
-- of days b e t w e e n 2 dates.
-- If first da te is later than
-- first, negat ive value
-- results.

(Da te 1
• D . A T E ;

Date 2
• D A T E)

re turn I N T E G E R ;

type D A Y O F W E E K is
(S u n , Mon,Tffe ,Wed,Thu,

Fri,Sat, Nul) ;

type G E N D E R is
(Female , Male, Nul) ;

type G E N D E R MIX is record
This Da te

• I) a t e . D A T E ;
Pe rcen t W o m e n

• N A T U R A L ;
end record ;

type L O C A T I O N is new
STRING(1. .10) ;

funct ion Close
-- Re turns the locat ion
-- that is nth closest
-- (i.e. least expensive
-- travel cost) to the
-- en te red location•

(Or ig in
: L O C A T I O N ;

Ord ina l
: N A T U R A L)

re turn L O C A T I O N ;

type P R O X I M I T Y is record
Origin

: L o c a t i o n . L O C A T I O N ;
D e s t i n a t i o n

: L o c a t i o n . L O C A T I O N ;
Orde r

: N A T U R A L ;
end record ;

type SERIES is record
B T ' BT Class.BT CLASS ;
ST" ST Class .ST CLASS ;

D

end record ;

type ST_CLASS is record
Start

• D a t e . D A T E ;
Place

• ST_Faci l i ty .ST_FACILITY ;
Course

• ST Course.ST C O U R S E ;
Seats ~Faken -

• N . ~ T U R A L ;
end record ;

type ST C O U R S E is
(ST1,S'T2,ST3,ST4,ST5,ST6,Nul);

type ST F A C I L I T Y is record
Classroom

: N A T U R A L ;
Place

: L o c a t i o n . L O C A T I O N ;
Capacity

: N A T U R A L ;
end record ;

114 Washington Ada Symposium Proceedings. June 1990

type S T U D E N T is record
The SSN

: S-SN.SSN ;
BT Scheduled

: BT Class.BT Class ;
ST Scheduled -

: S T Class.ST Class ;
end record ; -

type W E I G H T is
(Light, Heavy, Nul) ;

type W E I G H T MIX is record
Date • Da te .DATE ;
Percent_Heavy " N A T U R A L ;

end record ;

The definition of BT Class and
ST Class are very similar• Con~onents for
d a n , location, and seats taken are
identical• These could be set up as a
package called Class in which the exported
type is a discriminant type based on case
BT or ST. However, the executable code
for the operations that will be needed for
BT classes are very different from those of
ST classes. Therefore, keeping them
distinct types and packages further
organizes the eventual implementation•

D i r e c t o r O b j e c t

The governing director object can
be written in complete Ada syntax based
on the requirements statement• In order to
bridge the many functional gaps that exist
before the design is performed, classes
and operations that do not exist yet are
referenced in the director object• They
serve as a starting point for further design
class identification•

with
with
with
with
with
with

Date, Dates, Gender;
Series, Series List ;
SSN ;
ST Courses ;
Strident ;
Text IO ;

with Weight ;

procedure Reserve is

Bad Dates • Dates .DATES ;
Godd Dates • Dates .DATES ;
Selection • Series.SERIES ;
Start • Da te .DATE ;
The Series

• Series List .SERIES LIST ;
These S'1?

• ST-Courses.ST C O U R S E S ;
This BT • Weig-ht.WEIGHT ;
This -Gender" G e n d e r . G E N D E R ;
ThisSWeight • Weigh t .WEIGHT ;
This SSN • SSN.SSN ;

begin

Student .Prompt_For_Requirements
(Student SSN

= > 'I~is_SSN,
Student Gender

= > T~ais_Gender,
Desired BT

= > T is_BT,
Weight_Capability

= > This_Weight,
Desired ST Courses

= > These_ST,
Date First Available

= >-StarE,
Dates Unavailable

= >]3ad Dates) ;

Washington Ada Symposium Proceedings. June 1990 115

-- Build the list of dates on
-- which the student is
-- available for training.
Good Dates

: =

Dates.Build Class Start Dates
(First

= > Start,
Unavailable

= > Bad_Dates) ;

-- Build the list of
-- training offered.
The Series

:=-Series List.Build
(BT

= > This_BT,
--... Whether
-- light or
-- heavy.

This Gender
= ~ This_Gender,

Prioritized ST
= > The~_ST,

Available Dates
= > Good Dates) ;

if Series_List.Length
(Of This

--> The Series) > 0 then
-- if training choices were
-- found

Series_List.Display
(This = > The Series) ;

Series List.Select
(ThE = > Selection) ;

Series.Reserve
(This = > Selection) ;

Student.Record Reservation
(Student SStff

= > This_SSN,
Training

= > Selection) ;

else
Text IO.Put Line

("1',~ choices available.") ;
end if ;
end Reserve ;

Functional List Class Design

A training series is made up of BT
and/or ST. The software builds a list of
training series. This list is an object and a
functional list class will be defined for it.
In order to build this list, a list of BT
classes and /o r a list of ST classes are built
and evaluated. These are functional list
objects also, with their own classes. A
number of lists are needed to build a list
of BT classes, including: list of dates on
which the student is not available (input
by the user); list of valid locations for the
weight category desired; and list of dates
for which the student meets the gender
mix requirements. These are functional list
classes as well. T h e ST class list is
constrained by the fact that it must come
after BT if BT is being taken and is
limited to the list of courses being
considered. This is an operat ion exported
by the ST date list class. The ST date list
that is built is further constrained by the
list of unavailable dates, list of dates for
which the student meets the gender-mix
requirement and, if the ST does not
require heavy lifting, by the list of dates
for which the student meets the
weight-mix requirement.

116 Washington Ada Symposium Proceedings. June 1990

Many of the impor tan t functional
list classes are specified below•

The Series List funct ional list
package provides tffe ability to build and
manipu la te t raining series lists• The body
of Series List.Build will consist of a call to
BT Classes.Build and ST Classes.Build
and-wil l conta in the logic ~o pair up BT
and ST and sort the resulting list based on
lowest travel cost criteria•

with ... ;
package Series_List is

-- This funct ional list
-- package
-- provides the ability to
-- build and manipu la te
-- lists of t raining series.

package Series_List_Package
is new Linked List

(E l e m e n t
-- > Series);

type SERIES LIST is new
Series_List_Package.LIST ;

funct ion Build
(G e n d e r

• in G e n d e r . G E N D E R ;
Weight_Category

• in W e i g h t . W E I G H T ;
BT

• in W e i g h t . W E I G H T ;
ST
• in ST Courses .ST_COURSES;
Avai lable Dates

• in Da te s .DATES)
re turn SERIES LIST ;

function Combine
(BT Need

• ~ W e i g h t . W E I G H T ;
BT List
• in-BT_Classes .BT_CLASSES;
ST Need
: i r ~ S T _ C o u r s e s . S T C O U R S E S ;

ST List
• irTST_Classes.ST CLASSES)

re turn SERIES LIST ;

procedure Sort_By_BT_Star t Da te
(This • in out SERIES_LIft 'T);

procedure Sort_By_Proximity
(This • in out SERIES_LIST) ;

procedure Find
(BT Start

• m D a t e . D A T E ,
In List

• m SERIES L I S T ,
Posit ion

• out I N T E G E R ;
Count

• out N A T U R A L) ;
end Series List ;

with ... ;

package BT_Classes is

package BT Class List is new
Linked L i~ -

(Elen~ent
= > BT Class.BT CLASS) ;

type BT CLASSES
is n e w i 3 T Class List .LIST ;

Washington Ada Symposium Proceedings • June 1990 117

funct ion Build
(G e n d e r

• in G e n d e r . G E N D E R ;
Weight

• in W e i g h t . W E I G H T ;
These Dates

• in BT Dates .BT D A T E S ;
re turn BT GLASSES ;

funct ion Da tes
-- For a list of BT
-- classes,
-- re turn a merge sor ted
-- list of start dates.
(Classes

: BT CLASSES)
re turn D'a tes .DATES ;

procedure Sort_By_Date
(This • in out BT CLASSES);

p rocedu re Sor t_By_Locat ion
(This • in out BT CLASSES);

p rocedure Find
(Start

• in D a t e . D A T E ;
In List

• m BT_CLASSES;
Posi t ion

• out I N T E G E R ;
Count

• out N A T U R A L) ;

p rocedure Find
(Loca t ion

• in L o c a t i o n . L O C A T I O N ;
In List

• m BT CLASSES ;
Posi t ion

• out I N T E G E R ;
Count

• out N A T U R A L) ;
end BT Classes ;

with ... ;

package ST_Classes is

package ST Class List is new
Linked L~ t -

(Eleffaent
= > ST Class.ST CLASS);

type ST CLASSES
is new-ST Class List .LIST ;

function Build
(Courses
• in ST_Courses .ST_COURSES;
These Dates

• in ST Dates .ST D A T E S)
re turn ST CLASSES'~

funct ion Dates
-- For a list of ST
-- classes,
-- re turn a merge sor ted
-- list of start dates.
(Classes

: ST CLASSES)
re turn IYates.DATES ;

p rocedure Sor t_By_Date ...;
p rocedure Sor t_By_Preference

• ° ° ,

procedure Find Da te ...;
p rocedure F i n d - P r e f e r e n c e ...;
end ST_Classes-;

package Dates is
type D A T E S is new

List Structure
(E L E M E N T

= > D a t e . D A T E) ;
end Dates ;

118 Washington Ada Symposium Proceedings. June 1990

package BT_Dates is

type BT DATES is new
Dates.LIST ;

function Build
(. . .)

return BT DATES ;

function Dates To BT
(T h e s e D a t ~ -

• in Dates.DATES)
return BT DATES ;

function BT To Dates
(These BT Dates

• in BT DATES)
return D a t ~ . D A T E S ;

function Next Week
(BT Dates

• BT DATES)
return D~tes.DATES ;

end BT Dates ;

package ST Dates is

type ST Dates is new
Dates.LIST ;

function Build
(. . .)
return ST DATES ;

function Dates To ST
(T h e s e D a t ~ -

: in Dates.DATES)
return ST DATES ;

function ST To Dates
(T h e s e ST Dates

: in ST DATES)
return Dates.DATES ;

end ST Dates ;

Module Executable Code

The executable code of the bodies
of the operations are largely composed of
calls to operations. The complex
processing logic is spread out. There will
be some operations that bear the
responsibility of major logic, but they will
be focused on a single objective. These
modules typically have a cyclomatic
complexity of 8-10.

During the course of writing
executable code, the need for various
utility functions in fundamental and design
classes arises. The appropriate classes are
then expanded with the necessary
capabilities. There is a necessary overhead
in data processing when distinct functional
list classes are used. Types and lists must
be converted before use in foreign
operations. This string typing overhead is
justified when it results in code that can
be readily verified for functional
correctness.

The following example is presented
to illustrate funct ional list code
characteristics.

separate (Series_List)

function Build
(Gender

: in Gende r .GENDER ;
Weight_Category

: in Weight .WEIGHT ;
BT

: in Weight .WEIGHT ;
ST
: in ST Courses.ST_COURSES;
Availab'le Dates

: in Dates.DATES)
return SERIES LIST is

Washington Ada Symposium Proceedings. June 1990 119

-- local variables

begin

if BT / = Weight.Nul then
These BT Dates

• = fiT Dates .Dates To BT
(' rhese Dates - -

-- >/Cal lable_Dates) ;
The BT Classes

: = - B T Classes.Build
(Gender

= > Gender,
Weight

= > BT,

These Dates
= > "I~ese BT Dates);

end if ;

if ST_Courses.Length
(o f

= > S T) > 0 t h e n
-- Set up ST start dates
-- based on whether BT is
-- taken.

if BT / = Weight.Nul then
Start Dates

• = 13T Dates.Next Week
(fiT Dates -
= > These BT Dates);

ST Start Dates
:= (ST_Dates.Dayes_To_ST

(These Dates
= > Start_Dates);

else -- BT was not taken
ST Start Dates

• Z ST Dates .Dates To ST
('These Dates - -

= > Available_Dates);
end if ;

The ST Classes
: =-ST-Classes.Build

(Courses
= > These_ST,

These Dates
= >fiT Start Dates);

end if ;

The Series
:=-Series List.Combine

(BT_-Requested
= > BT,

BT List
=-> The_BT_Classes,

ST_Requested
= > ST

ST List
Z> The_ST Classes);

return The Series ;
end Build ;

D I S C U S S I O N

A hallmark trait of object-oriented
development is deferred gratification. This
refers to the fact that identified
requirements are rarely implemented
directly. The first task is to define the
classes needed. Designers then imbue each
class with all needed properties and
capabilities. The glue of an application
program will then utilize those operations
it needs to accomplish its goals. Different
applications will use different operations
of the same class• Thus, the value of some
of the immediate work may not be
realized until later projects. The effects of
deferred gratification partially accounts for
the observation that first projects take
longer to develop in Ada. Most
development time is spent defining all the

120 Washington Ada Symposium Proceedings. June 1990

many varied aspects of classes and some
of the operations defined will not be used
in the current project.

This property of object-oriented
methods makes it extremely important to
speed-up development in any way possible.
In order to make the process of class
identification and definition effective and
efficient, software engineers need a library
of techniques which they can consult when
searching for an appropriate design
approach. The functional list is just such a
technique. It should be used when
deemed pertinent to the problem domain.

CONCLUSION

Functional list classes divide
complex processes into fundamental
operations that are easy to code and test.
One reason why functional lists are easy to
code is that they are directly based on
generic list structures, generic sorts and
generic searches. Much work has been
done on lists and related utilities, and,
consequently, tested code is readily
available. The functional list concept
builds on this work and takes it a step
further into the realm of solving domain-
specific problems.

REFERENCES

1. Anderson, K. J., Beck R. P., & Buonanno
T. E. Reuse of software modules.
A T & T T e c h n i c a l J o u r n a l ,
July/August 1988, 67, 71-76.

2. Basili, V. R., & Perricone, B. T. Software
errors and complexity: An empirical
investigation. Communications of the
ACM, 1984, 27, 42-52.

. Booch, G. Software Engineering with Ada.
M e n l o P a r k , C A ,
Benjamin/Cummings, 1986.

4. Colbert, E. The object-oriented software
development method: A practical
approach to object -or iented
development. Proceedings of TRI-
Ada'89, 1989, 400-415.

5. Danforth, S., & Tomlinson, C. Type
theories and object -or iented
programming. ACM Computing
Surveys, March 1988, 20, 29-72.

6. Genillard, C., Ebel, N., & Strohmeier, A.
Rationale for the design of reusable
abstract data types implemented in
Ada. Ada Letters, March/April
1989, _9, 62-71.

7. Lew, K. S., Dillon, T. S., & Forward, K. E.
Software complexity and its impact
on software reliability. IEEE
T r a n s a c t i o n on S o f t w a r e
Engineering, 1988, SE-14, 1645-1655.

. Lind, R. A., & Vairavan, K. An
experimental investigation of
software metrics and their
relationship to software development
effort. IEEE Transactions on
Software Engineering, 1989, L5, 649-
653.

. Martin, J., & McClure, C. Structured
Techniques: The basis for CASE,
Englewood Cliffs, NJ, Prentice Hall,
1988.

10. McCabe, T. J., & Butler, C. W. Design
complexity measurement and testing.
Communications of the ACM, 1989,
32, 1415-1425.

11. Meyer, B. Reusability: The case for
object-oriented design. IEEE
Software, March 1987, 4_, 50-64.

Washington Ada Symposium Proceedings. June 1990 121

12. Meyer, B. Object-oriented software
construction. Great Britain: Prentice
Hall International, 1988.

13. Perez, E. P. Simulating inheritance with
A d a . A d a L e t t e r s ,
September/October 1988, 8, 37-46.

14. Shen, V., Yu, T., Thebaut, S., & Paulsen,
L. Identifying error prone software -
An empi r ica l study. IEEE
T r a n s a c t i o n s on S o f t w a r e
Engineering, 1985, SE-11, 317-324.

15. Whitcomb, M. J., & Clark, B. N.
Pragmat ic def ini t ion of an
object-oriented development process
for Ada. Proceeding of TRI-Ada'89,
1989, 380-399.

122 Washington Ada Symposium Proceedings. June 1990

