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ABSTRACT 

An important process of object-oriented 
engineering is the identification and definition of 
objects and classes. Operationally, there are three 
kinds of objects: fundamental, director, and design. 
Classes define traits of objects. For Management 
Information Systems (MIS), fundamental classes 
are abstractions of stored and displayed data 
referenced in the requirements. Director objects 
serve as the glue that combines objects to 
accomplish the requirements. Design classes are 
defined by analysts to further modularize the 
application, thereby reducing module complexity. 
This paper formulates the functional list design 
class. A functional list contains rules that 
determine whether an item belongs on a list. 
Fundamenta/list classes, in contrast, provide the 
mechanical manipulation operations of lists and 
list items. In many MIS systems, functional lists 
help organize code into reusable operations of low 
complexity. Functional lists are instantiations and 
often implemented as derived types, thus utilizing 
inheritance features. 
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Two objectives of software 
engineering are reliable programs and 
high productivity. One way to increase 
reliability is to decrease software 
complexity of the individual software units 
of the system [8, 14]. A software unit is a 
discrete collection of executable  
statements called a module [9]. Low 
module complexity makes testing easier 
because a complete test suite consisting of 
a manageable number of test cases can be 
defined based on the limited number of 
unique paths and critical data values [10]. 
Reliability of the system as a whole 
increases when each module is thoroughly 
tested. Productivity can be increased 
through reuse of software units because 
the total amount of code is reduced [1]. 
Thus, reuse and low complexity are means 
to attaining software engineering goals. 

Low module complexity can be 
achieved by dividing a system into a 
greater number of modules. This 
distributes the inherent complexity, 
thereby decreasing the average module 
complexity [7, 12] .  There are many 
methods for dividing a system into more 
parts. Among these, object-oriented 
methods have the added benefit of 
facilitating identification of common 
algorithms, which increases reuse. Even 
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greater reuse can be achieved by using 
code-reducing abstraction facilities of Ada, 
such as genericity [6, 11] and derived 
types [13]. 

By combining object engineering 
with powerful Ada language features, 
object-oriented Ada methods enable 
significant increase both in reliability and 
productivity by decreasing module 
complexity and total size. Figure 1 displays 
these relationships. 

Reuse 

IIProductivity ~I I Relia~ 

Object- 
oriented 
Methods 

Icom,lexitY l 

Reliability 

Figure 1: Relationships of factors for 
achieving engineering goals. 

operations provide relevant capabilities. 
Modules that need an object, "with" the 
package that defines its type, and then can 
declare variables (i.e. objects) of the 
exported type and use its exported 
operations. There are three major 
categories of classes: (a) fundamental, 
(b) director, and (c) design. Most 
fundamental and director classes are 
abstractions of the problem space and are 
derived directly from requirements, 
whereas design classes are created by 
analysts to provide solution space items 
[15]. 

Fundamental classes define the 
basic data types in the system. In 
Management Information Systems (MIS), 
most fundamental classes are abstractions 
of data stored on disk and data displayed 
to the user. These can be simple, 
composite, or structural. The data type of 
a simple class does not have discernable 
parts, whereas that of a composite class 
does. Structural classes are lists, stacks, 
queues, etc. 

In Ada, a module is a subprogram. 
Ada modules exist as stand-alone 
subprograms or as collections of 
subprograms in packages. A package of 
subprograms may also export a type; if it 
does, it is an abstraction of a class. 

CLASSES 

A class defines characteristics that 
many objects share [4]. An object has a 
value (or state) and a set of relevant 
operations [3]. The Ada package is a 
powerful implementation of a class. The 
exported type defines the allowed values 
for objects of that class, while exported 

Director objects perform processing 
that is readily understandable in terms of 
end-user's objectives. Executable code in 
directors is often referred to as glue that 
binds modules to accomplish functional 
objectives. This glue must be implemented 
as large complex modules unless there are 
supporting classes that distribute the 
complexity. Design classes provide this 
support. 

DESIGN CLASSES 

Design classes are generally not 
directly evident from requirements. Most 
arise during the design phase as products 
of problem-solving activities, and, 
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therefore, are purely solution space 
classes. They are abstractions of 
intermediate objects that handle data 
processing and perform algorithms. In the 
process of creating design classes to solve 
requirements, new fundamental classes 
also may be created. 

FUNCTIONAL LIST CLASS 

The functional list is proposed in 
this paper as a design class category which 
is advantageous for many MIS 
applications. A functional list class is a 
package which (a) exports a list type 
which is specialized but whose element is 
a basic type (e.g. college classroom 
location list type is exported by a 
functional list class whose element on the 
list is a location, which is a fundamental 
type used by many objects throughout the 
system); and (b) exports operations that 
give the list its characteristics in the 
application (e.g. build a list of course 
locations where this course, which needs 
special equipment, can be scheduled). 

Functional lists are advantageous 
for applications in which many lists have 
the same data type but are functionally 
distinct and are utilized simultaneously. 
Designers can insure that functionally 
distinct lists are not accidently used for 
unintended purposes. The use of strong 
typing to create a functional list identity 
utilizes the Ada compiler as a validity 
checker. 

Another benefit of functional lists 
is that executable software becomes highly 
organized. An alternative to having many 
functional list classes which preserves this 
benefit is to group all operations for an 
element type (e.g. Location) into one list 
package (e.g. Location_List). This 

implementation maintains the advantage 
of organizing code into small operations. 
The major drawback is that compiler type 
checking is no longer used to check 
functional integrity. This problem will be 
described under functional operations 
package in the next section. A practical 
problem is that the number of operations 
that belong to such a general list package 
grows at a very fast rate because so many 
different requirements relate to it. The 
specification changes often, and when it 
does, an enormous number of units must 
be recompiled. 

The steps in the process of 
identifying functional list classes are: 

1. Determine a set of data lists with 
which requirements can be satisfied. 

2. For each list, identify relevant 
operations. 

3. For each list that has an element of a 
composite nature, determine the set of 
fields (e.g. record components) that 
uniquely identifies an item on the list (i.e. 
key). 

4. Determine whether there is 
unnecessary duplication of classes. A class 
attains identity through the uniqueness of 
its key and operations. If there are 
operations relevant only to a subset of 
objects, multiple list classes with identical 
keys are justified. 

5. Describe each operation of each list 
class. The description, which can take the 
form of prose, pseudocode, or code, gives 
a clear idea of the complexity of the 
module and identifies any additional 
classes needed. An overly complex module 
may be simplified by defining new 
operations within existing classes or by 
defining new classes. A cyclomatic 
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complexity of 10 is considered the 
reasonable limit for a module [10]. With 
this method, complexity is monitored early 
in the life-cycle so that it does not go 
unnoticed and become difficult to manage 
during or after implementation. 

The above steps are performed 
iteratively until a complete, correct, and 
consistent system is designed. 

IMPLEMENTATION 

The implementat ion of functional 
list classes can take many forms. These 
are presented here in order of increasing 
degree of abstraction and encapsulation. 
The fundamental  class and generic 
fundamental  list class first presented are 
referenced throughout the examples. 

package Thing is 
type THING is (X, Y, Z) ; 
procedure A 

( This_Thing 
: in THING ; 

Some Data 
: out I N T E G E R  ) ; 

function B 
( Something 

: in I NTEGER ) 
return THING ; 

end Thing ; 

Listing 1: Fundamenta l  Class 

generic 
type E L E M E N T  is private ; 

package List Structure is 
type LIST is private ; 
procedure Add 

( This 
: in E L E M E N T  ; 

To 
: in out LIST ) ; 

procedure Delete ... ; 
procedure Update ... ; 
function Item ... ; 
procedure Clear 

( This 
: in out LIST ) ; 

function Length 
( Of List 

• ]n  LIST ) 
return N A T U R A L  ; 

private 
type N O D E  ; 
type LIST is access N O D E  ; 

end List Structure ; 

Listing 2: Fundamental  List Class 

1. Basic List 

A basic list is an instantiation of a 
list structure with the desired data e lement  
type. It serves as the starting point for 
functional lists. List and e lement  
manipulation functions are inherited from 
the generic package, but it has no 
operations additional to the fundamental  
class. 
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with Thing ; 
with List Structure ; 
package ~'hings is new 

List Structure 
( E L E M E N T  

= > Thing.THING ) ; 

Listing 3: Basic List Class 

2. Functional Operations Package 

A functional operations package 
exports operations that are relevant to a 
discernable category of lists• For example, 
a package can be defined as being 
concerned with operations for lists of 
office locations• Although it does not 
export a type, member  operations are 
limited to those that deal with some 
aspect of the list category for which the 
package was created• However, list objects 
and parameters  in this package are typed 
as the basic list type (e.g. Location_List). 
This implementation has the advantage of 
organizing code functionally around a 
"conceptual" class, although the package is 
not a true class because it does not export 
a type. 

In  s o m e  s i t u a t i o n s  t h i s  
i m p l e m e n t a t i o n  is sufficient and 
acceptable• The disadvantage is that the 
capability of the compiler to act as an 
integrity checker is lost. For example, 
there is a functional operations package 
which includes an operation to return the 
business hours for each insurance agency 
office location on a list. A calling module 
can send a list of parking meter locations 
to this operation because both the list of 
office locations and the list of parking 
m e t e r  l o c a t i o n s  a r e  of  t y p e  

Location List.LIST and the compiler 
cannot detect the context mismatch. 

with Thing ; 
with Things ; 
package Functions_For_Things is 

function Build 
( Something 

• in I N T E G E R  ) 
return Things.LIST ; 

procedure Sort 
( List 

• in out Things.LIST); 
procedure Find 

( This 
• in Thing.THING ; 

In List 
• m Things.LIST,  

Position 
• out I N T E G E R  ; 

Count 
• out N A T U R A L  ) ; 

end Functions_For_Things ; 

Listing 4: Functional Operations Package• 

3. Visible Functional List 

A visible functional list class is a 
package that (a) exports a visible type 
derived from the type exported by a basic 
list class, and (b) exports its own unique 
relevant operations. The level of 
a b s t r a c t i o n  a t t a i n e d  by  t h i s  
implementation is the minimum necessary 
to have a true functional list class. There 
may be many functional lists derived from 
the same original basic list. For  example, 
there are many reasons to build and use 
lists of dates. Each identifiably different 
reason should be implemented as a 
separate class, each with its specific 
exported list type. 
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with Thing ; 
with Things ; 
package Functional_Things is 

-- This is a derived type: 
type FUNCTIONAI_~THINGS is new 

Things.LIST ; 

function Build 
( Something 

: in I N T E G E R  ) 
return FUNCTIONAL THINGS ; 

procedure Sort ... ; 

procedure Find ... ; 

end Functional_Things ; 

Listing 5: Visible List 

For example, in a college student 
information system, there are many date 
lists needed. Dates is a class which is an 
instantiation Of a generic list with element 
Date.DATE. Operations needed for 
course dates of one-day seminars of 
various titles are in one package. There 
also are lists of dates of football games. 
These operations are provided in a 
d i f fe ren t  package.  Class package 
S e m i n a r  D a t e s  e x p o r t s  
SEMINAR DATES list type. Objects of 
this type ha've items of type Date .DATE 
on it because Seminar Dates is derived 
from Dates.LIST (see the derived type in 
Listing 5). The class exports operations 
including Build which builds a list of 
SEMINAR DATES on which an input 
seminar oF a specific course title is 
scheduled. Class Football Dates exports 
its own type and has a Build Home 
function which returns a list o f  home 
game dates for a given opposing team. 

Although both lists have the same element 
(i.e. Date.DATE),  they are functionally 
distinct and recognized as such by the 
compiler. Therefore, a seminar date list 
object cannot be submitted to the football 
date list operations. However, dates on a 
seminar date list can be directly compared 
to dates in a football date list because 
they are objects of the same type. 

4. Private Functional List 

A private functional list class is 
similar to a visible functional list class 
except that the list type is private, and, 
therefore, all fundamental  list operations 
that the designer desires the caller to have 
access to, must be explicitly exported. A 
private functional list class is useful when 
there are specific fundamental  list 
operations that must be prohibited from 
the caller. 
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with Thing ; 
with Things ; 
package Functional_Things is 

type FUNCTIONAL THINGS 
is private ; 

function Build 
( Something 

: in Build ) 
return FUNCTIONAL THINGS ; 

procedure Sort ... ; 
procedure Find ... ; 

-- The following operations 
-- must be explicitly defined 
-- because the type is 
-- private. 
procedure Add ... ; 
procedure Delete ... ; 
procedure Update ... ; 
function Item ; 
procedure Clear ... ; 
procedure Length ... ; 

private 
type FUNCTIONAL THINGS is new 

Things.LIST ; 
end Functional_Things ; 

Listing 6: Private List Class 

5. Specialized Related Lists 

A specialized type class exports a 
list whose element type itself (not just the 
list type) is derived from a fundamental 
type. Elements of two different functional 
list classes derived from the same basic 
type cannot be directly compared. Explicit 
conversion is needed for comparisons of 
items on objects of different list classes. 
Therefore, this implementation is most 

appropriate when there is an inherent 
difference between the two element types. 

For example, there is a class 
Pop_Center (population center) that 
exports type POP CENTER. Class City 
which exports typeCITY is derived from 
Pop_Center.POP_CENTER and adds its 
own operations. Package Cities is an 
instantiation of a generic list package with 
element City.CITY. Similarly, package 
Town exports derived type TOWN and 
various operations. Towns is the functional 
list package. Items on a Towns.TOWNS 
list and items on a City.CITY list are 
different types, and, therefore, must be 
processed through explici t  type 
conversions. This is in contrast to the 
previous implementation approaches in 
which, although the list types are different 
types, the elements on the lists are the 
same type. 

6. Private Specialized Lists 

The previous implementation level 
can be extended to private type elements. 
The reason for selecting private over 
visible depends on the degree of selectivity 
of fundamental operations. With a private 
implementation, elements on lists must be 
process through their own Construct and 
Value operations before comparison and 
assignment operations can be performed 
between items of different types. 

METRICS 

There are two metrics of interest: 
complexity and reusability. 

Cyclomatic complexity is an 
indication of software decisional logic. It is 
easy to calculate for each module, and 
therefore, can be measured by every coder 
and checked by every project leader early 

Washington Ada Symposium Proceedings. June 1990 107 



in development. Cyclomatic complexity is 
directly related to the number of test cases 
needed to achieve acceptable reliability. 
Keeping complexity low increases the 
chance of finding errors early in the 
development life-cycle. The further along 
in the life-cycle an error is detected, the 
costlier it is to correct [2]. Complexity on 
the module level can be extended to 
functional groups so that total complexity 
can be easily measured also [10]. This 
insures reliability tracking as integrated 
testing incrementally proceeds. 

The reusability of software is the 
potential of a module to be reused and is 
not an immediately calculable metric. At 
the design stage, the level of expected 
reuse can be estimated based on 
knowledge of the application. The full 
extent of reusability may be greater due to 
usefulness to future projects. Reuse, on 
the other hand, is the actual number of 
times a module is used and is a more 
concrete metric to deal with. However, a 
module may be highly reusable, but may 
in fact, never be used for a particular 
project. During design, there are 
guidelines that increase likely eventual 
reuse. On a basic level, a package must 
export most operations if reuse is to 
become a reality. Only sensitive 
capabilities should be kept local. A 
pragmatic approach to quantify reuse is to 
sum the number of additional times 
modules are called in an application. 

Functional lists were successfully 
applied to a project for the Army in which 
existing code for a training assignment 
system was redesigned and implemented. 
The original application was designed 
using structural decomposition in a 
conventional procedural (non-Ada) 
language. Metrics of the design classes of 

a discrete segment of the original 
implementation of the application were 
calculated and are summarized in Table I. 
Each module is given a name code. The 
number of executable statements, number 
of nodes as defined by McCabe and 
Butler [10], and the cyclomatic complexity 
are shown. The requirements have a 
cyclomatic complexity of 102, as noted by 
the total complexity of the conventional 
approach. The modules of the original 
implementa t ion  have an average 
complexity of 26, well above the 
acceptable limit. 

!Executble' I 
Module StatmentslNodes Complx 

F1 
F2 
F3 
F4 

31 
18 
22 
31 

105 53 
68 27 
60 34 

125 54 

I Sum 358 168 102 
Avg 90 42 26 

Table I: Metrics of non-Ada code. 

Metrics for the object-oriented Ada 
implementation of this system are shown 
in Table II. Seven classes were identified 
by using a functional list design. 
Complexity was divided into 18 modules, 
with an average complexity of 4. Although 
the Ada modules perform the same 
functionality as the former system, they 
have a total complexity of only 71. Note 
that inherited operations of generic 
instantiations (e.g. length, clear, item, 
search, sort) were also used but are not 
included because they form a library of 
dependable, tested modules. Only design 
classes are included. 
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,Module 

Ti B1 
Ti--B2 
T1 R1 
T1 R2 

T2 B1 
T2 B2 
T2 C 

D1 B 
D1 G 

D2 B1 
D2 B2 

L1 B1 
L1 B2 

L2 B1 
L2 B2 
L2 B3 

L3 B1 
L3 B2 

Sum 
Avg 

Executbl 
Statmnts 

15 
18 
5 
7 

24 
22 
37 

20 
9 

14 
7 

21 
8 

7 
26 
14 

Nodes 

8 
5 
4 
7 

4 
13 
17 

ii 
8 

9 
22 
12 

14 
12 

280 
16 

4 
2 

138 
8 

Complx 

4 
3 
2 
5 

3 
2 
8 

fi 
4 

2 
2 

2 
2 

7 
9 
7 

71 
4 

Table II: Metrics for Ada 
implementation. 

The module name code scheme is 
based on class category and operations. 
The first character signifies the class 
category. There are two functional training 
list classes, T1 and T2; two functional date 
list classes D1 and D2; and three 
functional location list classes L1, L2, and 
L3. The fourth character position in the 
name signifies the kind of operation of the 
module. B is a list build. Note that many 
classes have multiple build operations, one 
for each set of qualifying rules used for 
different purposes. R is an operation that 
removes items from a list based on certain 

criteria. G is a get range. Operation C is 
a check operation in which the validity of 
data after a passage of time is double- 
checked. 

Table III compares the metrics of 
the two implementations. The Ada system 
has almost 5 times as many modules, but 
the total complexity is 30% less. This is 
partly due to the reuse achieved by the 
fact that four of the modules are called 
twice, and one is called three times in this 
particular application. Unit testing was 
made easier and more concrete due to the 
fact that the average module complexity is 
a manageable value of 4. 

Old Ada 
System 

Number of 
Modules 4 18 

Total 
Complexity 102 71 

Average 
Module 

i 

Complexity , 26 4 

# modules 
called 2x 0 4 

# modules 
called 3x 0 1 

Reuse Index 0 6 

Table III: Comparison of metrics for Ada 
system and the original non-Ada system. 

In the application, the reusable 
modules provided three independent paths 
that the director software needed. 
Integration testing was performed in an 
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orderly fashion based on the body 
dependencies. These are shown for each 
of the three calling paths in Figures 2a, b, 
and c. An arrow to a module is a call to 
that module. Modules that have no 
dependencies were tested first. They tend 
to be placed along the outside edge of the 
diagram. The next layer in was tested next, 
etc. Many modules were called multiple 
times within these calling paths. The 
additional calls are indicated by asterisks. 
The accrued benefit of reuse is strikingly 
evident by the fact that operation T2 C in 
Figure 2c depends completely on re'used 
operations. So although testing T2 C is 
based on its cyclomatic complexity of 8, it 
has an effective functional complexity 
(design complexity [10]) of 23. Testing is 
manageable because all the other modules 
have already been tested. 

Figure 2a: Ada module execution 
dependencies for the major functional 
area in the Army application. Complexity 
value is in brackets. 
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L2_F * [< 
I [ 1 ] 

L2 B3 

L1 B2i 

> L1 B1 
[3] 

>[IL2 Bi* 
It 

Figure 2b: Ada module execution 
dependencies for the second functional 
area in the Army application. Complexity 
value is in brackets. 

L2 B1 
[7] 

II 
Figure 2c: Ada module execution 
dependencies for the third functional area 
in the Army application. Complexity value 
is in brackets. 

EXAMPLE 

The following example is patterned 
after the military training assignment 
system, to which functional lists were 
applied. Many of the complex aspects of 
the original application are conveyed to 
some degree in the example. 

Methodolo~ Steps 

The following are the basic steps to 
develop a program that uses objects to 
accomplish requirements: 

1. Determine the complete and consistent 
functional requirements. 

2. Code the fundamental class specs and 
compile. 

3. Code the director object. 

4. Identify design classes and code specs. 

5. Describe bodies of operations of 
fundamental and design classes. 

6. Add new fundamental and design 
classes and/or new operations to existing 
classes as needed. 

7. Code bodies, compile and test as 
needed operations become available. 
Incremental integration testing occurs in 
this step. 

8. Repeat steps 4, 5, 6, & 7 until an 
acceptably low complexity level is 
achieved for each module. 

9. Link the application and test. 

Requirements 

The following hypothetical  
specification serves as an example on 
which the principles of functional list 
design class development will be applied 
and illustrated. 

Machiners Training Corp. (MTC) 
offers courses in heavy machinery 
operation and maintenance to employees 
of other companies. There are 2 
categories of training: basic (BT) and 
special (ST). Each course lasts 1 week 
from Monday to Friday. BT is given in 2 
forms: heavy and light. Those people who 
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cannot perform heavy lifting must take the 
light training. There are 6 different 
categories of ST, two of which require 
heavy lifting. A person who wants to train 
in a heavy-lifting ST must have taken 
heavy-lifting BT. 

BT is a prerequisite for any ST. 
There are 3 employee situations: (a) those 
new to the job who need only BT, (b) 
those new to the job and need BT and an 
ST, and (c) those who already have taken 
BT, but now need ST. When both are 
taken, it is preferable to have them taken 
as close in time as possible. For a 
particular employee, a company may 
specify a prioritized list of specialties that 
are acceptable. The company wants the 
employee trained in the specialty of 
highest priority, but does not want training 
delayed more than four weeks if training 
in a lower priority specialty is available 
sooner. 

MTC has 5 BT facilities throughout 
the country. There is only one BT class 
taught per location at any time and each 
has a maximum seating capacity. Three of 
them are fully equipped and can support 
heavy or light training (but only one 
category at a time), whereas 2 can support 
only light training. Four of the ST facilities 
are located at a BT location. Some BT 
seats are set aside for people taking an ST 
on the following week at the same site 
(privileged seats). This is the preferred 
arrangement because it reduces travel 
costs for the client company. At a certain 
number of days before a BT class starts, 
unassigned privileged seats lose their 
special status, in order to minimize wasted 
seats. The threshold number of days 
before the BT start date at which time this 
occurs is different for each BT location. 

In general, travel costs are to be 
minimized. MTC updates a list of location 
pairs. For each major city in the U.S., 
there is another city which is least 
expensive to travel between. Likewise 
there is a city that is second lowest in cost, 
etc. 

There are 8 ST locations. Many 
have multiple classrooms. Each classroom 
is equipped for a specific course. 
However, some courses need only a subset 
of the equipment of another course. Each 
class has a maximum seating capacity. 

Companies find that when 
employees have been trained in 
homogeneous groups, they have difficulty 
dealing with others. Therefore, MTC tries 
to schedule both men and women for all 
classes. Also, in ST classes for which the 
course does not require heavy lifting, 
MTC tries to have both those who took 
heavy-lifting BT and light-lifting BT. 

MTC reserves seats on an as-come 
basis. It does not save up a number of 
training requests to batch-optimize 
reservations. Usually, a client company 
representative requests the reservation for 
an employee and has the earliest start 
date and a list of any dates the employee 
cannot attend. The user enters the data 
and receives a list of training possibilities 
and selects one. 

Design Strate~v 

To start the design process, we may 
either write the director object or we can 
define the fundamental objects that are 
apparent from the requirements. These 
two steps are independent and can be 
performed in parallel, if so desired. For 
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this example, the an overview of the major 
fundamental  classes will be specified first• 

Fundamental Classes 

From the requirements, there are 
many fundamenta l  classes readily 
identifiable• In an existing development 
environment,  many of these would already 
be in reusable libraries• In order to form 
a basis for the example, most of these 
classes are sketched below. For each type 
definition below, there is a package that 
has the same name as the type. For many 
of these classes, there are a number of 
operations that can be identified from the 
requirements• Some are specified here. 

type BT CLASS is record 
Start 

: Date .DATE ; 
Place 

: Locat ion.LOCATION ; 
Lifting_Required 

: Weight .WEIGHT ; 
Number Of Privilege_Seats 

: N A T U R A L  ; 
Regular Seats Taken 

: NATLTRAE; 
Privilege Seats Taken 

: N A T U R A L  ~, 
end record ; 

type BT_CLASSROOM is record 
Place 

• Locat ion.LOCATION ; 
Capacity 

• N A T U R A L  ; 
Highest_Weight 

• Weight .WEIGHT ; 
Privi legefrhreshold 
-- Number of days before 
-- which, privilege 
-- seats are no longer 
-- special. 

• NATURAL ; 
end record ; 

type DATE is record 
The Month 

: I~onth .MONTH ; 
The_Day 

: Day.Day ; 
The Year 

: Year .YEAR ; 
end record ; 

function Day_Name 
-- Return the day name 
-- of a date. 

( Of This Date 
• in DATE ) 

return 
Day. Of Week.DAY_OF_WEEK; 

function Next_Monday 
-- Return the date of the 
-- Monday after the entered 
-- date. If the entered date 
-- is Monday, it is returned. 

( On Or After This 
: in DATE )- 

return DATE ; 

Washington Ada Symposium Proceedings. June 1990 113 

- 4 ~  ~ • c , . ~  . . . . . . . . .  



funct ion Previous_Monday 
( O n  Or  Before  This 

• B A R  ) - 

r e t u r n  D A T E  ; 

funct ion Di f fe rence  
-- Calculate  the  n u m b e r  
-- of  days b e t w e e n  2 dates. 
-- If first da te  is later  than 
-- first, negat ive value 
-- results. 

( Da te  1 
• D . A T E  ; 

Date  2 
• D A T E  ) 

re turn  I N T E G E R  ; 

type D A Y  O F  W E E K  is 
( S u n ,  Mon,Tffe ,Wed,Thu,  

Fri,Sat, Nul) ; 

type G E N D E R  is 
( Female ,  Male,  Nul ) ; 

type G E N D E R  MIX is record 
This Da te  

• I ) a t e . D A T E  ; 
Pe rcen t  W o m e n  

• N A T U R A L  ; 
end  record  ; 

type L O C A T I O N  is new 
STRING(1. .10)  ; 

funct ion Close 
-- Re turns  the locat ion 
-- that  is nth closest 
-- (i.e. least expensive 
-- travel cost) to the 
-- en te red  location• 

( Or ig in  
: L O C A T I O N  ; 

Ord ina l  
: N A T U R A L  ) 

re turn  L O C A T I O N  ; 

type P R O X I M I T Y  is record  
Origin 

: L o c a t i o n . L O C A T I O N  ; 
D e s t i n a t i o n  

: L o c a t i o n . L O C A T I O N  ; 
Orde r  

: N A T U R A L  ; 
end  record ; 

type SERIES is record  
B T '  BT Class.BT CLASS ; 
ST"  ST Class .ST CLASS ; 

D 

end  record ; 

type ST_CLASS is record  
Start 

• D a t e . D A T E  ; 
Place 

• ST_Faci l i ty .ST_FACILITY ; 
Course 

• ST Course.ST C O U R S E  ; 
Seats ~Faken - 

• N . ~ T U R A L  ; 
end  record ; 

type ST C O U R S E  is 
(ST1,S'T2,ST3,ST4,ST5,ST6,Nul); 

type ST F A C I L I T Y  is record  
Classroom 

: N A T U R A L  ; 
Place 

: L o c a t i o n . L O C A T I O N  ; 
Capacity 

: N A T U R A L  ; 
end record ; 
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type S T U D E N T  is record 
The SSN 

: S-SN.SSN ; 
BT Scheduled 

: BT Class.BT Class ; 
ST Scheduled - 

: S T  Class.ST Class ;  
end record ; - 

type W E I G H T  is 
( Light, Heavy, Nul ) ; 

type W E I G H T  MIX is record 
Date  • Da te .DATE ; 
Percent_Heavy " N A T U R A L  ; 

end record ; 

The definition of BT Class and 
ST Class are very similar• Con~onents  for 
d a n ,  location, and seats taken are 
identical• These could be set up as a 
package called Class in which the exported 
type is a discriminant type based on case 
BT or ST. However, the executable code 
for the operations that will be needed for 
BT classes are very different from those of 
ST classes. Therefore, keeping them 
distinct types and packages further 
organizes the eventual implementation• 

D i r e c t o r  O b j e c t  

The governing director object can 
be written in complete Ada syntax based 
on the requirements statement• In order to 
bridge the many functional gaps that exist 
before the design is performed, classes 
and operations that do not exist yet are 
referenced in the director object• They 
serve as a starting point for further design 
class identification• 

with 
with 
with 
with 
with 
with 

Date, Dates, Gender;  
Series, Series List ; 
SSN ; 
ST Courses ; 
Strident ; 
Text IO ; 

with Weight ; 

procedure Reserve is 

Bad Dates • Dates .DATES ; 
Godd Dates • Dates .DATES ; 
Selection • Series.SERIES ; 
Start • Da te .DATE ; 
The Series 

• Series List .SERIES LIST ; 
These S'1? 

• ST-Courses.ST C O U R S E S  ; 
This BT • Weig-ht.WEIGHT ; 
This -Gender"  G e n d e r . G E N D E R  ; 
ThisSWeight • Weigh t .WEIGHT ; 
This SSN • SSN.SSN ; 

begin 

Student .Prompt_For_Requirements 
( Student SSN 

= > 'I~is_SSN, 
Student Gender  

= > T~ais_Gender, 
Desired BT 

= > T is_BT, 
Weight_Capability 

= > This_Weight, 
Desired ST Courses 

= > These_ST, 
Date First Available 

= >-StarE, 
Dates Unavailable 

= > ]3ad Dates  ) ; 
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-- Build the list of dates on 
-- which the student is 
-- available for training. 
Good Dates 

: =  

Dates.Build Class Start Dates 
( First 

= > Start, 
Unavailable 

= > Bad_Dates ) ; 

-- Build the list of 
-- training offered. 
The Series 

:=-Series List.Build 
( BT 

= > This_BT, 
--... Whether  
-- light or 
-- heavy. 

This Gender  
= ~ This_Gender,  

Prioritized ST 
= > The~_ST,  

Available Dates 
= > Good Dates ) ; 

if Series_List.Length 
( Of This 

--> The Series ) > 0 then 
-- if training choices were 
-- found 

Series_List.Display 
( This = > The Series ) ; 

Series List.Select 
( ThE = > Selection ) ; 

Series.Reserve 
( This = > Selection ) ; 

Student.Record Reservation 
( Student SStff 

= > This_SSN, 
Training 

= > Selection ) ; 

else 
Text IO.Put Line 

("1',~ choices available.") ; 
end if ; 
end Reserve ; 

Functional List Class Design 

A training series is made up of BT 
and/or  ST. The software builds a list of 
training series. This list is an object and a 
functional list class will be defined for it. 
In order to build this list, a list of BT 
classes and /o r  a list of ST classes are built 
and evaluated. These are functional list 
objects also, with their own classes. A 
number of lists are needed to build a list 
of BT classes, including: list of dates on 
which the student is not available (input 
by the user); list of valid locations for the 
weight category desired; and list of dates 
for which the student meets the gender 
mix requirements. These are functional list 
classes as well. T h e  ST class list is 
constrained by the fact that it must come 
after BT if BT is being taken and is 
limited to the list of courses being 
considered. This is an operat ion exported 
by the ST date list class. The ST date list 
that is built is further constrained by the 
list of unavailable dates, list of dates for 
which the student meets the gender-mix 
requirement and, if the ST does not 
require heavy lifting, by the list of dates 
for which the student meets the 
weight-mix requirement.  
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Many of  the impor tan t  functional  
list classes are specified below• 

The  Series List funct ional  list 
package  provides tffe ability to build and 
manipu la te  t raining series lists• The  body 
of  Series List.Build will consist of a call to 
BT Classes.Build and ST Classes.Build 
and-wil l  conta in  the logic ~o pair  up BT 
and ST and sort the resulting list based on 
lowest travel cost criteria• 

with ... ; 
package Series_List is 

-- This funct ional  list 
-- package  
-- provides the ability to 
-- build and  manipu la te  
-- lists of  t raining series. 

package Series_List_Package 
is new Linked List 

( E l e m e n t  
-- > Series); 

type SERIES  LIST is new 
Series_List_Package.LIST ; 

funct ion Build 
( G e n d e r  

• in G e n d e r . G E N D E R  ; 
Weight_Category  

• in W e i g h t . W E I G H T  ; 
BT 

• in W e i g h t . W E I G H T  ; 
ST 
• in ST Courses .ST_COURSES;  
Avai lable  Dates  

• in Da te s .DATES ) 
re turn  SERIES  LIST ; 

function Combine  
( BT Need  

• ~ W e i g h t . W E I G H T  ; 
BT List 
• in-BT_Classes .BT_CLASSES; 
ST Need  
: i r ~ S T _ C o u r s e s . S T C O U R S E S ;  

ST List 
• irTST_Classes.ST CLASSES)  

re turn SERIES  LIST ; 

procedure  Sort_By_BT_Star t  Da te  
( This • in out  SERIES_LIft 'T);  

procedure  Sort_By_Proximity 
( This • in out  SERIES_LIST) ;  

procedure  Find 
( BT Start 

• m D a t e . D A T E ,  
In List 

• m SERIES  L I S T ,  
Posit ion 

• out I N T E G E R ;  
Count  

• out N A T U R A L )  ; 
end Series List ; 

with ... ; 

package BT_Classes is 

package BT Class List is new 
Linked L i~  - 

(Elen~ent 
= > BT Class.BT CLASS ) ; 

type BT CLASSES 
is n e w i 3 T  Class List .LIST ; 
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funct ion Build 
( G e n d e r  

• in G e n d e r . G E N D E R  ; 
Weight  

• in W e i g h t . W E I G H T  ; 
These  Dates  

• in BT  Dates .BT D A T E S  ; 
re turn  BT  GLASSES ; 

funct ion Da tes  
-- For  a list of  BT 
-- classes, 
-- re turn  a merge  sor ted 
-- list of  start dates. 
( Classes 

: BT CLASSES ) 
re turn  D'a tes .DATES ; 

procedure Sort_By_Date 
( This • in out  BT CLASSES ); 

p rocedu re  Sor t_By_Locat ion 
( This • in out  BT CLASSES ); 

p rocedure  Find 
( Start 

• in D a t e . D A T E  ; 
In List 

• m BT_CLASSES;  
Posi t ion 

• out  I N T E G E R  ; 
Count  

• out  N A T U R A L ) ;  

p rocedure  Find  
( Loca t ion  

• in L o c a t i o n . L O C A T I O N  ; 
In List 

• m BT CLASSES ; 
Posi t ion 

• out  I N T E G E R  ; 
Count  

• out  N A T U R A L  ) ; 
end  BT Classes ; 

with ... ; 

package ST_Classes is 

package ST Class List is new 
Linked L~ t  - 

( Eleffaent 
= > ST Class.ST CLASS ); 

type ST CLASSES 
is new-ST Class List .LIST ; 

function Build 
( Courses 
• in ST_Courses .ST_COURSES;  
These  Dates  

• in ST Dates .ST D A T E S  ) 
re turn ST CLASSES'~ 

funct ion Dates  
-- For  a list of  ST 
-- classes, 
-- re turn a merge  sor ted 
-- list of  start dates.  
( Classes 

: ST CLASSES ) 
re turn  IYates.DATES ; 

p rocedure  Sor t_By_Date  ...; 
p rocedure  Sor t_By_Preference  

• ° °  , 

procedure  Find Da te  ...; 
p rocedure  F i n d - P r e f e r e n c e  ...; 
end ST_Classes-; 

package Dates  is 
type D A T E S  is new 

List Structure 
( E L E M E N T  

= > D a t e . D A T E  ) ; 
end Dates  ; 
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package BT_Dates is 

type BT DATES is new 
Dates.LIST ; 

function Build 
( . . . )  

return BT DATES ; 

function Dates To BT 
( T h e s e  D a t ~  - 

• in Dates.DATES ) 
return BT DATES ; 

function BT To Dates 
( These BT Dates 

• in BT DATES ) 
return D a t ~ . D A T E S  ; 

function Next Week 
( BT Dates 

• BT DATES ) 
return D~tes.DATES ; 

end BT Dates ; 

package ST Dates is 

type ST Dates is new 
Dates.LIST ; 

function Build 
( . . . )  
return ST DATES ; 

function Dates To ST 
( T h e s e  D a t ~  - 

: in Dates.DATES ) 
return ST DATES ; 

function ST To Dates 
( T h e s e  ST Dates 

: in ST DATES ) 
return Dates.DATES ; 

end ST Dates ; 

Module Executable Code 

The executable code of the bodies 
of the operations are largely composed of 
calls to operations. The complex 
processing logic is spread out. There will 
be some operations that bear  the 
responsibility of major logic, but they will 
be focused on a single objective. These 
modules typically have a cyclomatic 
complexity of 8-10. 

During the course of writing 
executable code, the need for various 
utility functions in fundamental  and design 
classes arises. The appropriate classes are 
then expanded with the necessary 
capabilities. There is a necessary overhead 
in data processing when distinct functional 
list classes are used. Types and lists must 
be converted before use in foreign 
operations. This string typing overhead is 
justified when it results in code that can 
be readily verified for functional 
correctness. 

The following example is presented 
to illustrate funct ional  list code 
characteristics. 

separate (Series_List) 

function Build 
( Gender  

: in Gende r .GENDER ; 
Weight_Category 

: in Weight .WEIGHT ; 
BT 

: in Weight .WEIGHT ; 
ST 
: in ST Courses.ST_COURSES; 
Availab'le Dates 

: in Dates.DATES ) 
return SERIES LIST is 
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-- local variables 

begin 

if BT / =  Weight.Nul then 
These BT Dates  

• = fiT Dates .Dates  To BT 
( ' rhese Dates - - 

-- >/Cal lable_Dates) ;  
The BT Classes 

: = -  B T  Classes.Build 
( Gender  

= > Gender,  
Weight 

= > BT,  

These Dates 
= > "I~ese BT Dates); 

end if ; 

if ST_Courses.Length 
( o f  

= >  S T )  > 0 t h e n  
-- Set up ST start dates 
-- based on whether BT is 
-- taken. 

if BT / =  Weight.Nul then 
Start Dates  

• = 13T Dates.Next Week 
( fiT Dates  - 
= > These BT Dates ); 

ST Start Dates  
:= ( ST_Dates.Dayes_To_ST 

( These Dates 
= > Start_Dates);  

else -- BT was not taken 
ST Start Dates  

• Z ST Dates .Dates  To ST 
( 'These Dates  - - 

= > Available_Dates);  
end if ; 

The ST Classes 
: =-ST-Classes.Build 

( Courses 
= > These_ST, 

These Dates  
= >fiT Start Dates);  

end if ; 

The Series 
:=-Series List.Combine 

( BT_-Requested 
= >  BT, 

BT List 
=-> The_BT_Classes, 

ST_Requested 
= >  ST 

ST List 
Z>  The_ST Classes); 

return The Series ; 
end Build ; 

D I S C U S S I O N  

A hallmark trait of object-oriented 
development is deferred gratification. This 
refers to the fact that identified 
requirements are rarely implemented 
directly. The first task is to define the 
classes needed. Designers then imbue each 
class with all needed properties and 
capabilities. The glue of an application 
program will then utilize those operations 
it needs to accomplish its goals. Different 
applications will use different operations 
of the same class• Thus, the value of some 
of the immediate work may not be 
realized until later projects. The effects of 
deferred gratification partially accounts for 
the observation that first projects take 
longer to develop in Ada. Most 
development time is spent defining all the 
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many varied aspects of classes and some 
of the operations defined will not be used 
in the current project. 

This property of object-oriented 
methods makes it extremely important to 
speed-up development in any way possible. 
In order to make the process of class 
identification and definition effective and 
efficient, software engineers need a library 
of techniques which they can consult when 
searching for an appropriate design 
approach. The functional list is just such a 
technique. It should be used when 
deemed pertinent to the problem domain. 

CONCLUSION 

Functional list classes divide 
complex processes into fundamental 
operations that are easy to code and test. 
One reason why functional lists are easy to 
code is that they are directly based on 
generic list structures, generic sorts and 
generic searches. Much work has been 
done on lists and related utilities, and, 
consequently, tested code is readily 
available. The functional list concept 
builds on this work and takes it a step 
further into the realm of solving domain- 
specific problems. 
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