
A Generative Approach to Reusing of A d a Subsys tems

James Solderitsch, Timothy Schreyer
Unisys, Electronic and Information Systems Group

Center for Advanced Information Technology
PO Box 517

Paoli, PA 19301-0517
215-648-2831, 215-648-2475

jjs~prc.unisys.com, schrey~prc.unisys.com

Abstract

Software reuse occurs on many levels, such as reuse of simple
abstract data types, reuse of appl icat ion subsystems, and the
generation of system components and interfaces. Three proto-
types developed at the Center for Advanced Information Tech-
nology - - a black-box Ada software testing tool, an Intelligent
Librarian for Ada reuse libraries, and a knowledge-based Tool
Utilization Assistant in the document-processing domain - - all
successfully reuse the same underlying knowledge representa-
t ion subsystems written in Ada. These subsystems are Ada-
TAU, a distributed rule base inference engine; AdaKNET, a
structured inheritance network tool; and a hybrid knowledge
representation scheme used to integrate them. This paper will
discuss issues of reuse at the subsystem level and will address
the role of the Ada language and generated language-based
interfaces in making subsystem level reuse easier and more
practical.

I. Introduction

This paper describes some experiences in the reuse of
relatively large Ada subsystems in three different appli-
cations. Our approach has been to try and overcome
some of the problems inherent in Reuse in the .Large
(RilL) compared to Reuse in the Small (RitS~. In fact,
the Ada language was designed in par t to explicitly
address the latter and the use of Ada for this purpose
has been the subject of many papers and presentations
(e.g. [Berrett87]).

Ada has not solved the reuse problem however welt it
has aided Rit$. We begin by discussing several
approaches to Rill ranging from a completely construc-
tive approach to a completely generative one. The main
body of this paper presents a partially generative

COPYRIGHT 1990 BY THE ASSOCIATION FOR COMPUTING
MACHtNERY, INC. Permission to copy without fee all or part
of this matedal is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise,
or to republish, requires a 'lee and or specific permission.

approach based on the use of Interface Specification
Languages (ISLs). We discuss the design and use of such
languages, their development, and the philosophy and
methods used in our approach. The paper closes with a
lessons-learned section and a summary.

2 . A p p r o a c h e s t o R e use

Ted Biggerstaff and Charles Richter in a paper that ori-
ginally appeared in 19877 [Biggerstaff87] (and reprinted
in[Biggerstaff89 D used several illustrations that nicely
capture some of the basic issues and approaches funda-
mental to the subject of Software Reuse. Adaptat ions of
two of these il lustrations appear as figures 1 and 2
below. Although the figures themselves do not explicitly
reference the distinction between the RitS and R i l l
categories, the methods and approaches shown in the
figures natural ly tend to one or the other of these two
reuse categories.

From an Ada perspective, RitSq is package level reuse.
Math packages and simple da ta structures such as
stacks and queues are elementary examples of this kind
of reuse. Applications typically use such packages as a
whole, and while individual applications may need to
tailor parts of packages tha t are reused, the most
economical form of reuse occurs when the package can
be reused as-is. For this kind of as-is reuse to occur, the
packages must be designed carefully with reuse in mind.
If proper design principles are used, packages can be
reused widely, far outside the scope of the application
wherein the packages were originally developed.

Through the use of the package concept, Ada supports
RitS but does not assure it. The incorporation of pack-
ages by an importing application illustrates the con-
structive approach to reuse shown in the left side of
figure 1. Rill occurs when entire collections of modules
or packages are used out of the context of the
application(s) for which the collection was originally
developed. There are circumstances where large systems
can be composed from such smaller subsystems, but only
when there is nearly an exact fit between the services
provided by the collection and the needs of the

Washington Ada Symposium Proceedings. June 1990 55

http://crossmark.crossref.org/dialog/?doi=10.1145%2F327011.327063&domain=pdf&date_stamp=1990-07-01

Features Approaches to Reusabilit9
Comp.omelt
R e u s e d

B u i l d i n g
P a t t e r n s

B l o c k s
Nature of Atomic and I m m u t a b l e D i f fu s e and Malleable
Compomo.t P a s s l v e A c t i v e

Prlnciple
of R Composition Generation

Application Ozganlaation

Emphasi# Component & Composition

Libraries Prin¢iplee

T l r p i c a l e Lib ,er leJ ef ' O b j . Oriented

Systems SabzontineJ * Pipe A,rehs. " PO L s i' File Mj~mt t r a m

Language Trans-
~ppllcation

Besed f0rm~tiox
Gez~erators

C~snezators S~tems

" VHLLJ ' C R T fraY:

i
* Lang.

trar~frmr

F i g u r e 1. A l t e r n a t e R e u s e A p p r o a c h e s

import ing applicat ion. This phenomenon is quite rare
and most often occurs when a system is a newer,
enhanced version of an earlier one which supplies the
subsystems tha t are reused (such examples exhibit the
"use" ra ther than reuse of the subsystems). In such
examples, the funct ional i ty of the subsystem component
is exact ly wha t is desired by a using applicat ion.

RitL, in general, has many facets and our experiences
provide evidence tha t a generative approach has much
to offer when there is an inexact fit between the opera-
tions and services provided by the subsystem and the
needs of the using appl icat ion. In such cases, one needs
to reuse selected par t s of the subsystem or to use adap-
ta t ions of the subsystems for the new applicat ion.
Managing the complexi ty tha t may exist within the sub-
system and recognizing relat ionships tha t may cross
module boundaries within the subsystem are often
difficult. Subsystem components can have complex
interfaces and subsystem operat ions may have hidden
interdependencies. Careful design can lessen these sorts
of problems but the rouser must become expert in the
semantics of the subsystem in order to take maximum
advantage of the subsystem.

.An a l te rna t ive to forcing the user to acquire the needed
expertise is to package the subsystem capabi l i t ies within
a generat ive framework. Generat ion technology can
effectively suppor t both of two basic scenarios. In one
scenario, a complete, ta i lored subsystem is generated
from scratch using a high level specification of the sys-
tem. Such specifications are given in a high-level
language, called an Appl icat ion Specific Language (or
ASL), t ha t is constructed to support the appl icat ion
domain being served by the subsystem. ASLs [Simos871

as used and developed by Unisys have the following
characterist ics:

• they are often non-procedural

• they are implemented using generators

• they can be used to produce mult iple outputs , such
as source code in a high-level language (e.g., Ada)
for a subsystem, as well as documentat ion for the
generated subsystem.

In addit ion, Unisys has found t ha t the use of ASLs and
ASL generators provides a number of dis t inct advan-
tages including:

• t a i lo rab i l i ty

• compactness

• domain or ienta t ion

• a higher level of correctness

• ta rget (language and machine) independence.

If only a port ion of a potent ia l ly large subsystem is
required, only tha t port ion can be generated from the
specification. If full general i ty is not required, a simpler
version with bet ter performance and simpler interfaces
can be produced from the same specification. A subsys-
tem description wri t ten in an ASL is typica l ly much
shorter than the source code required to ac tual ly imple-
ment the system. For example, an ASL specification of
a few hundred lines can produce a ta rge t language
source file of ten thousand lines or more. In general, this
reduction in size permits an ASL descript ion to be com-
pleted in much less t ime than the subsystem it gen-
erates. A well-designed ASL uses the terminology of the
appl ica t ion area, permi t t ing the ASL user to ignore
i rrelevant details . Thus, the product iv i ty of the ASL
user measured in lines per day (to use one t radi t ional
measure) will be much greater than a programmer work-
ing directly on the subsystem source code.

The algorithms generated from ASL input are built in to
the generator itself, and once verified, can be relied upon
to be successfully and faithfully translated into the final
application code. Thus, the programmer is prevented
from making {and re-making) many mistakes in this
code. ASL-based program generators are easily target-
ted to a rb i t r a ry programming languages and execution
environments. Having a choice of ta rge t languages
means tha t in tegrat ion with existing systems wri t ten in
a mul t i tude of languages is easier. Moreover, once a
generator has been implemented for one target system,
re target ing to another has, in practice, proven to be
inexpensive and s t ra ight-forward.

Unisys experiences with this sort of complete generation
are best i l lus t ra ted in the design and appl ica t ion of the
Message Format Processing Language (MFPL) [Pol-
lack87]. Complete and efficient message processing sub-
systems are generated from the specification of the mes-
sage formats that the subsystem must be able to pro-
cess. To reuse such a subsystem for a new or modified
message format, one writes or changes the corresponding

56 Washington Ada Symposium Proceedings. June 1990

MFPL specifications and the MFPL generator produces
the application. More specifically, software engineers
use MFPL to generate software modules that validate
and generate messages within a larger message process-
ing system.

Message Switching Systems (MSS) have been an impor-
tant applications area for Unisys over the past two
decades. Recently, MFPL has been a key component
(along with the use of commercial off-the-shelf (COTS)
database, user interface and communication packages)
in the production of a new MSS with the following
features:

• The MSS can be hosted on a PC whereas previous
MSSs required mainframes.

• The MSS is generic, in the sense that it can be
easily modified to use different formats or com-
munication protocols.

• The MSS was developed at only a small fraction of
the typical effort required to implement older mes-
sage switches.

In particular, MFPL was used to increase productivity
by at least ten times for the development of C language
software to process formatted headers and trailers of
standard NATO message formats. System chan~es
resulting from modified message format specifications
that used to take weeks or months to complete and
debug, now require only a few minutes of MFPL genera-
tion and source code compiling time. A. paper now in
preparation will document the completely generative
approach to subsystem reuse that MFPL exemplifies.

Such a totally generative approach is most effective
when confined to a narrow, highly specialized domain.
Another kind of reuse support through generation occurs
when the subsystem is constructed by hand, but the
interfaces to the subsystem are generated to meet the
needs of the application. The partially generative
approach outlined in the rest of this paper supports the
effective reuse of existing handwritten subsystems whose
full generality needs to be maintained. Rather than gen-
erate the entire subsystem, modules are generated which
reference the handwritten subsystem and which contain
validated operation calls on portions of the subsystem.
The main goals of this approach are to reduce user
errors and frustration while simultaneously increasing
e~ciency in the use of such subsystems. As such, the
approach represents an enhancement to the use of
abstract data types (ADTs) whose use embodies
well-respected software engineering practice, and for
which Ada was expressly designed and intended. The
goals of the approach are accomplished through the use
of abstract interface specifications that are used to gen-
erate actual subsystem operation calls. Such
specifications provide an intermediate, supportive layer
between the subsystem reuser and the subsystem being
reused thereby providing less error-prone and more pro-
ductive reuse.

P
O
W
E
R

• A]?pKcstion LJeneratore

• POLl
• Object Oriented Knowledge Bases

• Cede Skeletons

[] ASL.
[~ ISL.

• Librarie. • Natural Language

•Ceekbovk .

• Applicstlve Languages
• Data FIDw Lang~.aSu

• 0bj~ct Oriented

• Tr,nsfermstlons
• VHLLs • Formal MetheJe

• HOLe
• Assembly

GENERALITY

Figure 2. Spectrum of Reuse Technologies

As shown in figure 2, the problem with a generative
approach is the lack of generality. Each problem
domain requires its own generator and its own descrip-
tive notation that captures the semantics of that
domain. One would expect that the development of gen-
erators and associated languages would be an expensive
proposition.

Unisys has overcome this economic argument through
the use of a recta-generation system called SSAGS (Syn-
tax and Semantics Analysis and Generation System)
[Payton82]. SSAGS combines the generality of the use
of VHLLs with the power of application generators (see
figure 2). SSAGS is the basis for the full generation
approach used in MFPL to support the domain of mes-
sage processing as well as the generation of the Interface
Specification Languages (ISLs) described in this paper.
The next two sections discuss the design of subsystems
to support the ISL methodology and the use of SSAGS
to produce ISLs.

3. Deslgnlng Subsystems for Reuse

No matter whether a constructive or generative
approach to .RiLl, is taken, up-front design of the subsys-
tem for reuse is desirable. In our case, we combined the
principles of a layered system design along with data
abstraction to promote the careful design of a family of
abstract data types that comprise each of the two basic
knowledge representation subsystems which are to be
reused at the subsystem level (see figure 3).

Several design description levels were identified includ-
ing the conceptual, data description, data structure,

Washington Ada Symposium Proceedings. June 1990 57

f0¢

F i g u r e S. D e s i g n L e v e l s

abstract data type and applications levels. The highest
level is the conceptual level in which the basic concepts
and operations to be provided by the subsystem are
enumerated. This level can provide the seed for the
descriptive language (the ISL) used to generate the inter-
faces to the actual package operations available at the
abstract data type level. Moreover, the interface
description level provides a means to abstractly refer to
the objects and relationships being managed at the data
structure level. In fact, one of the most common appli-
cations of an ISL specification in our work is generation
of a routine to initialize the basic data structures
required by a reusing applicat ion. This ini t ia l izat ion is
accomplished through the execution of operat ions con-
ta ined in the actual abstract data types that make up
the handwritten system. Actual manipulation of data
structures is accomplished through the execution of
operations contained in the abstract data type (ADT)
level. Finally at the applications level, ADT operations
are used to manipulate and modify the data structures
required by the application.

Our experience has also shown the usefulness of having a
two-way translation capability between the actual data
structures and an ISL description of the contents of
these data structures. The application may support the
interactive access and modification of these structures,
but having the ability to take a snapshot of these struc-
tures and recording them in the descriptive syntax of an
ISL based on the conceptual level can lead to optimiza-
tions and modifications of the data structures that are
hard to achieve interactively. Because an ISL

specification provides an ASCII description of the
application's data, it can also aid portability of the
application's data structures to new operating plat-
forms.

4. A n I S L - B a s e d A p p r o a c h t o R e u s e

In order to effectively use ISLs to suppor t the reuse of
complex subsystems, there must be a mechanism in
place to promote economic design of the ISL and the
efficient production of the ISL processor tha t produces
the desired interface to the services provided by the sub-
system being reused. ISLs are in fact special kinds of
ASLs. We have been most interested in the use and
integrat ion of such languages in the context of A d s
[Simos87] and have explored the appl icat ion of SSAGS
in the product ion and appl icat ion of ASLs. In fact,
SSAGS itself is another example of an ASL and SSAGS
is current ly mainta ined in its ASL form.

Figure 4 is an adap ta t ion of a figure tha t appeared in
the MFPL paper referenced earl ier showing the applica-
tion of SSAGS to produce an ISL and the eventual use
of the ISL in a reuse applicat ion. The ISL designer
begins by describing the syntax and semantics of the ISL
in terms of SSAGS input files. Some auxi l iary Ada
source files must also be provided by the ISL designer.
As mentioned earlier, the conceptual level of the subsys-
tem being described with the ISL can supply the basic
vocabulary for the ISL.

The ISL input when run through SSAGS produces a col-
lection of Ads source files that are compiled by an Ads
compiler to produce the ISL processor system as an exe-
cutable file (the middle oval in figure 4). The applica-
tion design then proceeds along two fronts. ISL

$~|.ys~#vn
D#sil~er

Spe¢ifica¢ion A~pllcatlon
/~asLgncr

Bnd-U..r

IISL T l a te r L -- A4a. -- Application
i

t Source | Compil.t I.n.pute
l

S u b . s t e m
In tes ra t ion

Source WO~- t
Co vnp il~

~"{ i ln¢' | Source O u t p u t |

F i g u r e 4. D e v e l o p i n g a n d U s i n g ISLs

58 Washington Ada Symposium Proceedings. June 1990

specifications are written which capture the intended
usage of the subsystem to be reused. These
specifications are processed by the ISL processor to pro-
duce application code that calls upon the services pro-
vided by the subsystem being reused. The application
developer also produces handwritten code to complete
the body of the application. The complete collection of
source files are then compiled to produce the resulting
application.

In our case the HOL compiler indicated in the figure is
also Ads . Note that in some cases, there may be several
pieces to the application that are to be compiled and
executed separately. For example, the ISLs described in
the next section generally are used for data structure
specification and initialization and the programs gen-
erated from the ISL descriptions are executed before the
application code is actually run. The application out-
puts from this phase are the application's data struc-
tures stored in a persistent form as Ada files.

5. S o m e E x a m p l e s of ISLs

The AdaTAU and AdaKNET knowledge base subsys-
tems [Wallnau88] use ISL's to make specification of their
knowledge bases simpler for the knowledge engineer.
These ISL's are the Rule Base Description Language
(RBDL) for AdaTAU and the Semantic Network
Definition Language (SNDL) for AdaKNET. Both
languages use an Ada-like grammar and syntax to define
the data structures which form the knowledge base for
each subsystem. The RBDL and SNDL translators take
knowledge base specifications in their respective ISL and
generate the Ada code which performs the calls on the
subsystem ADT's to instantiate the knowledge bases.
There is a third ISL called the Hybrid Knowledge Base
Description Language (HKBDL) which is used to define
the manner in which the knowledge bases of AdaTAU
and AdaKNET will interact. For example, the HKBDL
specification could specify which AdaTAU rule-based
inference engines were associated with particular AdaK-
NET network concepts. This section will briefly
describe the AdaTAU and AdaKNET subsystems and
discuss the role of the RBDL, SNDL, and HKBDL ISL's
in the reuse context of the three applications utilizing
AdaTAU and AdaKNET.

AdaKNET is a structured inheritance network
knowledge modelling system. The heart of each of our
applications is an AdaKNET semantic network which
captures and structures the information found in the
domain of the application. For the Gadfly testing tool
documented in IWallnau88], AdaKNET captures
knowledge about the structure of an A d s program and
the methodology of constructing test cases. In the Intel-
ligent Librarian [Solderitsch89,McDowel189], AdaKNET
provides the hierarchical structure of an Ads reuse
library and describes the attributes of library com-
ponents. The Tool Util ization Assistant application was
based in the domain of document-processing and the

c o n c e p t a d a _ b e n c h l a r k (aubprograB) & ¢
l o c a l r o l e ¢

leasured_featurec(0 .. inflnlty) of banchaark_feature:
end local;

end concept;

c~nc~pt scot_bench, ark (ade_bQnch, ark) le
local roles

contr01_Beasurelent_c0lp0nant(i .. 1) of llbrary_unit:
Instrument_package(I . . I) of acec_Instrulent_package;

end local;
end concept;

concept ecec_coMposlte_benchsark (acec_be~ch~ark.
colpo~Ite_bencheark) is

end concept;

concept acec_pe~forBance_bencheerk (pertOrlance_benchmark.
&cec_be~chlark) is

restricted r o l e e
Subunits(0 . , 0);
iteratlon_schele8 (1 .. 1) Of fIxed_loop_withln_teEt:
paraseters(0 .. 0);

end restrlcted;
end c o n c e p t ;

c o n c e p t p lwg_benchmark (a d a _ b e n c h a a r k) i s
end c o n c e p t ;

c o n c e p t piwg_colpos£te_benchlark (plwg_benchmark.
coiposlt~_bench~ark } i s

end c o n c e p t :

c o n c e p t p l w g _ p e Y f o r m a n c e _ b e n c h s a ~ k (p e r f o r m a n c e _ b e n c h m a r k .
piwg_ben~hmark) ~s

l o c a l r o l e s
10_psckmge(I . . ~) O ~ piwg_£o_psCkS~e;
l~eratlon_control_psckage (1 . . 1) o f

plwg_lcera¢ion_package;
optlslzatlon_concrol_package(I .. 1) Of
p£wg_opt1~izatlon_Gont~ol_package;

end local:
restrict~d rol~s

subunlts(O . . 0) :
Iteration_~cheme~(I . . 1) of

clock_re~olut~on_based_loop;

peraleter¢(0 .. 0):
end rectricted:

end concept;

individual whets2 (scec_cosposlte_benchsark)

end individual:

F i g u r e 5. F r a g m e n t o f B e n e h m a r k L i b r a r y
S N D L S p e c l t l e a t l o n

UNIX r o f f family of tools. Here, AdaKNET embodies
knowledge about the structure of documents and the
variety of r o f f mark-up commands.

Knowledge is presented in a semantic network by
describing objects and classes of objects in terms of rela-
tionships that exist between them. The three principal
relationships provided by AdaKNET are specialization,
aggregation and individuation. The speci~lizatior~ rela-
tionship declares that one class of objects (called a con-
cept in AdaKNET) is a sub-class of a more general class
where the sub-class inherits properties (in particular, all
aggregation relationships) possessed by the parent class.

Washington Ada Symposium Proceedings. June 1990 59

For example, in figure 5, an ada_benchmark is a kind of
subprogram. Note tha t a given class may be a sub-class
of several pa ren t c|asses as i l lus t ra ted by the
piwg_performance_benchmark which is a kind of
performance_benchmark and piwg_benchmark.

The aggregation re la t ionship (called a role in AdaKNET)
defines the propert ies or a t t r ibu tes of a class in terms of
re la ted classes. In figure 5, the class ada_benchmark is
declared to have a role tha t defines the features being
measured by the benchmark. The range (0 . .
in flnity) means that any individual benchmark may
measure any number of features including the case of no
features. Any subconcept lying below ada_benchmark in
the network will automatically inherit this role. Sub-
concepts can also declare their own aggregation relation-
ships (such as acec_benchmark which adds the roles for
control, instrument_component and
instrument_package). Moreover, a subconcept can
further restrict both the number and type corresponding
to an inherited role. The restricted roles
declared in figure 5 provide examples of this behavior.
The third kind of relationship is individuatio, which
establishes that a given object is an instance of a class
of objects. Figure 5 shows that wheta2 is an actual
acec_composite_benchmark.

The SNDL ISL was used in the development of each of
the clients of AdaKNET to define the AdaKNET seman-
tic network underlying the application. SNDL can be
used to fully describe an AdaKNET structured inheri-
tance network. The knowledge engineer transfers his
knowledge of the domain into a SNDL description of the
domain. This SNDL specification is then translated into
the Ada code calls to the AdaKNET subsystem which
instantiate the semantic network. AdaKNET semantic
networks can be browsed and built interactively with a
tool from the AdaKNET subsystem, but a large and
complex network can be more easily and quickly defined
and understood from its SNDL specification. The SNDL
specification allows understanding of the domain which
would be much harder to gather from either browsing
the network interactively or wading through the Ada
code used to instantiate the network. .Also, network
information models of different depth, style, or complex-
ity can be modelled with SNDL in the same way,
without having to know the intricacies of the AdaKNET
ADT calls which distinguish the different varieties of
networks. SNDL grants the application programmer
and knowledge engineer the full power of the AdaKNET
structured-inheritance network model while keeping the
interface simple and uncluttered so that concentration
can be centered on modelling the domain knowledge.

To illustrate the power of using AdaKNET through
SNDL, the complete SNDL spec shown in figure 6 was
processed by the SNDL processor to produce the Ada
output which is listed in figure 7. The first pa r t of the
l ist ing i l lustrates the complexi ty of the necessary Ada
environment tha t must surround the use of A d a K N E T
and a set of "housekeeping" declarat ions required to

nQtwock Anlmal~ is

root concept thing ie
end r o o t concep t ;

concept h igher_animal (th ing) i s
l o ¢ a l r o l es

A_head (1.,1) O f head:
A~front_leg (0 . .2) of front_leg;
A_hlnd_leg (0..l) Of hlnd_leg;

end local;
end concept:

concept head (thing) iE
end concept:

concept leg (thlng) lS
e n d c o n c e p t ;

concept f r o n t _ l e g (leg) i s
end concept:

concept hlnd_leg (leg) is
end concept;

concept @leph~nt (hisher_~ni1~l) is
local roles

A_trunk (l.,1) of trunk;
end local:
restricted roles

A_front_leg (2..2) of front_leg;
A_hind_leg (2..2) of hlndolag;

~ d r e s t r i c t e d ;
end concept ;

concept t runk (th ing) I s
e n d c o n c e p t ;

individual Joe (elephant) i~
end Individual;

end Animals:

F i g u r e 6. C o m p l e t e S N D L S p e c i f i c a t i o n
b e f o r e T r a n s l a t i o n

execute the rest of the generated code. The la t te r par t
of the l isting shows the actual calls to the services pro-
vided by the semantic network packages. These services
are not only called with the correct arguments, bu t have
been arranged in the proper calling sequence.

AdaTAU is a rule-based inferencing system with par t i -
t ionable d is t r ibuted fact bases and the abi l i ty to
in teract ively gather information. In our three applica-
tions, A d a T A U was used pr imar i ly to tai lor the applica-
tion for a par t icu lar instance, user, or run of the pro-
gram. AdaTAU's abi l i ty to ask questions to gather infor-
mat ion and then reason upon t ha t information made it
very sui table for gather ing dynamic information not
easily recorded in the s ta t ic s t ructure of the A d a K N E T
semantic network. In the test ing tool appl icat ion Ada-
TAU acquired information about the uni t under test by
asking questions of the user, and then inferenced to
deduce a proper test case for the unit.

60 Washington Ada Symposium Proceedings. June 1990

with Text_f0: use Text_f0;
w~th Eixe(i_Strtnge:
wlth Adaneta:
with ComeonIO: use ComlonlO:
with Sndl_Support: use Sndl_Support:
with Role.at_Ranges: use Roleset_jKanges;
with Adanet_name_types;
procedure instantlate_sndl Is

8BDL_INSTANCE_NOT_GEN~BATED: exception;
INSTANTIATE_EREOR: exception:
New Network: Adanets.Adanet:
Network_Root: Adaneta.Generlc_Concept:
Tamp_go; Adaneta.Genoric_Concep~;
Temp_£c: Adaneta.lnd$vldual_Concept;
New Subroles: Adaneta.Roleset_Spec_SetE.Set;
Destroy_on_error: Boolean:= False:
type ty_concept_k i s (generic. M, Indlvldual_k, uninlt_k);
type concept_war(concept_k: ty_concept_k := u n l n i t _ k) 18

reco rd
case concept_k i s

when uninlt_k =>
dUlly_slot: Adanets.Ceneric_Concept:

when generlc_J(=>
generic_c: Adanetl.Generic_Concept:

when Indlvidual.J(=>
Indlvldual_¢: A4enets. Indivlduel_Concept/

end ¢ese:
end record:

Concept_Array: a r r a y (1 . . 9) Of concept_war:
f u n c t i o n pad(

Str: String:
Lee: I n t e g e r : =

Adanet_Name_Types.Nax_0b~ect_Name_Length)
return String

renales Eixe4LStrlngs.Pad:
hegSn

begin
Set_Boolean_Environment(

Yos_No_Q~eation => "Des t roy network on e r r o r ? y /n" ,
Answer => Destroy_on_error):

Create_AdaKNET(
New_Network => New_Network,
Network_Name => "aniuals");

begin
put_lSne("Renaming Root Concept ") :
Teep_gc:= Adaneta.Root_Concept(New_Network):
Adaneta.Renane(

New_Network,
Tamp_go,
P a d (" t h i n g ")) ;

Concept, . .Array(9):= (gener ic_k, Temp_gc):
excep t i on

when others =>
put_line("Error Renaming Root");
r a i s e ;

end;
Add_Generic_Concept(

Network => New_Network,
Super_Concept => Concept_Array(9).generic_c,
Concept_Name => "higher_ani~al",
New_Concept => Temp_gc):

Concept_Array(l):= (generlc_k, Temp_gc):
Add_Generic_Concept(

Network => New_Network,
Super_Concept => Concep t_Ar ray (9) .gener i c_c ,
Concept_Name => "head",
New_Concept => Teup_gc):

Concept_Array(k):= (generlc_k, Tamp_go);
Add_Role(

Network => New_Network,
Eole_0wner => Concept_Array(l).generlc_c,
Role_Name => "a~head",
Mln..Range => 1,
Max_Range => I,
Value_Restrlctlon => Concept_Array(2).generic_c):

Add_Cenerlc_Concept(
NQtwork => New. Network,
Super_Concept => Concept_Array(9).generlc_c,
Concept_Nale => "lag",
New_Concept => Tamp_go):

Concept_Array(3):= (generlc_k, Temp_gc):
Add_Generlc_Concept(

Network => New_Network,

Super_Concept => Concept_krray(9).generlc_c,
Cancept_Naee => "trunk",
New_Concept => Teap_gc):

Concept_Array(?) := (gener ic_k , Tamp_go);
Add_Generic_Concept(

Network => New_Network,
Super_Concept => Concept. Array (1).generlc_c,
Concept_Naee => "e lephan t ~,
New_Concept => Tenp_gc);

C o n c e p t _ A r r a y (6):= (generlc_k, Tamp_go):
Add_Role(

Network => New_Network,
Role_0wner => Concept_Array(6).generlc_c,
Role. Name => "a_trunk"o
Men_Range => 1,
Max_Kange => I,
Value_Restrlctlon => Concept_Array(7).ganorlc_c):

Add_Cenerlc_Concept(
Network => New_Network,
Super_Concept => Concep t_Ar ray (3) .gener l c_c ,
Concept_Name => "front_leg",
New_Concept => Tamp_go):

Concept_Array (4):= (generlc_k, Teep_gc);
Add_Role(

Netwark => New_Network,
Role_Owner => Concept_Array(1).genQric_co
Role_Naee => ",_Crane_leg",
Men_Range => 0~
Max_Konge => 2,
V a l u e _ R e s t r i c t i o n => Concep t_A r ray (4) . gene r i c_c) :

Rest r ic t_Cener lc_Roleset_Kange (
Network => New. Network,
Role_Owner => Concept_Array(6).generlc_c,
Role_Name => we_front_log",
Min.Jtange => 2,
M a x _ R a n g e => 2) :

Re l t r i c t_Cener£c_Eo lese t_Type(
Network => New_Network,
Role_0wner => Concep t_Ar ray (6) .gener i c_c ,
R o l e _ N a m e => " , _ f r o n t _ l o g ' ,
V a l u e _ R e s t r i c t i o n => Concep t_A r ray (4) . gene r i c_c) :

AdcL_Canerie_Concept(
Network => New. Network,
Super_Con,apt :> Concep t_Ar ray (3) .ganer l c_¢ ,
Concept. Name => " h l n d ~ l e g ' ,
New_Concept => Teep_gc);

Concept~Ar ray(5) := (gener lcvk , Tamp_go):
Add_Role(

Network => New_Network,
Eole_0wner => Concep t_Ar ray (1) .gene r l c_c ,
Role_Name => " , _ h i n d _ l e g " ,
Mln_Range => 0,
Max_Range => 2,
VaZue. . lea t r£a t ion => Concep t_A r ray (5) . gene r i c_c) :

Rel t r lc t_Cener£©. .~o leeet_Range(
N e t w o r k => N e w _ N e t w o r k ,
Role_0wner => Concept_J~rray(6) .gener ic_c,
Role_Name => " , _ h i n d _ l e g " ,
M i n _ R a n g e : > 3 ,
M a x _ R a n g e => I):

Bes t r t c t_Oener l c_Eo lese t_Type(
Network => New_Network,
Role_0wner => Concep t_Ar ray (6) .gene r i c_c ,
Role_Name => "a_hXnd~leg",
V a l u e _ R e s t r i c t i o n => ConcepT_Ar ray (5) .gener i c_c) :

Add_ Ind iv idua l_Concep t (
Network => New_Network,
Super_Concept => Concep t_Ar ray (S) .gener tc_c ,
Concept. Name => "Joe" ,
New_Concept => Tamp_ i t) ;

C o n c e p t _ A r r a y (8) : = (l n d i v i d u a Z _ k , T e m p _ l c) :
Save_AdaKNET(New_Network);
Close_AdaKNET(New_Network);

end:
exception

when SNDL_INSTANCE_NOT_GENERATED =>
put_llne("renaae y o u r nQtw0rk"):

when 0thQrS =>
if Destroy_on_error then

Adanets.Destroy_Adanet (New_Network);
end if:
r a i s e :

end:

Figure 7. Ada Source produced by SNDL

Washington Ada Symposium Proceedings. June 1990 61

In the Intelligent Librarian, a distributed AdaTAU
guides the user through the hierarchy of the reuse
library by asking questions about what the user is
searching for and then steering the user in the right
direction. For the Tool Utilization Assistant, AdaTAU
was targeted for determining the location of help files
and providing a user-tailored presentation of informa-
tion about the tool.

The RBDL ISL defines the different flavors of the Ada-
TAU inferencing context in our three applications and
generates the Ads code necessary to build the inferencer
constructs which provide the functionality of the subsys-
tem. RBDL contains syntax for describing fact and rule
bases, and an association of fact and rule bases which

fact base schema A c u c _ C o | p o a i t u _ B a n c h m a r k _ r a o t s i s

numerical_computation, benchmark_type : o n e _ o f
(cL__rystona, whets tone , h a n e s s y) ;

benchmark_use : one_o f
(numerical_computation, c a p a c i t y _ t e s t , m u l t i p l e) ;

uses_prsgma_supprese : one_of
(yes, no, i m m a t e r i a l) ;

e n d A c e c _ C o l p o s l t e ~ B e n c h l a r k _ F a c t s ;

I n i t i a l f a c t base Acec_Coaposite_Senchmark_Iracts I s

null:
end Acec_Composlte_Benchaark_IFactE;

question base Acec_Composlte_Benchmark_Questlons is

question Ask_E~nohmsrk_Uses is
t e x t : { W i l l this benchmark be u l e d for

n u m e r i c a l c o m p u t a t i o n s ?) :
type : one_of:
responses :

"yes" => (benchmark_use, n u m e r i c a l _ c o m p u t a t i o n) :
"no" => (nuI/_attributa. null_value);
"not s o l e l y " => (b a n c h l s r k _ u s s , e u l t l p l e) :

end question;

q u e s t i o n A s k _ [l n d _ 0 f _ C o , p u t e t i o n i s
t e x t : {Which response b e s t d e s c r i b e s t h e

k i n d o f ¢ o a p u t a t $ o n done?} ;
t y p e : one_of :
responses :

"aystems and program = = >

(n u m e r i c a l _ c o m p u t a t i o n _ b e n c h m a r k _ t y p e . d h r y s t o n e) :
" s c i e n c e and sash" = >

(nulerlcal_compu~ation_benchlark_ty~e, whetstone};
" c l a s s i c and v a r i o u s COmpUtat ions" =>

(n u a e r l c a l _ o o s p u t a t l o n _ ~ a n c h s a r k _ t y p e . h e n o s s y) :
end question;

q u e s t i o n Ask_Usas_Pragma_Suppress i s
t e x t ; {Does t h e benchmark l a k e use

o f pragsa S U P P R E S S ? } ;
t y p e : o n e _ o f ;
responses :

"yes" => (uses_pragma_auppresl, yes);
"~o" => (uses_praMs_suppress. no):
" d o e s n ' t m a t t e r " => (uses_pragma_suppruss, i m m a t e r i a l) :

end question;

end Acec_ComposIte_Benchuark_QuestlonE:

F i g u r e 8. S a m p l e o f t h e R B D L ISL

compose an AdaTAU inferencer. It also describes the
interface necessary to have the AdaTA.U inferencers act
in a cooperating, distributed manner, changing an
inferencing focus and passing facts between different
infereneers. In our three applications, using RBDL to
define and generate the data structures for AdaTAU
allowed the knowledge engineers to use the power of the
inferencing subsystem without having to tediously code
the calls to AdaTAU that build inference context struc-
tures. The AdaTAU subsystem calls necessary to build
the complex inter-weaving of distributed rule base
inferencers composing an application's inferencing con-
text would be very hard to follow in their Ada format;
but the same knowledge base specified with RBDL can
be followed logically and clearly. Figure 8 shows an
example of the RBDL ISL from the Intelligent Librarian
application. The complexity and length of the Ads
interfaces to the AdaTAU subsystem generated from a
RBDL specification are comparable to those shown in
the SNDL output file (figure 7).

All three of our applications which reuse the AdaKNET
and AdaTAU subsystems use them in a hybrid
knowledge representation scheme. This scheme allows
objects to be associated with the concepts of an

Browser Editor

/ ,+ ,ll,_ ,\
, .,.

A d = K N E T Model of the B=nchmark Domain

with at tached A d a T A U Rule Dales

F i g u r e 9. H y b r i d K n o w l e d g e R e p r e s e n t a t i o n
in t h e I n t e l l i g e n t L i b r a r i a n

62 Washington Ada Symposium Proceedings. June 1990

AdaKNET network. For example, AdaTAU inference
bases are attached to AdaKNET concepts to provide
localized guidance about the network surrounding the
concept. The association between concepts and objects
is established with a "hybrid state layer" describing
which particular concepts are bound to which objects.
Figure 9 shows the hybrid knowledge representation
scheme as applied in the Intelligent Librarian applica-
tion. The diamond shapes indicate attached inference
components within a larger hierarchical collection of
concepts.

At first, during development of the Gadfly unit test
application, the Ada code establishing the hybrid state
layer was hand-coded. As the size of the hybrid
knowledge representation grew and the variety of
objects that could be associated with AdaKNET con-
cepts was enhanced, it became apparent that the pro-
cedure to build the hybrid state layer was becoming long
and repetitive, and hand-coding it was prone to error.
To meet this problem, the Hybrid Knowledge Base
Description Language was rapidly developed to allow a
simplified specification of the hybrid state layer which
would generate the increasingly complex procedure
which instantiates it.

HK.BDL is a small ISL which simply describes what
objects are associated with concepts of the AdaKNET
semantic network. Using HKBDL, like RBDL and
SNDL, helps the knowledge engineer concentrate on
modelling by removing complex details of the Ada imple-
mentation. HKBDL also makes reuse of cooperating
AdaKNET and AdaTAU knowledge bases easier to
manage and establish. Many possible hybrid knowledge
representation schemes are possible, and HKBDL's syn-
tax will be adapted accordingly as multiple schemes
evolve. Notable about HK_BDL is the speed with which
it was developed and implemented to remove a growing
problem area. Figure 10 shows an example of the
HK_BDL ISL from the Intelligent Librarian.

6. L e s s o n s Learned

One of the goals of the RLF project is the general pro-
motion of reuse practices and concepts including the use
of generation technology. By choosing to use this tech-
nology ourselves to promote the reuse of internal RLF
subsystems, we hope to learn more about the
effectiveness and capabilities provided by the technol-
ogy. To date, we have reused the basic RLF knowledge
representation subsystems in three different applications
and developed three ISLs. In so doing, we have accumu-
lated a number of observations.

First and foremost, the use of ISLs really does aid reuse.
This fact was demonstrated by the use of the RBDL
language by a non-Ada programmer to build knowledge
bases for the Gadfly testing tool application. Without
RBDL, the individual would have been forced to become
an expert on the AdaTAU ADTs which would have
greatly delayed progress in developing usable knowledge

hybrid benchmark_llbrary (benchmarks) is

text file "pruaa2DE = at indOOO_pruaa2_design;
text file "pruaa2AB" at Ind000_pruaa2_abstract:

text value =Simtel-20" at aimtel_2O;
text value "/library/demo_dlr" at demo_dir;
text value =pOO00OT.a" at p00OOO7_a;
text value =p00O006.a" at p000006_a;
text value "bgt.o" at bgt_executable;

inference bale composite_benchmark;
inference base meet_composite_benchmark;

inference base piwg_composite_benchmark;
inference base bgt_generated_composite_benchmark;

end benchmark_library;

F i g u r e 10. S a m p l e of t he H K B D L ISL

bases for the Gadfiy application. Through the use of
UNIX shell scripts, the operation of the Ada compiler in
compiling and executing the programs generated from a
RBDL specification can be completely hidden from the
novice user. Moreover through RBDL, the operations
called upon from AdaTAU are used in a safe, reliable
manner. This reason promotes the use of RBDL even by
programmers experienced in the AdaTAU ADTs.

Secondly, while there is some overhead in learning to
design an ISL and to use SSAGS to generate the ISL
processor, once this price has been paid it becomes very
natural and efficient to modify and enhance the ISL.
Since the language designer is working at a very high
level, a new ISL processor can be produced from a
changed specification in a very short period of time (the
length depending on the number and severity of the
changes made to the language definition). Overall, we
found production of ISLs to be economical and practical.

On the other hand, there has been at least one negative
result. The Ada files produced by the ISL translators
may not be very palatable to today's generation of Ada
compilers. The basic problem is tha t compiler writers
develop compilers to handle programs that people would
write, not those that might be generated. Generators,
however, just produce legal programs that can exceed
compiler internal limits. We have observed problems
especially with the size of generated compilation units.
Compilers just don't expect units with hundreds or
thousands of lines per unit. Such large units take an
unusually long time to compile (if they compile at all)
and often have inefficient or erroneous executions as
well. Of course, the language designer can adjust the
code generation process employed, but the resulting code
can often be less readable or traceable to the original
ISL specification. While it is possible for the language

Washington Ada Symposium Proceedings. June 1990 63

designer to accommodate several compilers, it will be
impossible to account for a majori ty of them, thereby
impacting portabil i ty of the generated code.

Summary
In this paper we have shown how RitS and RitL are
quite different in nature and how the lat ter can be sup-
ported through the use of generation technology. In par-
ticular, the use of a meta-generation system such as
SSAGS provides a cost-effective solution to the problem
of reusing existing complex subsystems based on partial
generation. Three distinct ISLs were introduced and
their application in support of reuse at the subsystem
level was illustrated. We believe that with careful
design of the subsystem, the use of specialized interface
description languages promotes the visibility and under-
s tandabi l i ty of the subsystem and thus improves the
reusabili ty of the subsystem. We plan additional work
in the area of language-based interfaces in support of
RitL.

A c k n o w l e d g e m e n t s

The design and implementat ion of the Reusabili ty
Library Framework was originally funded under the
STARS Foundat ions program as contract number
N00014-88-C-2052 administered by the Naval Research
Laboratory. This paper is ~ revision of the paper
"Experience in the Reuse of Ada Subsystems" presented
at the Third Annual Unisys Software Engineering Sym-
posium, January 1990, in Houston Texas. Far ts of this
paper were inspired by discussions with fellow research-
ers at the Unisys Center for Advanced Information
Technology (CAIT). In particular, the authors wish to
thank Bob Pollack, Don McKay, Ray McDowell and
John Thalhamer of CAIT for their contributions.

[Berretta7]

[Biggerttaff87]

[Biggerstaffg0]

[McDowel189]

[P ayton8 2]

R e f e r e n c e s

C. Berrett, "Engineering for Reuse: The Goal
of Ada," Proceedings o] the First Annual
Unisys Defenee Systems Software Engineering
Symposlum~ McLean, VA, September 1987.

T. Biggerstaff and C. Righter, "Reusability
Framework, Assessment, and Directions,"
IEEE Software, 4(March 1987), pp. 41-49.

T. Biggerstaff and C. Righter, "Reusability
Framework, Assessment, and Directions," in
Software Reusability Volume 1 Concepts and
Models, T. J. Biggerstaif and A. J. Perils
(editors), ACM Press, 1989, pp. 1-17.

R. McDowell and K. Cassell, "The RLF
Librarian: A Reusability Librarian Based on
Cooperating Knowledge-Based Systems,"
Proceedings of RADC ~th Annual Knowledge-
Based Software Assistant Conference, Utica,
NY, September 1989.
T. F. Payton, S. E. Keller, J. A. Perkins, S.
Rowan, and S. P. Mardinly, "SSAGS: A

[Pollack87]

[Simos87]

[Solderitsch89]

[WallnauS8}

Syntax and Semantics Analysis and
Generation System," Proceedings of
COMPSAC '8~, 1982, pp. 424-433.

R. Pollack, W. Loftus, and J. Solderitsch, "A
Generative Approach to Message Format
Processing," Proceedings of the First Annual
Unisye Defense Systems Software Engineering
Symposium, McLean, VA, September 1987.

M. A. Simos, T. F. Payton, and R. H. Pollack,
"Integration of Fourth Generation Languages
and Ada," in Proceeding# of the USA]SEC
Technology Strategies '87 Conference,
Alexandria, Virginia, February 1987.

J. Solderitsch, K. Wallnau, and J. Thalhamer,
"Constructing Domain-Specific Ada Reuse
Libraries," Proceedings of Seventh Annual
National Conference on Ada Technology,
March 1989.

K. Wallnau, J. Soldetitsch, M. Slings, R.
McDowell, K. Cassell, and D. Campbell,
"Construction of Knowledge-Based
Components ned Applications in Ada,"
Proceedings of AIDA-88, Fourth Annual
Conference on Artificial Intelligence ~ Ada,
November 1088, pp. 3-1 through 3-21.

Biographical Sketches

James Solderitsch is the chief programmer of the Reusability
Library Framework (RLF) project. Dr. Solderitsch joined the
Unigys Defense Systems Software Technology Laboratory in
January 1986 after having been an assistant professor of
Computer Science at Villanova University for 8 years. His
primary interests are software reusability and the impact of
very high level, domain-oriented, specification languages on
software productivity and reusability. He holds a B.S. degree
in Mathematics from Villanova University and an M.S. and
Ph.D. degrees in Mathematics from Lehigh University.

Since joining Unisys in June, 1988, Timothy Schreyer has spent
most of his time with the Reusability Library Framework
(RLF) project involved in design and implementation tasks.
He also helped integrate the STARS program ACE/CAIS-A
Baseline Software Engineering Environment (SEE). Currently,
he is working under the STARS program implementing an Ada
Xt toolkit. Mr. Sehreyer graduated from Bueknell University
in May, 1088, with a B.S. degree in Computer Science.

64 Washington Ada Symposium Proceedings. June 1990

