Check for
Updates

A Generative Approach to Reusing of Ada Subsystems

James Solderitsch, Timothy Schreyer
Unisys, Electronic and Information Systems Group
Center for Advanced Information Technology
PO Box 517
Paoli, PA 19301-0517
215-648-2831, 215-648-2475
jjs@prc.unisys.com, schrey(@prc.unisys.com

Abstract

Software reuse occurs on many levels, such as reuse of simple
abstract data types, reuse of application subsystems, and the
generation of system components and interfaces. Three proto-
types developed at the Center for Advanced Information Tech-
nology — a black-box Ada software testing tool, an Intelligent
Librarian for Ada reuse libraries, and a knowledge-based Tool
Utilization Asesistant in the document-processing domain — all
successfully reuse the same underlying knowledge representa-
tion subsystems written in Ada. These subsystems are Ada-
TAU, a distributed rule base inference engine; AdaKNET, a
structured inheritance network tool; and a hybrid knowledge
representation scheme used to integrate them. This paper will
discuss issues of reuse at the subsystem level and will address
the role of the Ada language and generated language-based
interfaces in making subsystem level reuse easier and more
practical.

1. Introduction

This paper describes some experiences in the reuse of
relatively large Ada subsystems in three different appli-
cations. Our approach has been to try and overcome
some of the problems inherent in Reuse in the Large
(RstL) compared to Reuse in the Small (RitS). In fact,
the Ada language was designed in part to explicitly
address the latter and the use of Ada for this purpose
has been the subject of many papers and presentations
(e.g. [Berrett87]).

Ada has not solved the reuse problem however well it
has aided RilS. We begin by discussing several
approaches to RitL ranging from a completely construc-
tive approach to a completely generative one. The main
body of this paper presents a partially generative

COPYRIGHT 1990 BY THE ASSOCIATION FOR COMPUTING
MACHINERY, INC. Permission to copy without fee all or part
of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise,
or to republish, requires a fee and or specific permission.

Washington Ada Symposium Proceedings . June 1990

approach based on the use of Interface Specification
Languages (ISLs). We discuss the design and use of such
languages, their development, and the philosophy and
methods used in our approach. The paper closes with a
lessons-learned section and a summary.

2. Approaches to Reuse

Ted Biggerstaff and Charles Richter in a paper that ori-
ginally appeared in 1987 [Biggerstaff87] (and reprinted
in[Biggerstaff89]) used several illustrations that nicely
capture some of the basic issues and approaches funda-
mental to the subject of Software Reuse. Adaptations of
two of these illustrations appear as figures 1 and 2
below. Although the figures themselves do not explicitly
reference the distinction between the RitS and RiiL
categories, the methods and approaches shown in the
figures naturally tend to one or the other of these two
reuse categories.

From an Ada perspective, R#tS is package level reuse.
Math packages and simple data structures such as
stacks and queues are elementary examples of this kind
of reuse. Applications typically use such packages as a
whole, and while individual applications may need to
tailor parts of packages that are reused, the most
econcmical form of reuse occurs when the package can
be reused as-is. For this kind of as-is reuse to occur, the
packages must be designed carefully with reuse in mind.
If proper design principles are used, packages can be
reused widely, far outside the scope of the application
wherein the packages were originally developed.

Through the use of the package concept, Ada supports
RitS but does not assure it. The incorporation of pack-
ages by an importing application illustrates the con-
structive approach to reuse shown in the left side of
figure 1. RitL occurs when entire collections of modules
or packages are used out of the context of the
application(s) for which the collection was originally
developed. There are circumstances where large systems
can be composed from such smaller sybsystems, but only
when there is nearly an exact fit between the services
provided by the collection and the needs of the

55

http://crossmark.crossref.org/dialog/?doi=10.1145%2F327011.327063&domain=pdf&date_stamp=1990-07-01

56

Features Approaches to Reusability
Component Building
Patterns
Reused Blocks
Nature of Atomic and Immutable Diffuse and Malleable
Component Passive Active
Principle e N
of Reuse Composition Generation
Application Orgsnisation | Language Trans-
[Application|
Emphasis Comp t | & Compoeniti Based forma tion,
Generators
Librazies Principles Generstors Systems
Typical * Libraries of * Obj. Oxiented | * VHLLs [' CRT fmtry | Lang.
i transfs
Systems Subtoutines | | e Archa. | *POLs [Pile Mgmt| ™™

Figure 1. Alternate Reuse Approaches

importing application. This phenomenon is quite rare
and most often occurs when a system is a newer,
enhanced version of an earlier one which supplies the
subsystems that are reused (such examples exhibit the
“use” rather than reuse of the subsystems). In such
examples, the functionality of the subsystem component
is exactly what is desired by a using application.

RiiL, in general, has many facets and our experiences
provide evidence that a generative approach has much
to offer when there is an inexact fit between the opera-
tions and services provided by the subsystem and the
needs of the using application. In such cases, one needs
to reuse selected parts of the subsystem or to use adap-
tations of the subsystems for the new application.
Managing the complexity that may exist within the sub-
system and recognizing relationships that may cross
module boundaries within the subsystem are often
difficult. Subsystem components can have complex
interfaces and subsystem operations may have hidden
interdependencies. Careful design can lessen these sorts
of problems but the reuser must become expert in the
semantics of the subsystem in order to take maximum
advantage of the subsystem.

An alternative to forcing the user to acquire the needed
expertise is to package the subsystem capabilities within
a generative framework. Generation technology can
effectively support both of two basic scenarios. In one
scenario, a complete, tailored subsystem is generated
from scratch using a high level specification of the sys-
tem. Such specifications are given in a high-level
language, called an Application Specific Language (or
ASL), that is constructed to support the application
domain being served by the subsystem. ASLs [Simos87]

as used and developed by Unisys have the following
characteristics:

e they are often non-procedural
e they are implemented using generators

¢ they can be used to produce multiple outputs, such
as source code in a high-level language (e.g., Ada)
for a subsystem, as well as documentation for the
generated subsystem.

In addition, Unisys has found that the use of ASLs and
ASL generators provides a number of distinct advan-
tages including:

e tailorability

¢ compactness

e domain orientation

¢ a higher level of correctness

e target (language and machine) independence.

If only a portion of a potentially large subsystem is
required, only that portion can be generated from the
specification. If full generality is not required, a simpler
version with better performance and simpler interfaces
can be produced from the same specification. A subsys-
tem description written in an ASL is typically much
shorter than the source code required to actually imple-
ment the system. For example, an ASL specification of
a few hundred lines can produce a target language
source file of ten thousand lines or more. In general, this
reduction in size permits an ASL description to be com-
pleted in much less time than the subsystem it gen-
erates. A well-designed ASL uses the terminology of the
application area, permitting the ASL user to ignore
irrelevant details. Thus, the productivity of the ASL
user measured in lines per day (to use one traditional
measure) will be much greater than a programmer work-
ing directly on the subsystem source code.

The algorithms generated from ASL input are built in to
the generator itself, and once verified, can be relied upon
to be successfully and faithfully translated into the final
application code. Thus, the programmer is prevented
from making (and re-making) many mistakes in this
code. ASL-based program generators are easily target-
ted to arbitrary programming languages and execution
environments. Having a choice of target languages
means that integration with existing systems written in
a multitude of languages is easier. Moreover, once a
generator has been implemented for one target system,
retargeting to another has, in practice, proven to be
inexpensive and straight-forward.

Unisys experiences with this sort of complete generation
are best illustrated in the design and application of the
Message Format Processing Language (MFPL) [Pol-
lack87]. Complete and efficient message processing sub-
systems are generated from the specification of the mes-
sage formats that the subsystem must be able to pro-
cess. To reuse such a subsystem for a new or modified
message format, one writes or changes the corresponding

Washington Ada Symposium Proceedings . June 1990

MFPL specifications and the MFPL generator produces
the application. More specifically, software engineers
use MFPL to generate software modules that validate
and generate messages within a larger message process-
ing system.

Message Switching Systems (MSS) have been an impor-
tant applications area for Unisys over the past two
decades. Recently, MFPL has been a key component
(along with the use of commercial off-the-shelf (COTS)
database, user interface and communication packages)
in the production of a new MSS with the following
features:

e The MSS can be hosted on a PC whereas previous
MSSs required mainframes.

e The MSS is generic, in the sense that it can be
easily modified to use different formats or com-
munication protocols.

e The MSS was developed at only a small fraction of
the typical effort required to implement older mes-
sage switches.

In particular, MFPL was used to increase productivity
by at least ten times for the development of C language
software to process formatted headers and trailers of
standard NATO message formats. System changes
resulting from modified message format specifications
that used to take weeks or months to complete and
debug, now require only a few minutes of MFPL genera-
tion and source code compiling time. A paper now in
preparation will document the completely generative
approach to subsystem reuse that MFPL exemplifies.

Such a totally generative approach is most effective
when confined to a narrow, highly specialized domain.
Another kind of reuse support through generation occurs
when the subsystem is constructed by hand, but the
interfaces to the subsystem are generated to meet the
needs of the application. The partially generative
approach outlined in the rest of this paper supports the
effective reuse of existing handwritten subsystems whose
full generality needs to be maintained. Rather than gen-
erate the entire subsystem, modules are generated which
reference the handwritten subsystem and which contain
validated operation calls on portions of the subsystem.
The main goals of this approach are to reduce user
errors and frustration while simultaneously increasing
efficiency in the use of such subsystems. As such, the
approach represents an enhancement to the use of
abstract data types (ADTs) whose use embodies
well-respected software engineering practice, and for
which Ada was expressly designed and intended. The
goals of the approach are accomplished through the use
of abstract interface specifications that are used to gen-
erate actual subsystem operation calls. Such
specifications provide an intermediate, supportive layer
between the subsystem reuser and the subsystem being
reused thereby providing less error-prone and more pro-
ductive reuse.

Washington Ada Symposium Proceedings . June 1980

Il Application Generators
R roLs
P l Object Oriented Knowledge Bases
o Il Code Skelstons
w ASLs
E ISL»
R W Libraries Il Natural Language
#l Applicative Langusges
M Data Flow Languages
W Cookbooks Object Oriented
M Transformations
Il Formal
M VHLLe Methods
W HOL.
B Acsembly
GENERALITY

Figure 2. Spectrum of Reuse Technologies

As shown in figure 2, the problem with a generative
approach is the lack of generality. Each problem
domain requires its own generator and its own descrip-
tive notation that captures the semantics of that
domain. One would expect that the development of gen-
erators and associated languages would be an expensive
proposition.

Unisys has overcome this economic argument through
the use of a meta-generation system called SSAGS (Syn-
tax and Semantics Analysis and Generation System)
[Payton82]. SSAGS combines the generality of the use
of VHLLs with the power of application generators (see
figure 2). SSAGS is the basis for the full generation
approach used in MFPL to support the domain of mes-
sage processing as well as the generation of the Interface
Specification Languages (ISLs) described in this paper.
The next two sections discuss the design of subsystems
to support the ISL methodology and the use of SSAGS
to produce ISLs.

3. Designing Subsystems for Reuse

No matter whether a constructive or generative
approach to RisitL is taken, up-front design of the subsys-
tem for reuse is desirable. In our case, we combined the
principles of a layered system design along with data
abstraction to promote the careful design of a family of
abstract data types that comprise each of the two basic
knowledge representation subsystems which are to be
reused at the subsystem level (see figure 3}.

Several design description levels were identified includ-
ing the conceptual, data description, data structure,

57

58

Defines Primitives for

Intexface
Dascription

Initia} Transiation
Leval

Reversible

Tramslation

Abstract
Data Type

Level

Applicstions

Level

Opearates On Builds on

Figure 3. Design Levels

abstract data type and applications levels. The highest
level is the conceptual level in which the basic concepts
and operations to be provided by the subsystem are
enumerated. This level can provide the seed for the
descriptive language (the ISL) used to generate the inter-
faces to the actual package operations available at the
abstract data type level. Moreover, the interface
description level provides a means to abstractly refer to
the objects and relationships being managed at the data
structure level. In fact, one of the most common appli-
cations of an ISL specification in our work is generation
of a routine to initialize the basic data structures
required by a reusing application. This initialization is
accomplished through the execution of operations con-
tained in the actual abstract data types that make up
the handwritten system. Actual manipulation of data
structures is accomplished through the execution of
operations contained in the abstract data type (ADT)
level. Finally at the applications level, ADT operations
are used to manipulate and modify the data structures
required by the application.

Our experience has also shown the usefulness of having a
two-way translation capability between the actual data
structures and an ISL description of the contents of
these data structures. The application may support the
interactive access and modification of these structures,
but having the ability to take a snapshot of these struc-
tures and recording them in the descriptive syntax of an
ISL based on the conceptual level can lead to optimiza-
tions and modifications of the data structures that are
hard to achieve interactively. Because an ISL

specification provides an ASCII description of the
application’s data, it can also aid portability of the
application’s data structures to new operating plat-
forms.

4. AnISL.Based Approach to Reuse

In order to effectively use ISLs to support the reuse of
complex subsystems, there must be a mechanism in
place to promote economic design of the ISL and the
efficient production of the ISL processor that produces
the desired interface to the services provided by the sub-
system being reused. ISLs are in fact special kinds of
ASLs. We have been most interested in the use and
integration of such languages in the context of Ada
[Simos87] and have explored the application of SSAGS
in the production and application of ASLs. In fact,
SSAGS itself is another example of an ASL and SSAGS
is currently maintained in its ASL form.

Figure 4 is an adaptation of a figure that appeared in
the MFPL paper referenced earlier showing the applica-
tion of SSAGS to produce an ISL and the eventual use
of the ISL in a reuse application. The ISL designer
begins by describing the syntax and semantics of the ISL
in terms of SSAGS input files. Some auxiliary Ada
source files must also be provided by the ISL designer.
As mentioned earlier, the conceptual level of the subsys-
tem being described with the ISL can supply the basic
vocabulary for the ISL.

The ISL input when run through SSAGS produces a col-
lection of Ada source files that are compiled by an Ada
compiler to produce the ISL processor system as an exe-
cutable file (the middle oval in figure 4). The applica-

tion design then proceeds along two fronts. ISL
Subsystem
Designer
IsL
Specification ABpln'gat;on
esigner
Interface
Requirements Application
Bnd-User
ISL Translator| Ade Application
Source Compgler Inputs
ubsystem lication
Integration L™ PP
Source Code
Compiler
—_— 7’
Aspligation Application | - Application
engner Source Outpute

Figure 4. Developing and Using ISLs

Washington Ada Symposium Proceedings . June 1990

specifications are written which capture the intended
usage of the subsystem to be reused. These
specifications are processed by the ISL processor to pro-
duce application code that calls upon the services pro-
vided by the subsystem being reused. The application
developer also produces handwritten code to complete
the body of the application. The complete collection of
source files are then compiled to produce the resulting
application.

In our case the HOL compiler indicated in the figure is
also Ada. Note that in some cases, there may be several
pieces to the application that are to be compiled and
executed separately. For example, the ISLs described in
the next section generally are used for data structure
specification and initialization and the programs gen-
erated from the ISL descriptions are executed before the
application code is actually run. The application out-
puts from this phase are the application’s data struc-
tures stored in a persistent form as Ada files.

6. Some Examples of ISLs

The AdaTAU and AdaKNET knowledge base subsys-
tems [Wallnau88] use ISL’s to make specification of their
knowledge bases simpler for the knowledge engineer.
These ISL’s are the Rule Base Description Language
(RBDL) for AdaTAU and the Semantic Network
Definition Language (SNDL) for AdaKNET. Both
languages use an Ada-like grammar and syntax to define
the data structures which form the knowledge base for
each subsystem. The RBDL and SNDL translators take
knowledge base specifications in their respective ISL and
generate the Ada code which performs the calls on the
subsystem ADT’s to instantiate the knowledge bases.
There is a third ISL called the Hybrid Knowledge Base
Description Language (HKBDL) which is used to define
the manner in which the knowledge bases of AdaTAU
and AdaKNET will interact. For example, the HKBDL
specification could specify which AdaTAU rule-based
inference engines were associated with particular AdaK-
NET network concepts. This section will briefly
describe the AdaTAU and AdaKNET subsystems and
discuss the role of the RBDL, SNDL, and HKBDL ISL’s
in the reuse context of the three applications utilizing
AdaTAU and AdaKNET.

AdaKNET is a structured inheritance network
knowledge modelling system. The heart of each of our
applications is an AdaKNET semantic network which
captures and structures the information found in the
domain of the application. For the Gadfly testing tool
documented in ([Wallnau88], AdaKNET captures
knowledge about the structure of an Ada program and
the methodology of constructing test cases. In the Intel-
ligent Librarian [Solderitsch89, McDowell89], AdaKNET
provides the hierarchical structure of an Ada reuse
library and describes the attributes of library com-
ponents. The Tool Utilization Assistant application was
based in the domain of document-processing and the

Washington Ada Symposium Proceedings . June 1990

concept ada_benchmark { subprogram) is
local roles
measured_features(O ..
end local;
end concept;

infinity) of benchmark_feature;

concept acec_benchmark (ada_banchmark) ie
local rolas
control_measurement_coaponent(1 ..
instrument_package{ 1 ..
aend local;
end concept;

1) of library_unit;
1) of acec_instrument_package;

concept acec_composite_benchmark { acec_benchmark,

compogite_benchsark) is
end concept;

concept acec_performance_benchmark (performance_benchaark,
acec_benchmark)} is
restrictaed roles
subunits(0 .. 0);
iteration_schemes(1 ..
paramaters(0 .. 0)
end restricted;
end concept;

1) of fixed_ loop_within_test:

concept plwg_ b h
end concept;

k (ada_b h k) is

concept piwg_composite_benchsark (piwg_benchmark,

composite_benchmark) is
end concept:

concept plwg_perforsance_benchaark (performance_benchmark,
pivg. benchmark) is
local roles
to_package({ 3 .. 1) of piug_lo_package;
iteration.control_package(1 .. 1) of
pilvg_lteration.package’
optimization_control.package(1 .. 1} of
piwvg_optimization_control_package.’
end local: .
reastricted roles
subunits(0 .. 0);
iteration_schemes(1 .. 1) of
clock_resolution_based._loop;
paraseters(0 .. 0)
end restricted;
end concept:

individual wheta2 (acaec_composite_benchmark)
is
end individual:

Figure 5. Fragment of Benchmark Library
SNDL Specification

UNIX roff family of tools. Here, AAaKNET embodies
knowledge about the structure of documents and the
variety of roff mark-up commands.

Knowledge is presented in a semantic network by
describing objects and classes of objects in terms of rela-
tionships that exist between them. The three principal
relationships provided by AdaKNET are specialization,
aggregation and individuation. The specialization rela-
tionship declares that one class of objects (called a con-
cept in AJaKNET) is a sub-class of a more general class
where the sub-class inherits properties (in particular, all
aggregation relationships) possessed by the parent class.

59

60

For example, in figure 5, an ada_benchmark is a kind of
subprogram. Note that a given class may be a sub-class
of several parent classes as illustrated by the
piwg_performance_benchmark which is a kind of
performance_benchmark and piwg_benchmark.

The aggregation i-elationship {called a role in AdaKNET)
defines the properties or attributes of a class in terms of
related classes. In figure 5, the class ada_benchmark is
declared to have a role that defines the features being
measured by the benchmark. The range (O ..
infinity) means that any individual benchmark may
measure any number of features including the case of no
features. Any subconcept lying below ada_benchmark in
the network will automatically inherit this role. Sub-
concepts can also declare their own aggregation relation-
ships (such as acec_benchmark which adds the roles for
control_instrument_component and
instrument_package). Moreover, a subconcept can
further restrict both the number and type corresponding
to an inherited role. The restricted roles
declared in figure 5 provide examples of this behavior.
The third kind of relationship is sndividuation which
establishes that a given object is an instance of a class
of objects. Figure 5 shows that wheta2 is an actual
acec..composite_benchmark.

The SNDL ISL was used in the development of each of
the clients of AdaKNET to define the AdaKNET seman-
tic network underlying the application. SNDL can be
used to fully describe an AdaKNET structured inheri-
tance network. The knowledge engineer transfers his
knowledge of the domain into a SNDL description of the
domain. This SNDL specification is then translated into
the Ada code calls to the AdaKNET subsystem which
instantiate the semantic network. AdaKNET semantic
networks can be browsed and built interactively with a
tool from the AdaKNET subsystem, but a large and
complex network can be more easily and quickly defined
and understood from its SNDL specification. The SNDL
specification allows understanding of the domain which
would be much harder to gather from either browsing
the network interactively or wading through the Ada
code used to instantiate the network. Also, network
information models of different depth, style, or complex-
ity can be modelled with SNDL in the same way,
without having to know the intricacies of the AdaKNET
ADT calls which distinguish the different varieties of
networks. SNDL grants the application programmer
and knowledge engineer the full power of the AdaKNET
structured-inheritance network model while keeping the
interface simple and uncluttered so that concentration
can be centered on modelling the domain knowledge.

To illustrate the power of using AdaKNET through
SNDL, the complete SNDL spec shown in figure 6 was
processed by the SNDL processor to produce the Ada
output which is listed in figure 7. The first part of the
listing illustrates the complexity of the necessary Ada
environment that must surround the use of AJaKNET
and a set of “housekeeping” declarations required to

network Animale is

root concept thing is
end root concept;

concept higher_animal (thing) is
local roles
A_head (1..1) of head:
A_front_leg (0..2) of tront_laeg;
A_hind_leg (0..2) of hind_leg;
end local:
aend concept;

concept head (thing) is
end concept:

concept leg (thing) is
end concept.

concept front_leg (leg) is
end concept.

concept hind_leg (leg) 1is
end concept;

concept elephant { higher_animal) is
local roles
A_trunk (1..1) of trunk:
end local:
restricted roles
A_tront_leg (2..2) of front_leg;
A_hind_leg (2..2) of hind.leg:
end restricted;
end concept.

concept trunk (thing) 1is
end concept;

individual Joe (elephant) is
end individual;

end Animals;

Figure 8. Complete SNDL Specification
before Translation

execute the rest of the generated code. The latter part
of the listing shows the actual calls to the services pro-
vided by the semantic network packages. These services
are not only called with the correct arguments, but have
been arranged in the proper calling sequence.

AdaTAU is a rule-based inferencing system with parti-
tionable distributed fact bases and the ability to
interactively gather information. In our three applica-
tions, AdaTAU was used primarily to tailor the applica-
tion for a particular instance, user, or run of the pro-
gram. AdaTAU’s ability to ask questions to gather infor-
mation and then reason upon that information made it
very suitable for gathering dynamic information not
easily recorded in the static structure of the AdaKNET
semantic network. In the testing tool application Ada-
TAU acquired information about the unit under test by
asking questions of the user, and then inferenced to
deduce a proper test case for the unit.

Washington Ada Symposium Proceedings . June 1990

with Text_10; use Text_IO0:
with Fixed_strings:
with Adanets:
with CommonlO; use CommonlO;
with 8ndl_Support; use Sndl_Support:
with Roleset_Ranges; use Roleset_Ranges’
with Adanet_name_types:
procedure instantiate_sndl 1is
BNDL_INSTANCE_NOT_GENERATED: exception;
INSTANTIATE_ERROR: exception;
Naew_Network: Adanets.Adanat;
Network_Root: Adanets.Ceneric_Concept:
Temp.gsc: Adanets.Generic_Concept;
Temp_ic: Adanets.Individual Concept;
New_Subroles: Adanetes.Roleset_Spec_Sats.Set;
Destroy.on_error: Boolean:= False;
type ty_concept_k is (genaeric_k, individual k, uninit Xx);
type concept_var (concept_k: ty.concept.k:= uninit_k) is
recorad
case concept_k is
when uninit k =>
dummy_slot: Adanets.Ceneric_Concept;
when generic_k =>
generic_c: Adanets.Ceneric_Concept;
vhen individual_k =>
individual_c: Adanets.Individual_Concept’
end case;
end record;
Concept_Array: array(l..9) of concept_var;
function pad(
8tr: Btring;
Len: Integer:=
Adanet_Name_ Typées.Max_Object_Name_Length)
return 8String
renames Fixed_Strings.Pad:

begin
begin
Set_Boolean_Environment (

Yes_No_Question => “Destroy network on error? y/n",

Answer => Destroy.on_error);
Create_AdaXNET(

New_Network => New_Network,

Network_Name => "animals"):
begin

put_line ("“Renaming Root Concept"):

Temp_gc:= Adanets.Root_Concept (Naw_Network):

Adanets.Rename (

New_Network,
Temp_gec,
Pad (“thing")):

Concapt Array{9) := (generic_k, Temp_gc):
exception

when others =>

put_line ("Error Renaming Root"):;
raise;

end;

Add_Generic_Concept (

Network => New_Natwork,

Super_Concept => Concept_Array (9) .generic_c,

Concept_Name¢ => *higher_animal”,

New_Concept => Temp.gc):

Concept_Array(l) := (generic_ Xk, Temp.gc):
Add_Generic_Concept (

Network => New_Network,

8uper_Concept => Concept_Array(9) .generic_c,

Concept_Nase => "head",

New_Concept => Temp_gc).
Concept_Array(2):= (generic_k, Temp.gc);
Add_Role(

Network => New_Network,

Role_Owner => Concept_Array(l) .generic_c,

Role_Name => *a_head®,

Min_Range => 1,

Max_Range => 1,

Value_Restriction => Concept_Array(2) .generic_c);
Add_Generic_Concept (

Network => New_Netwoark,

Super_Concept => Concept_Array (9) .generic_c,

Concept_Naze => "“laeg",

New_Concept => Temp_gc);
Concept_Array({3) := (generic_k, Temp_gc):
Add_Ceneric_Concept {

Network => New_Network,

Washington Ada Symposium Proceedings . June 1990

Super_Concept => Concept_Array (9) .generic_c,

Concept_Name => “trunk"”,

New_Concept => Tamp_gc):
Concept_Array(7):= {generic.k, Temp_gc).
Add_Generic_Concept{

Network => New_Network,

Super_Concept => Concept_Array (1) .generic_c,

Concept Name => “elephant",

New_Concept => Temp_gc);
Concept_Array (6) := (generic_k, Temp.gc):
Add_Role(
Network => New_Network,
Role_Owner => Concept_Array (6) .genaeric_c,
Role_Name => “a_trunk"”,
Min_Range = 1,
Max_Range => 1,

Value_Restriction => Concept Array(7) .generic_c):
Add_Ceneric_Concept (

Network => New_Natwork,

Buper_Concept => Concept_Array (3).generic_c,

Concept_Name => “front_leg",

New_Concept => Temp.gc):
Concept_Array (4) := (generic_k, Temp_gc):
Add_Role(
Netwark => New_Network,
Role_Owner => Concept_Array(l) .generic_c.
Role_Name => "a.front_leg",
Min_Range => 0,
Max_Range => 2

B
Value_Restriction => Concept _Array (4) .generic_c):
Restrict_GCenaric_Roleset_Range(

Netwark => New_Network,

Role_Owner => Concept_Array (6) .generic_c,

Role_Name => “a_tront_leg",

Min_Range => 2,

Max_Range => 2):
Restrict_Ceneric_Roleset_Type |

Network => New_Network,

Role_Owner => Concept_Array (6) .generic_c,

Role_Name => "a_front_leg".

Value_Restriction => Concept_Array (4) .generic_c):
Add_Cenaeric_Concept (

Network => New_Network,

Super_Concept => Concept_Array (3) .generic_c,

Concept_Name => “hind_leg“,

Nev_Concept => Tempugc)’
Concept_Array (5) := (generic._k. Temp_gc):

Add_Role(

Network => New_Network,

Role_Owner => Concept_Array (1) .generic_c,

Role_Name => “a_hind_leg",

Min_Range => 0,

Max_Range => 2,

Value_Restriction => Concept_Array(5) .generic_c):
Restrict_Ceneric_Roleset_Range(

Network => New_Network,

Role_Owner =>» Concept_Array(6) .generic_c.

Role_Name => "a_hind_leg",

Min_Range => 2,

Max_Range => 2):
Restrict_Ceneric_Roleset_Type(

Network => New_Network,

Role_Owner => Concept_Array(6) .generic_c.

Role_Name => "a_hind_leg",

Value_Restriction => Concept_Array (5) .generic_c);
Add_Individual_Concept(

Network => New_Network,

Super_Concept => Concept_Array (6) .generic_c,

Concept_Name => “joe",

Naw_Concept => Temp.ic):
Concept_Array(8) := (individual_k, Temp.ic):
Save_AdakNET {(New_Network) :

Closae_AdakNET (New_Network)
end;
exception
when SNDL_INSTANCE_NOT_GENERATED =>
put_line (“rename your network");
when others =>
i1f Destroy_on_error then

Adanets .Destroy_Adanet (New_Network):
end if;
ralse:

and;

Figure 7. Ada Source produced by SNDL

61

62

In the Intelligent Librarian, a distributed AdaTAU
guides the user through the hierarchy of the reuse
library by asking questions about what the user is
searching for and then steering the user in the right
direction. For the Tool Utilization Assistant, AdaTAU
was targeted for determining the location of help files
and providing a user-tailored presentalion of informa-
tion about the tool.

The RBDL ISL defines the different flavors of the Ada-
TAU inferencing context in our three applications and
generates the Ada code necessary to build the inferencer
constructs which provide the functionality of the subsys-
tem. RBDL contains syntax for describing fact and rule
bases, and an association of fact and rule bases which

tact base schema Acec_Composite_Benchmark Facts is

nuserical_cosputation_benchmsark_type
(dhrystone, whetstone, henessy):
bencheark_use : one_of
{(numerical_computation, capacity_test, multiple);
uUSesS_pragma_suppress :@ one_of
{yes, no, immaterial)’

: one_of

end Acec_Composite_Bencheark_Facts;

initial fact base Acec_Cowposite_Benchmark_IFacts is
null;
end Acec_Composite_Bencheark_IFacts;

question base Acec_Composite_Benchmark_Questions is

question Ask_Benchmark_Uses is
text : {Will this benchmark be used for
nuserical cosputations?)}’
type @ ohe_of;
responses :
“yes“ => (benchmark_use, numerical_computation):
no => (null_attribute, null_value);
“not solely” => (benchsark_use, multiple);
end question;

question Ask_Xind_Of_Cosputation is

text : {Which response best describes the
kind of computation done?}:
type : one_of;
responses :
“systoms and program” =>
(numerical_ putation_b h k_type, dhrystone):
“science and math® =>
{nuserical_coaputation_bench k_type, whetstone):

“classic and various computations” =>

{nuserical_computation_benchaark_type. henessy):
end question;

question Ask_Uses_Pragma_Suppress is

text : {Does the benchmark make use
of pragsa SUPPRESS?);

type : one_of;

TresSponses

"yes" => (uses_pragma_suppress, yes):

“no" => (uses_pragma_suppress, no):

“doesn't matter” => (uses_pragsa_suppress,
end question;

immaterial);

end Acec_Composite_Benchsark_Questions’

Figure 8. Sample of the RBDL ISL

compose an AdaTAU inferencer. It also describes the
interface necessary to have the AdaTAU inferencers act
in a cooperating, distributed manner, changing an
inferencing focus and passing facts between different
inferencers. In our three applications, using RBDL to
define and generate the data structures for AdaTAU
allowed the knowledge engineers to use the power of the
inferencing subsystem without having to tediously code
the calls to AdaTAU that build inference context struc-
tures. The AdaTAU subsystem calls necessary to build
the complex inter-weaving of distributed rule base
inferencers composing an application’s inferencing con-
text would be very hard to follow in their Ada format;
but the same knowledge base specified with RBDL can
be followed logically and clearly. Figure 8 shows an
example of the RBDL ISL from the Intelligent Librarian
application. The complexity and length of the Ada
interfaces to the AdaTAU subsystem generated from a
RBDL specification are comparable to those shown in
the SNDL output file (figure 7).

All three of our applications which reuse the AdaKNET
and AdaTAU subsystems use them in a hybrid
knowledge representation scheme. This scheme allows
objects to be associated with the concepts of an

Browser Editor

1 Advieer | [Clansifier }

Unit Adder

Reverse Tramlator

AdaKNET Model of the Benchmark Domain
with attached AdaTAU Rule Bases

Figure 9. Hybrid Knowledge Representation
in the Intelligent Librarian

Washington Ada Symposium Proceedings . June 1990

AdaKNET network. For examgle, AdaTAU inference
bases are attached to AdaKNET concepts to provide
localized guidance about the network surrounding the
concept. The association between concepts and objects
is established with a “hybrid state layer” describing
which particular concepts are bound to which objects.
Figure 9 shows the hybrid knowledge representation
scheme as applied in the Intelligent Librarian applica-
tion. The diamond shapes indicate attached inference
components within a larger hierarchical collection of
concepts.

At first, during development of the Gadfly upit tfest
application, the Ada code establishing the hybrid state
layer was hand-coded. As the size of the hybrid
knowledge representation grew and the variety of
objects that could be associated with AdaKNET con-
cepts was enhanced, it became apparent that the pro-
cedure to build the hybrid state layer was becoming long
and repetitive, and hand-coding it was prone to error.
To meet this problem, the Hybrid Knowledge Base
Description Language was rapidly developed to allow a
simplified specification of the hybrid state layer which
would generate the increasingly complex procedure
which instantiates it.

HKBDL is a small ISL which simply describes what
objects are associated with concepts of the AdaKNET
semantic network. Using HKBDL, like RBDL and
SNDL, helps the knowledge engineer concentrate on
modelling by removing complex details of the Ada imple-
mentation. HKBDL also makes reuse of cooperating
AdaKNET and AdaTAU knowledge bases easier to
manage and establish. Many possible hybrid knowledge
representation schemes are possible, and HKBDL’s syn-
tax will be adapted accordingly as multiple schemes
evolve. Notable about HKBDL is the speed with which
it was developed and implemented to remove a growing
problem area. Figure 10 shows an example of the
HKBDL ISL from the Intelligent Librarian.

6. Lessons Learned

One of the goals of the RLF project is the general pro-
motion of reuse practices and concepts including the use
of generation technology. By choosing to use this tech-
nology ourselves to promote the reuse of internal RLF
subsystems, we hope to learn more about the
effectiveness and capabilities provided by the technol-
ogy. To date, we have reused the basic RLF knowledge
representation subsystems in three different applications
and developed three ISLs. In so doing, we have accumu-
lated a number of observations.

First and foremost, the use of ISLs really does aid reuse.
This fact was demonstrated by the use of the RBDL
language by a non-Ada programmer to build knowledge
bases for the Gadfly testing tool application. Without
RBDL, the individual would have been forced to become
an expert on the AdaTAU ADTs which would have
greatly delayed progress in developing usable knowledge

Washington Ada Symposium Proceedings . June 1990

hybrid benchmark_library (benchmarks) is

text file "pruaalDE" at ind000_pruaa2_design;
text file “pruaa2AB” at indOOO_pruaa2_abstract;

text value "Simtel-20" at simtel_ 20;

text value "/library/demo_dir" at demo_dir;
text value "p000007.a” at p000007_a;

text value "p000006.a" at pOOCO06_a;

text value “bgt.o" at bgt_executable;

inference base composite_benchmark;
inference base acec_composite_benchmark;
inference base piwg_composite_benchmark;

inference base bgt_generated_composite_benchmark;

end benchmark_library:

Figure 10. Sample of the HKBDL ISL

bases for the Gadfly application. Through the use of
UNIX shell scripts, the operation of the Ada compiler in
compiling and executing the programs generated from a
RBDL specification can be completely hidden from the
novice user. Moreover through RBDL, the operations
called upon from AdaTAU are used in a safe, reliable
manner. This reason promotes the use of RBDL even by
programmers experienced in the AdaTAU ADTs.

Secondly, while there is some overhead in learning to
design an ISL and to use SSAGS to generate the ISL
processor, once this price has been paid it becomes very
patural and efficient to modify and enhance the ISL.
Since the language designer is working at a very high
level, a new ISL processor can be produced from a
changed specification in a very short period of time (the
length depending on the number and severity of the
changes made to the language definition). Overall, we
found production of ISLs to be economical and practical.

On the other hand, there has been at least one negative
result. The Ada files produced by the ISL translators
may not be very palatable to today’s generation of Ada
compilers. The basic problem is that compiler writers
develop compilers to handle programs that people would
write, not those that might be generated. Generators,
however, just produce legal programs that can exceed
compiler internal limits. We have observed problems
especially with the size of generated compilation units.
Compilers just don’t expect units with hundreds or
thousands of lines per unit. Such large units take an
unusually long time to compile (if they compile at all)
and often have inefficient or erroneous executions as
well. Of course, the language designer can adjust the
code generation process employed, but the resulting code
can often be less readable or traceable to the original
ISL specification. While it is possible for the language

63

64

designer to accommodate several compilers, it will be
impossible to account for a majority of them, thereby
impacting portability of the generated code.

Summary

In this paper we have shown how RitS and RiiL are
quite different in nature and how the latter can be sup-
ported through the use of generation technology. In par-
ticular, the use of a meta-generation system such as
SSAGS provides a cost-effective solution to the problem
of reusing existing complex subsystems based on partial
generation. Three distinct ISLs were introduced and
their application in support of reuse at the subsystem
level was illustrated. We believe that with careful
design of the subsystem, the use of specialized interface
description languages promotes the visibility and under-
standability of the subsystem and thus improves the
reusability of the subgystem. We plan additional work
in the area of language-based interfaces in support of
RitL.

Acknowledgements

The design and implementation of the Reusability
Library Framework was originally funded under the
STARS Foundations program as contract number
N00014-88-C-2052 administered by the Naval Research
Laboratory. This paper is a revision of the paper
“Experience in the Reuse of Ada Subsystems” presented
at the Third Annual Unisys Software Engineering Sym-
posium, January 1990, in Houston Texas. Parts of this
paper were inspired by discussions with fellow research-
ers at the Unisys Center for Advanced Information
Technology (CAIT). In particular, the authors wish to
thank Bob Pollack, Don McKay, Ray McDowell and
John Thalhamer of CAIT for their contributions.

References

[Berrett87] C. Berrett, “Engineering for Reuse: The Goal
of Ada,” Proceedings of the Firsl Annual
Unisys Defense Systems Software Engineering

Symposium, McLean, VA, September 1987,

T. Biggerstaff and C. Righter, “Reusability
Framework, Assessment, and Directions,”
IEEE Software, 4(March 1987), pp. 41-49.

T. Biggerstaff and C. Righter, ‘“Reusability
Framework, Assessment, and Directions,’”’ in
Software Reusability Volume 1 Concepls and
Models, T. J. Biggerstaff and A. J. Perlis
(editors), ACM Press, 1989, pp. 1-17.

R. McDowell and K. Casgell, “The RLF
Librarian: A Reusability Librarian Based on
Cooperating Knowledge-Based Systems,”
Proceedings of RADC {ith Annual Knowledge-
Based Software Assistani Conference, Utica,
NY, September 1989.

T. F. Payton, S. E. Keller, J. A, Perkins, §.
Rowan, and S. P. Mardinly, “SSAGS: A

|Biggerstaff87)

[Biggerstaff89]

(McDowell89]

{Payton82]

Syntax and Semantics Analysis and
Generation System," Proceedings of
COMPSAC '82, 1982, pp. 424-433.

R. Pollack, W. Loftus, and J. Solderitsch, “A
Generative Approach to Message Format
Processing,” Proceedings of the First Annual
Unssys Defense Systems Software Engineering
Symposium, McLean, VA, September 1987.

M. A. Simos, T. F. Payton, and R. H. Pollack,
“Integration of Fourth Generation Languages
and Ada,” in Proceedings of the USAISEC
Technology Strategies '87 Conference,
Alexandria, Virginia, February 1987.

J. Solderitsch, K. Wallnau, and J. Thalhamer,
“Constructing Domain-Specific Ada Reuse
Libraries,”” Proceedings of Seventh Annual
National Conference on Ada Technology,
March 1989.

K. Wallnau, J. Solderitsch, M. Simos, R.
McDowell, K. Cassell, and D. Campbell,
“Construction of Knowledge-Based
Components and Applications in Ada”
Proceedings of AIDA-88, Fourth Annual
Conference on Artificial Intelligence & Ada,
November 1988, pp. 3-1 through 3-21.

[Pollack87]

[Simos87}

[Solderitsch89]

{Wallnau8s}

Biographical Sketches

James Solderitsch is the chief programmer of the Reusability
Library Framework (RLF) project. Dr. Solderitsch joined the
Unisys Defense Systems Software Technology Laboratory in
January 1986 after having been an assistant professor of
Computer Science at Villanova University for 8 years. His
primary interests are software reusability and the impact of
very high level, domain-oriented, specification languages on
software productivity and reusability. He holds a B.S. degree
in Mathematics from Villanova University and an M.S. and
Ph.D. degrees in Mathematics from Lehigh University.

Since joining Unisys in June, 1988, Timothy Schreyer has spent
most of his time with the Reusability Library Framework
(RLF) project involved in design and implementation tasks.
He also helped integrate the STARS program ACE/CAIS-A
Baseline Software Engineering Environment (SEE). Currently,
he is working under the STARS program implementing an Ada
Xt toolkit. Mr. Schreyer graduated from Bucknell University
in May, 1988, with a B.S. degree in Computer Science.

Washington Ada Symposium Proceedings . June 1990

