
RAPID PROTOTYPING IN A D A IN THE RATIONAL ENVIRONMENT
EMPHASIZING SOFTWARE REUSE

Peter H. Luckey and Frank G. DuPont

IBM/FSD, Route 17C, Owego, NY 13827

INTRODUCTION

A recent experience at IBM/FSD Owego demonstrates how
prototyping in Ada is enhanced via the incorporation of software
reuse technologies in an integrated development environment.
In response to a recent new business proposal at Owego, a user-
interface for a data-base application was prototyped. The pur-
pose of the prototyping exercise was three fold;

1. To aid in the size estimation Of a program to be developed
2. To confirm the viability of developing the program in Ada
3. To demonstrate the productivity possible when developing

with reuse in mind in the Rational Environment.

The results of the exercise were that the purpose was accom-
plished and an object-oriented prototyping process was devel-
oped.

Two software engineers with knowledge of both reuse techniques
and available reuse libraries, working in the Rational Environ-
ment, were able to complete a 6 thousand source lines of code
(KSLOC) prototype in 27 man-hours. The results, summarized
in /'able 1-1, indicate that 70% of the prototype's SLOC con-
sisted of reusable components integrated, without alteration, from
external libraries. Of the remaining 1.8 KSLOC, an estimated
50% was developed using code templates. This consisted of de-
veloping and testing a template then altering localized portions
of the template for each instance or it.

Table 1-1. Prototype SLOC Summary

Code Classification S LOC

Reused 4,209
Prototype (50% via templates) 1,797

Total 6,006

Hours
III I

1
26

l l l l l i l l l m 1

27

COPYRIGHT 1990 BY THE ASSOCIATION FOR COMPUTING
MACHINERY, INC. Permission to copy without fee all or part
of this matedal is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM
copyright notice and the titte of the publication and its date
appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise,
or to republish, requires a fee and or specific permission.

ENVIRONMENT

The software development environment was one of the keys to
the success of this prototype effort. The development environ-
ment is comprised of an integrated collection of hardware and
software. Figure 1-1 illustrates the hardware configuration.

H a r d w a r e
Each software developer has an intelligent workstation on his
desk, either an IBM PC/AT or PS/2. Each of these workstations
is a node on an IBM Token Ring local area network. Control
units are also connected to the Token Ring so that the work-
stations may be used as terminals for the IBM mainframes. An
IBM PC/RT is used as a gateway connecting the Token ring with
an Ethernet. Also on the Ethernet are two Rational RI000, Series
200, Model 20s and an IBM 8232. Each of the workstations may
be used as a terminal for one of the RI000s. The IBM 8232
provides a higti speed connection between the Rl000s and one
of the IBM mainframes. Not pictured are the various printers,
tape drives, etc. which are also part of the development environ-
ment.

Software
The software available on each of the processors in the environ-
ment and the software used in connecting the processors is inte-
gral to the success of the development environment. The largest
part of the development is performed in the Rational environ-
ment. The R1000s play host to a truly integrated set of software
development tools for Ada including: a syntax and semantics di-
rected editor, a document generator, a consistency and com-
pleteness checker, a program cross reference and traversal tool,
configuration and version control tools, a debugger, a compiler,
VM/370 and DOS/PC cross development tools, and many others.
The Ada tools available in both the VM/370 and DOS/PC envi-
ronments are provided by Alsys. The prototype's target Ads
compiler was the Alsys PC AT Ads compiler Version 3.2.

Reuse Resources
]'here are three reusable Ada •software libraries in the develop-
ment environment; an IBM corporate library, an Owego site li-
brary, and a specific project library.

1. Reusable Component System (RCS)

RCS was developed at IBM/FSD Houston. This library
system for reusable components is an extensive prototype
for the Corporate Reuse Environment (CRE) which is cur-
rently under development. RCS groups components into
classes according to a domain analysis. This classification
eases the search and retrieval process. The library currently

Washington Ada Symposium Proceedings. June 1990 71

~ ~ 7 ~ ;~-~ ~ L : ~ '~ ~ ... i

http://crossmark.crossref.org/dialog/?doi=10.1145%2F327011.327066&domain=pdf&date_stamp=1990-07-01

IMI tml l i l l e
lllmi 4 ,~1~

O O O

,tO-~ t ~ . l=.=ttm= t,e,m. =m pt,,E=

FIGURE 1-1. SoRware Development Environment

contains the Booch and Karlsrue generic abstract data type
and utility components.

2. Owego Reusable Software Library (RSL)

The Owego RSL is an out-growth of the Owego Software
Reuse Quality Improvement Team (QIT) efforts. The es-
tablishment of the RSL precedes that of RCS. lncluded in
the RSL are design support components, generic abstract
data type and utility components, and components derived
from a reusable avionics project.

3. Reusable Components from a recent Owego project

A recent Owego project's development plan included a
strategy for incorporating software reuse into the design and
coding pllases of the development life cycle. As part of the
strategy a project specific RSL was created. The reusable
components in this library include generally reusable com-
ponents as well as components that are designed to be reused

solely within the project. The reusable components in the
project RSL will eventually be considered for inclusion in
either the corporate or site RSL.

PROCESS

The design process that is typically followed for high level design
is shown in the following PDL/Ada procedure. The design
process is object-oriented, and is based on Grady Booch's
Object-Oriented Development Methodl. Once the high level de-
sign is complete, detailed design is performed via a stepwise re-
finement of the object interface specifications, taking into account
target limitations. Coding is simply a stepwise refinement of the
detailed design. Extensive unit, module, and integration testing
is performed bringing t he development process to its conclusion.
The whole process is an iterative process, and can easily be ac-
commodated by either the traditional waterfall model or the spiral
model for the software development lifecycle.

t "Soft.ware Eng inee r ing with Ada" , Second Edi t ion, C h a p t e r 5.

72 Washington Ada Symposium Proceedings. June 1990

procedure Object_Oriented_Design (From_The : Problem_Definition) is
begin

Process:
loop

loop
-- Develop an inf0rmaI strategy from the
- - problem definition.
Develop (Informal_Strategy, FromThe);

- - Review the informal strategy.
Review (Inf0rmal_Strategy, Returning => The_0utc0me);
ex i t when The Outcome = Passed;

end loop;

- - Formalize the strategy by going through tire
- - fol lowing eight steps.

- - 1) Ident i fy the objects and the i r at t r ibutes
Identify (Ltst_0f_0bjects, Fr0m_The => Informal Strategy);

- - Exit the process loop when no new objects are i den t i f ied .
ex i t Process when IsEmpty (List_Of_Objects);

- - 2) Ident i fy tbe operations.
Ident i fy (List_Of_Operations, From_The => Informal_Strategy);

- - 3) Associate operations with objects.
Associate (List_Of_Operations, With_The => List_Of_ObJects);

-- 4) Search for a reusable component to take
-- the place of each newly identified object.
for Each_llew_Ol)jecL in List Of_Objects loop

- - Search for a reusable component.
Search (Reusable_C0mponent, Like => Each_,ew0bject,

Returning => Reusable C0mponent_F0und);
i f Reusable_Component Found then

- - Remove the object from the object l i s t .
Remove (Each_flew_Object, From_The => List_Of_Objects);
- - Add the reusable component to the design,
Add (To_The_Oesi gn => Reusable_Compooent) ;

end i f ;
end loop;

-- 5) Establish the v i s i b i l i t y of each object.
Estab l ish_Vis ib i l i t y (For_The => L is t Of Objects);

- - 6) Establish the interface of each object.
Establish Interfaces (For The => L is t Of Objects);

- - 7) Record the formalizat ion of the strategy in
-- graphical representations and PDLtAda.
Generate_Graphics (From The => L is t Of Objects);
Generate Pdl Ada (Fr0m_~he => List_0f_0bjects);

- - 8) I te ra te through the OOD process for each
-- newly iden t i f ied object.
for Each_New Object in List_Of_Objects loop

Object_Oriented_Design (Each Hew Object);
end loop;

end loop Process;
end ObJect_Oriented_Design;

Obviously, following the detail of the steps outlined above would
defeat the major purpose of rapid prototyping. It is more im-
portant to readily produce a model that proves or disproves the
viability of a concept. Therefore, a generalized method for de-
veloping a rapid prototype was followed. This method, described
below, is based on the more stringent development process, but
eliminates or modifies some of the more time consuming ele-
ments.

1. Define the problem to be solved by the prototype.

When not working on a prototype the inputs to the problem
definition are typically a formal set of requirements and
specifications, When working on a prototype these sources

are most likely informal. The problem definition outlines in
concise terms the problem that is to be solved.

2. Identify the major objects in the system.

Notice, there is no informal strategy recorded and reviewed.
The informal strategy is most likely in the mind of the pro-
totype designer only recorded via scratchy notes. The object
identification becomes natural to the software engineer ex-
perienced with object-oriented methods.

3. Ident i fy reusable components which might per form the
work o f the major objects.

There may not be an exact fit, but implementing a prototype
typically means there is a time constraint. There is not time
to develop from scratch and little time can be devoted to
changing a component to do exactly what is needed. Com-
promising needs to take place. It is most important that the
developing engineers are aware of reuse resources available
and to determine a way to use them, even if there is not an
exact fit.

Not only should "pure reuse", reuse without altering code,
be considered; but also, other forms of reuse which might
involve altering code slightly. The other forms of reuse may
need to be utilized because there is insufficient time to do
pure reuse. For example, there is not time to develop an
Ada generic package that meets all of the requirements. The
other forms could not only save time but should give good
information about how to plan for "pure reuse" when im-
plementing the real system.

4. Establish the visibility and the interfaces among the objects.

I ligh level design is concerned with establishing the structure
or architecture of the system and determining the interfaces
between the structural components.

° I f a reusable component was identified to act as one
of the major objects, determine which services of the
component will be needed. Become familiar with the
interface to these services so that they may be used ef-
fectively.

• If a major object must be developed, identify the op-
erations to be performed by the object. Determine how
this object will make use of the reusable components.
Iterate through this abbreviated Object-Oriented De-
sign process with the object in question.

5. Perform detailed design of the prototype

The detailed design is performed via a stepwise refinement
of the "to be developed" object interface specifications. It
turns out that two elements in the prototype are being re-
fined; the major control flows for the system, and the "glue"
to hold all the structural components together. During the
stepwise refinement process, similar patterns in the logic
might become evident. The patterns indicate that a generic
or reusable component could be developed. If time does not
exist to develop the component for the prototype, at least a
template should be created so there is some form of reuse.

During detailed design smaller reusable components should
be identified to perform common functions. These types of
components are often utility packages (i.e., String_Utilities,
TimeUtilities, Integer_Utilities, or even Text Io). Re-
member to look for places where these types of components
can be used instead of re-implementing the function despite
its simplicity.

6. Code via stepwise refinement of the detailed design.

Washington Ada Symposium Proceedings. June 1990 73

7. Informally test, mainly at the integration level.

The majority of a prototype system should be made of re-
usable components and the "glue" to hold them together.
The reusable components should not need unit or module
testing. Therefore, the testing should stress the "glue", and
.this is most effectively done during integration test. Using
Aria, many of the discrepancies that would come out during
unit and module test are detected by the compiler.

EXAMPLE

The following is a description of the actual process applied to the
prototype. Both engineers working on the prototype were fa-
miliar with object-oriented development methods, the available
software reuse resources, and the software development environ-
ment.

The problem definition for the prototype was based on two in-
puts. The first was simply the idea to develop a prototype to il-
lustrate the feasibility of converting the program to Ada. The
second input was the existing program. The problem definition
was to replicate the top level screen displays and the screen trav-
ersal mechanism in Ada.

Based on the problem definition, two major objects were identi-
fied.

i. Full-screen display manager
2. Screen traversal mechanism.

Two reusable components were identified which might perform
the work of the major objects. Display_Manager was found in
the Owego RSL to act as the full-screen display manager. To
handle the traversal of a hierarchic menu structure, a
Tree Abstract Data Structure was retrieved.

A user's guide was available for DisplayManager, s o that and
the package specifications were used to become familiar with the
capabilities of and interface to the reusable component. This
raised a concern regarding the time necessary to update screens.
The concern was that the definition of a single field on a screen
would require between three and ten Ada procedure calls. The
code would tend to be error prone: fields at incorrect locations
on the screen, or the wrong size, or overlapping one another, or
misspelled words etc. Fixing these types of problems would re-
quire altering, recompiling, re-linking and re-executing the Ada
code. Even with a small number of screens, this could account
for a fair amount of Ada code. Therefore, in order to implement
the screens in a timely manner, a tool was defined which would
create screens based on instructions in an external, flat file. This
would allow alterations to a screen to be done by editing a flat file,
and rerunning the tool.

Because Display_Manager is a PC based component and the
major part of the development was to take place in the Rational
environment, DisplayManager had to be ported to Rational.
Display_Manager is also PC dependant so those dependencies
had to be stubbed out to allow for design, development and test
on Rational.

With a development environment set up, design of the tool com-
ponent began. The component has two major functions.

1. Read a flat file
2. Create screen (based on instructions from flat file)

Breaking the second function down further produces the results
below.

1. Read a flat file
2. Create screen (based on instructions from flat file)

a) Parse a line
b) Call Display_Manager (based on instruction in line)

This break down indicated there were two other components
needed: a line parser and an external file manager. The two
components were retrieved from the Owego RSL and the project
RSL respectively.

With the three necessary reusable components available, the
tool's detailed design began by gluing the components together.
During this phase, the need for another small component was
identified. The tool was required to prompt the user for two
pieces of information. There is a small reusable component,
Get_String, which displays a message (passed as a parameter),
prompts the user for input and returns the user's response. This
component was retrieved and incorporated into the tool. Tools
to display a screen and delete a screen were quickly written. They
also incorporated the Get_String function.

With tools implemented and tested, high level design of the first
major object, full-screen display manager, was complete. High
level design of the second major object, the screen traversal
mechanism, started with a familiarization process with the
Tree Abstract Data Structure component specification. It was
deteTmined that the traversal mechanism could be more easily
implemented using the built-in call stack.

At this point development proceeded in two parallel paths. An
external file for each of the sixteen screen displays had to be cre-
ated. The files contained the field definitions for the screens. The
second path entailed performing the detailed design. The detailed
design and coding of the prototype began by coding the control
structures for the main menu and stubbing the submenus. This
was tested on Rational and ported to the PC AT. No problems
were discovered, so the approach seemed feasible.

Implementing the low level packages (submenus) was then
started. The cycle was the same as with the tool and top level
of the prototype. Design, implementation, and unit and some
string tests were performed in the Rational environment. Final
integration test was performed on the AT, Bugs found at inte-
gration test were corrected on Rational. Only the files containing
the affected code were recopied to the AT and recompiled. This
process is automated within the Rational Environment. The de-
sign of tile submenu packages showed a great deal of similarity
between tile main menu package and other submenu packages.
This lead to the conclusion that control structures for a screen
display could be encapsulated in an Ada generic package and
instantiated for each display. This solution did not appear to be
time effective. Therefore, instead of creating the generic and us-
ing "pure reuse" (reuse without code alterations), another form
of reuse was adopted. This consisted of copying the tested im-
plementation of one submenu into a new submenu under devel-
opment and then altering the code. Types of structures that had
to be changed include: constant values, alternatives of case
statements, subprogram calls, etc.

74 Washington Ada Symposium Proceedings. June 1990

RESULTS

The amount of code developed for the prototype and the amount
of time required to design, implement and test are listed in the
table below.

Developed Code

Tools
Prototype (50% via templates)

Total

SLOC

211
1,586

1,797

I lours

6
20

26

The components that were reused and their associated SLOC
count are listed in the table below. Not every available function
in each component was used in the prototype (for instance
String_Utilities.Make_Lowercase was never called), but the
SLOC count represents the entire amount of code for each com-
ponent.

Reused Components SLOC

Display_Management
.. Ada
... PC Assembler
External File Management
Line Parser
Get_String
Str ingUti l i t ies

2,628
1,752

765
110

10
696

Total
. Ada 4,209
.. PC Assembler 1,752

Sixteen screens were implemented, constituting approximately
270 fields of data. The table below illustrates that screen defi-
nitions require more lines in fiat files than it is estimated they
would have required in Aria SLOC. Even with this fact, it is be-
lieved the tools saved time. Using the tool, changes to screen
layout required editing a flat file and rerunning the tool; while not
using the tool would have required altering Ada source, recom-
piling and re-executing the program.

Menu Definition Files

External Flat Files 3,509 lines
Ada code estimate 3,000 SLOC

CONCLUSION

There are two categories of conclusions that can be drawn from
the prototype experience. First are the conclusions specific to the
prototype developed. Second are more general conclusions re-

garding rapid prototyping in Ada in the Rational Environment
where there is an emphasis on software reuse.

Prototype Specitlc
The primary objective for developing the prototype was to sub-
stantiate the size estimates for implementing the language and
database conversion to Aria with a prescribed relational database.
Originally, the plan for the prototype included interfacing with the
database via an Ada SQL program interface. This was not pos-
sible because the interface was not available. Therefore, the
prototype provided valuable data regarding the size of the effort
to convert the multiple display screens of the system and the
mechanism for traversing the screen hierarchy.

Secondary objectives of developing the prototype were to confirm
the viability of converting the system to Ada, and to illustrate the
possible development productivity when developing in the Ra-
tional environment with established reusable Ada software li-
braries available. The fact the prototype was completed confirms
the viability of converting the user interface and control struc-
tures to Ada. The numbers presented can be used to calculate a
productivity rate, in the order, of 20002 SLOC per man-month.
The calculation takes into account the assumption that the coding
phase is less than 20% of the total development lifecycle. This
indicates that experienced software engineers developing an Ada
system in an integrated software development environment where
software reuse is emphasized can reasonably achieve productivity
rates, in the order, of 500 to 1000 SLOC per man-month.

General
Even though this was a relativly small exercise, and realizing that
more experimentation should be performed with larger proto-
types, a number of general conclusions may be drawn.

• The design methodology adopted, when prototyping or not,
should incorporate a software reuse strategy. The prototype
is comprised of approximately 6000 Ada SLOC, of which
only 1500 SLOC was newly developed. All of the functions
available with the reusable components were not used in the
prototype. Therefore, less than 30% of Ada SLOC in the
prototype was newly written, yielding a 70% pure reuse
factor. Of the newly written SLOC, approximately 50%
was developed using a less pure form of reuse.

• Especially if the implementation language is Ada, and if the
effects of software reuse are to be maximized, an object-
oriented development method should be used. An object-
oriented development method facilitates reuse. The greatest
gains in productivity on this project were made by reusing
objects, available in awl RSL, identified during the object-
oriented design process.

• A large part of the productivity gains are directly attribut-
able to the use of the integrated, Aria and object-oriented,
tool set provided by the Rational Environment.

• The final conclusion is that these methods, tools, and reuse
resources must be understood and incorporated by trained
and experienced software engineers.

T h e ca lcu la t ion was based only o n the a m o u n t of code deve loped a n d inc luded in tile p ro to type . 20 h o u r s is
a p p r o x i m a t e l y 1/8th o f a r n a n - m o n t h . T h e p ro to type activity covered only 1/5th o f the d e v e l o p m e n t lifecycle ac-
tivities. (1,586 S L O C * 8) / 5 = 2537 S L O C per m a n - m o n t h .

Washington Ada Symposium Proceedings. June 1990 75

