
M U L T I T A S K I N G , S C H E D U L I N G : A P P R O A C H E S F O R A D A

Fred Maymir-Ducharme Mike Kamrad

IIT Research Institute
4600 Forbes Blvd
Lanham, MD 20706

Unisys CSD
M/S Court
P.O.Box 64525
St. Paul, MN 55164

INTRODUCTION

The subject of modifying Ada's runtime environment
(RTE) in order to meet stringent timing and scheduling
requirements is being addressed by various special interest
groups, including: Joint Integrated Avionics Working Group
(JIAWG), the Common Ada Run Time Working Group
(CARTWG), and the Ada Run Time Environment Working
Group (ARTEWG). This paper discusses the proposals
reviewed by some ARTEWG members, using the proposed
Catalog of Interface Features and Options (CIFO) [15] entry
for dynamic priorities as the basic concept to meet scheduling
needs. The basic premise is to build on the proposed
implementation of pragma DYNAMICPRIORITIES and
expand the definitions as necessary.

This position paper discusses the extension of
dynamic priorities from just being used to schedule ready
queues, to also serve as a mechanism for scheduling entry
queues and the select alternative. Other scheduling
mechanisms (e.g., Preference Control and explicit FIFO) are
also discussed. To minimize the effect on Ada, this position
paper takes the approach that these modifications should be
implemented as pragmas instead of as new language constructs.
Pragmas are implementation-dependent features, as defined by
the Ada Language Reference Manual. Programmers must be
made aware that a compiler can ignore a pragma without
warning if it the compiler does not support that specific
pragma. Recent efforts have compiled various lists of existing
pragmas for the various validated Ada compilers. Formal
definitions of pragmas and standardized pragmas are needed
in the future to allow the efficient and effective use of
pragmas.

The suggested syntax and semantics are defined and
illustrated in the following text. These proposals have been
submitted to the Aria 9X Project and to the CIFO for the Ada
RTE.

SCHEDULING MECHANISMS FOR READY QUEUES

Presently, the only support for Aria priorities is the
pragma PRIORITY, which is static. A CIFO proposal for a
pragma to support dynamic priorities will be assumed as the
base in this section - pragma DYNAIVlIC PRIORITIES. The
DYNAMIC PRIORITIES pragma and the PRIORITY pragma
will have to Tae mutually exclusive; the CIFO proposal suggests
that if DYNAMIC PRIORITIES are needed, then only
DYNAMICPRIORi-TIES should be used. The proposal
includes the following procedures for the viewing and setting
of priorities dynamically.

p rocedure S E T _ P R I O R I T Y (T : i n
TASK ID; P:in PRIORITY));

p rocedure G E T _ P R I O R I T Y (T : i n
TASK ID; P:out PRIORITY);

Procedure SET PRIORITY sets the priority of the
task associated with the ~'ASK_ID ' T ' with PRIORITY "P".
SET_PRIORITY is a scheduling point in same sense that Ada
defines synchronization. Procedure G E T P R I O R I T Y gets the
priority of the task associated with the TASK ID "T' and
returns this value in "P." The need for dynamic priorities is
illustrated by several papers in the 1988 & 1989 International
Workshops on Realtime Ada Issues and by several entries to
the Ada 9X Project Revision R~quest Report [1].

The following assumptions are made by this
proposal: Scheduling is the state transition operation that
makes tasks runable. Dispatching selects a runable task for
execution. Dispatching is done on priority-basis, at the
instance of dispatching. The dispatching of tasks with the same
priority is arbitrary; that is, left to the compiler-specific
implementation (e.g., time-slice, round robin, run-until-blocked,
etc.).

COPYRIGHT 1990 BY THE ASSOCIATION FOR COMPUTING
MACHINERY, INC. Permission to copy without fee all or part
of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise,
or to republish, requires a fee and or specific permission.

Washington Ada Sympos ium Proceed ings . June 1990 157

http://crossmark.crossref.org/dialog/?doi=10.1145%2F327011.327072&domain=pdf&date_stamp=1990-07-01

Presently, the scheduling of a task in a ready queue
is done in First In, First Out (FIFO) order, unless pragma
PRIORITY (if implemented by the specific compiler) has been
specified. The dispatching of ready tasks is actually done on
a priority basis - although some implementations' range of
priorities only consists of one unique value. If pragma
PRIORITY is not specified for a task, then its priority is
undefined. The ordering of entry queues is FIFO per the Ada
semantics. Pragma PRIORITY is statically defined and
therefore very limiting in many applications. Many scheduling
algorithms (e.g., Rate Monotonic) that require the RTE to be
modified, are under discussion as possible solutions for today's
real-time, embedded systems scheduling requirements. Other
solutions entail extending the task related data to include
additional variables that can be read, modified, and utilized for
scheduling purposes. This paper supports the extension of the
priority concept from being static to include dynamic
capabilities as defined above. The implementation of dynamic
priorities can make use of existing language constructs and
code used by pragma PRIORITY, and thus minimize the need
to modify the language and the RTE.

SCHEDULING MECHANISMS FOR ENTRY QUEUES

Entry queues are ordered in FIFO order. If several
calls to a specific entry are made, they are queued and
accepted in the order they were received. The need to allow
priorities to override the FIFO order is supported by several
entries in the Ada 9X Project Revision Request Report [1],
several papers [4,6,9,11], the implementation of dynamic
priorities, and the "by" and "suchthat" constructs in Concurrent
C. A new pragma pragma PRIORITY FIRST
(NAME OF ENTRY) - is needed to specify this new ordering
mechanism for entry queues.

Pragma P R I O R I T Y F I R S T is defined per entry, not
per each individual accept statement, nor by the select
statement. The pragma should be declared in the task
specification, not in the task body.

task F U Z Z is
entry BUTTON;
pragma PRIORITYFIRST(BUTTON);

end FUZZ;

OR

task type FUZZY is
entry BUTTON;

pragma PRIORITY_FIRST(BU'ITON);

end FUZZY;
WUZZY:FUZZY;

Figure 1. Use of pragma PRIORITYFIRST

All of the entry queues for BUTTON of all FUZZY
objects are ordered by priority; that is, the call from the task
with the highest priority is serviced from the queue first. The
default scheduling mechanism will continue to be FIFO when

pragma PRIORITY FIRST is not specified for that specific
entry. This pragma ~aust be specified for each individual entry
declared in the task specification. One could not specify the
pragma randomly because the same queue serves callers of the
same entry and conflicts could arise; and conversely, it would
be too limiting to specify it only once per program and have
it affect every entry queue.

The specification of pragma PRIORITY FIRST
indicates to the compiler that the entry queue should" always
have the call with the highest priority at the head of the
queue. Whether the queue is designated as FIFO or
PRIORI'I~t~FIRST, the accept statement will always take the
task at the head of the queue. Every entry queue operation
is defined to be atomic. (e.g., dequeue, enqueue, read_queue,
wri tequeue, ...) The default scheduling mechanism for entry
queues will (implicitly) be the existing FIFO ordering, unless
pragma PRIORITY_FIRST has explicitly been declared. The
option exists to define another pragma pragma
FIFO_FIRST(NAME OF ENTRY) - which allows the explicit
specification of FIFO ordering for specific entry queues. As
stated earlier, invoking PRIORITY_FIRST is for a specific
entry queue, regardless of whether the accept statement is
within or outside of a select statement. The declaration of
PRIORITY FIRST and FIFO FIRST belong in the task
specificatioff-.

S C H E D U L I N G M E C H A N I S M S F O R S E L E C T
ALTERNATIVES

Race and Availability Control Def in i t ions

Nondeterministic selection: an unconstrained choice
from a finite number of alternatives. Existing nondeterministic
constructs are not sufficiently structured for today's
concurrent programming language needs. The classification of
controls on nondeterminism facilitates the learning and
understanding of nondeterrninistic constructs. A better
understanding of these controls allows the programmer to
become more efficient in controlling nondeterminism and
thereby exploiting the available parallelism to a larger degree.
The classifications of controls on nondeterminism also aids in
testing and debugging by allowing the tester to explicitly
specify the different execution paths desired by using the
different controls.

Availability Controls o n the Selection Process

Hoare [14] uses the notion of guards to denote the
availability of an alternative for selection. If all of the guards
for each alternative hold true, then one alternative is selected
nondeterministically; otherwise, only the alternatives with true
guards are considered for selection. We will classify this
selection criteria among alternatives, controlled by the state of
the alternative's guard, as Availability Control. Availability
Control is the mechanism used to enable or disable each
alternative's guard, thereby controlling the domain of
alternatives available for selection. Availability Control can be
further subdivided into the following categories:

PRIVATE CONTROL: nondeterminism restricted
by condi t ions over variables local to the task. Private control
is considered open if the condition is true; otherwise it is

158 Washington Ada Symposium Proceedings. June 1990

closed. Private control was not intended to be allowed in Ada
(but it can be implemented in Ada using a combination of the
"when" and the "delay" primitives within the select statement).
When private control is specified for an alternative, it can only
be chosen if it is open. Private control restricts the
nondeterministie choice by not considering alternatives with
closed private control.

CONSENSUS CONTROL: n o n d e t e r m i n i s m restricted by
e n v i r o n m e n t a l / c o m m u n i c a t i o n constraints.
The alternatives are restricted to only those for which the
communication is available from the rest of the system.
Consensus control is considered established if the rendezvous
can be established. This control can be attained in Aria by the
use of the "accept" primitive within the select statement. An
alternative is ready if all of the controls have been satisfied,
i.e., if the private control is open and/or if the consensus
control is established. The nondeterministie construct will
check all of the controls in each alternative and then choose
one of the ready alternatives. In many cases using the
nondeterministic construct includes using a combination of
these controls.

MUTUAL CONTROL: the capacity to enable/disable a
nondeterminls t l c choice based o n an expression over both the
caller's state and the server's state.
The major difference between mutual control and private
control is that the conditional guard contains variables local to
the server and from the callers parameters. Ada does not
include a mutual control construct.

HYBRID CONTROL: the combinat ion of any of the three
latter controls described above.

Race Control o n the Selection Process in Ada

Beyond Availability Control, there exists other races
between different groups of entities and at different levels.
Priorities are managed and supported at the operating system
level. Other controls are exercised at the programming
language level. We will classify the following controls at
different levels as follows:

PRIORITY CONTROL: controls the race a m o n g different
tasks at the system level.
In Ada, if two of more tasks with different priorities are in the
ready state, the task with the highest priority will be selected
for running.

FORERUNNER CONTROL: controls the race a m o n g
different entries in an entry queue.
This control can be used to prioritize pending calls within an
entry queue.

PREFERENCE CONTROL: controls the race a m o n g
different alternatives wi th in the select statemenL
We classified preference control as nondeterminism restricted
by a preferential order. Preference control gives the
programmer the power to assign preferences to the alternatives
within the nondeterministic construct. Each alternative inside
a nondeterministic select construct may (but need not) have a
preference value. A lower value indicates a lower degree of

urgency. The range of preferences is implementation defined
(e.g., a ready entry with" a preference = 2 is chosen before a
ready entry of preference = 1). Preference control gives
nondeterminism a defined relational order between alternatives.
The original suggested syntax for Ada was:

pref <expression> when <condi t ion> = > accept <en t ry>

This implementation would entail changing the language,
adding a new language construct and modifying the select
statement.

select

or

pref 3 when B1 = > accept entryl(. . .)
do S1; end entryl

or

pref 2 when B2 = > accept entry2(...)
do $2; end entry2

pref 2 when B3 = > accept entry3(...)
do $3; end entry3

or

pref 1 when B4 = > accept entry4(...)
do $4; end entry4

end select;

Figure 2. Use of the Preference Contro l Construct

All of the nondeterminism constraints are listed
before the entry call: first, the preference control (pref
constant); next, the private control (when < expression >);
and finally, the consensus control (accept <en t ry>) . If a
preference is not specified, it should default to the lowest
value (e.g., if negative values for preferences are not allowed,
then default to 0). The s a m e value preference can be assigned
to different entries within the same select statement to allow
a greater amount of nondeterminism.

Ada includes various language constructs for the
control of nondeterminism within a select statement, such as
Private Control (e.g., when statement), Consensus Control
(e.g., accept statement) and Hybrid Control (combining when
and accept statements). Various forms of Race Controls (e.g.,
Preference Control, priority_select and dynamic priorities) have
been suggested to meet the needs of the Ada community,
which recognizes the expressive power of the select statement,
but also demands the ability to bet ter control it explicitly and
dynamically.

Select Statement Schedul ing Pragmas

Because we have discussed the use of dynamic
priorities for the scheduling of ready queues and entry queues,
it logically follows that the use of dynamic priorities for the
scheduling of select alternatives should be investigated. This
paper proposes a new pragma -pragma PRIORITY SELECT -
which explicitly tells the R T E to consider the priorities of the

entry calls queued within the select statement. As defined in

Washington Ada Symposium Proceedings. June 1990 159

[6,9], RACE CONTROL considerations come into place after
the evaluation of the AVAILABILITY CONTROLS Pragma
PRIORITY_SELECT specifies to the RTE to select the open
alternative whose queue's head task has the highest priority.
Pragma PRIORIT~t~SELECT is independent of pragma
PRIORITS~FIRST, which specifies the ordering of each entry
queue. Hence, if P R I O R r l ~ F I R S T is specified for each of
the entries within the select statement, and
P R I O R r l ~ S E L E C T is also specified, the open alternative
with the highest priority caller will always be selected. The
combination of PRIORITY_FIRST queues with FIFO queues
within a select statement with PRIORITY SELECT will give
the user more expressive power to e~sily meet varying
requirements. PRIORITY FIRST and PRIORITY SELECT
implementations must c~nsider their interacti-on with
DYNAMICPRIORITIES. PRIORITY FIRST and
PRIORITY_SELECT affect the ordering of t'he queue each
time a new entry call is enqueued if pragma PRIORITY is
used. Combining them with DYNAMIC_PRIORITIES adds
the complexity of re-ordering dynamically any time a task's
priority changes.

Pragma PRIORITY_SELECT can only be declared
within a select statement, as illustrated in Figure 3. The user
should be cautioned that mixing the ordering of entries' service
by select may present an awkward protocol. The default
ordering of entry queues will be FIFO (the existing
mechanism). This will be explicitly specified and defined by the
pragma.

task F U Z Z is
entry A();
entry B0;
pragma FIFO_FIRST(A,B);
entry C0;
pragma PRIORITY_FIRST(C);

end FUZZ;

task body F U Z Z is
select
pragma PRIORITY_SELECT;

accept A();
o r

accept B0;
o r

end select;
end FUZZ;

accept C0;

Figure 3. Use of PRIORITY_SELECT

Note that a call to the entry B cannot be denied by
a call to the entry A in the case where accept B is open and
accept A is not AND A's caller has a higher priority than B's
caller. The determination of open alternatives through the
evaluation of guards is performed before any subsequent open
alternative selection, per existing Ada language semantics.

Another very useful pragma for the scheduling of
select alternatives is pragma PREFERENCE_SELECT.
Pragma PREFERENCE_SELECT is an alternative

implementation of the Preference Control construct [3] for
Ada. PREFERENCE SELECT explicitly tells the RTE to
consider the preference of the entries within the select
statement before making the selection..As previously defined,
RACE CONTROL considerations come into place after the
evaluation of the AVAILABILITY CONTROLS. Hence,
pragma P R E F E R E N C E S E L E C T specifies to the RTE to
select the available alternative with the highest preference.
P r a g m a P R E F E R E N C E _ S E L E C T and p r a g m a
P R I O R r l ~ S E L E C T are mutually exclusive. Pragma
PREFERENCE_SELECT is independent of pragma
PRIORITY~FIRST, which specifies the ordering of the entry
queue . An a s s o c i a t e d p r a g m a p r a g m a
P R E F E R E N C E V A L U E
(ENTRY_NAME,PREFERENCE_EXPRESS ION) is
necessary for each alternative to specify a preference value.
Pragma PREFERENCE_VALUE has two parameters. The
first is the entry name, and the second is the preference value
or expression that will be associated with that entry during the
selection process.

task F U Z Z is
entry A0;
pragma PREFERENCE_VALUE(A,X)
entry B0;
pragma PREFERENCE_VAi..UE(B,Y);
pragma FIFO_FIRST(A,B);
entry C0;
pragma PREFERENCE_VALUE(C,X + Y)
pragma P R I O R I ~ _ F I R S T (C) ;

end FUZZ;

task body F U Z Z is
X : = 5;
Y := -1;
select
pragma PREFERENCE_SELECT;

accept A0;
... X := - 1'
end A;

o r

accept B0;
. . . Y : = Y + 2;
end B;

o r

accept cO;
end select;

end FUZZ;

Figure 4. Use of PREFERENCE_SELECT and
PREFERENCE VALUE

Preference Control is dynamic. This is possible because
expressions are legal parameters for pragmas. The amount of
nondeterminism may be increased by giving more than one
alternative the same preference. See [5,7,10] for various
applications for Preference Control. Entries without a
specified preference value will be assigned the lowest

160 Washington Ada Symposium Proceedings. June 1990

preference value. Declaring PREFERENCESELECT in the
task specification limits the use of Preference Control to
alternatives with entries. Preference Control can be extended
to include other non-accept alternatives by allowing the
declaration of PREFERENCE VALUE within the select
statement. A preference value cannot be assigned to an "else"
statement.

task FUZZ is task body FUZZ is
entry A0; X := 5;
entry B0; Y := -1;
entry C0;

end FUZZ;

select

pragma PREFERENCE_SELECT;
accept A0;
pragma PREFERENCE_VALUE(X);

. . .X := X - 1;
end A;

o r

accept B0;
pragma PREFERENCE_VALUE(Y);

. , . Y : = Y + 2;
end B;

o r

when X > Y:
pragma PREFERENCEVALUE(Z);

... Z := 2*Z;
o r

accept C0;
pragma PREFERENCE_VALUE(X + Y);

end select;
end FUZZ;

Figure 5. Extending PREFERENCE_SELECT and
PREFERENCE_VALUE

In this case, it is not necessary to pass the entry's
name as a parameter to PREFERENCE_VALUE for every
alternative (nor is it possible, because non-accept alternatives
are not named, nor declared in the task specification), so
pragma PREFERENCE_VALUE had be modified as follows
and moved down to the task body, within the select statement
for proper binding: pragma PREFERENCE_VALUE
(PREFERENCE_EXPRESSION). The first implementation
of PREFERENCE_VALUE is easier to implement because a
preference value can easily be associated with the accept entry.
It is also simpler and easier to understand, since the entry
name and associated preference value are both on the same
pragma call and all of this information can be included in the
task specification. But the second implementation is much
more powerful: it allows the user the ability to also control
non-accept alternatives in the selection process and override
Ada's implicit preference of accept entries over non-accept
entries when required.

In all fairness, we may also want to include another
pragma, FIFO_SELECT (very similar functionally to Burns'
priorityselect extension. Burns [2,8] suggests an enhanced

select statement called priority select, which specifies to the
RTE to select the first open alternative in the sequence
ordered within the select statement. This construct is by
definition, static. The only way to change the selection order
is to re-write the select statement and re-order the alternatives.
The assignment of the same preference to several alternatives
is possible by nesting select statements within priority_select
s t a t emen t s . Obviously , P R I O R I T Y _ S E L E C T ,
PREFERENCE SELECT and FIFO SELECT must be
mutually exclusi~'e, to avoid conflicting Scheduling constraints.

If the decision is made to support all three of the
select statement scheduling mechanisms discussed above, the
implementor may consider combining the three pragmas into
one pragma SELECTMECHANISM. Pragma
SELECTMECHANISM can be passed the desired scheduling
mechanism as a parameter.

type S C H E D U L I N G _ M E C H A N I S M is
(PRIORITIES,PREFERENCES,FIFO);

pragma
SELECT_MECHANISM(SCHEDULINGMECHANISM);

As in the previous discussions, pragma
SELECTMECHANISM must be declared within the select
statement.

CONCLUSION

The International Workshop on Real-time Ada
Issues has discussed dynamic priorities, priority inversion[13]
and race controls the last couple of years. The extension of
dynamic priorities for scheduling entry queues and select
alternatives, as well as the implementation of the preference
control and FIFO pragmas, will interact with the previously
proposed constructs and have major effects requiring additional
discussion and further analysis.

These proposals have been submitted to the Ada 9X
Project and to the CIFO for the Ada RTE. These, and other
proposed changes, are currently being reviewed and considered
as changes for Ada in the 90s. Their effect on the Ada
language as well as their impacts on priority inversion and
other related Ada issues must be further scrutinized.
Additionally, the interactions between these pragmas and CIFO
entries such as dynamic priorities, trivial entries and
asynchronous entry calls must be better defined and
understood.

6. ACKNOWLEDGEMENT

The authors wish to thank Offer Pazy who was
instrumental in the definition and specification of the proposed
pragmas. Mr. Pazy's suggestions that additional research is
needed regarding the justification or need for the explicit
declaration of default mechanisms (e.g., FIFO_FIRST), the
possible introduction of illegal or erroneous constructs, and the
interactions and complexities introduced by applying
PREFERENCEVALUE to non-accept statements within a
select statement will be investigated and reported on at some
later time.

Washington Ada Symposium Proceedings. June 1990 161

.~ o :~.~ - •.5-::~ ~ . . . ==

REFERENCES

[1] Ada 9X Project Revision Request Report, Office of the
Under Secretary of Defense for Acquisition, Washington DC,
August 1989,

[2] A. Burns, Using Large Families for Handling Priority
Requests, Ada LETFERS January, February 1987 Vol. VII,
No. 1.

[3] T. Elrad, F. Maymir-Ducharme Introducing the Preference
Control Primitive: Experience with Controll ing
Nondeterminism in Ada, Proceeding of the 1986 Washington
Ada Symposium in Laurel, Maryland, March 24-26, 1986, pp.
265-270.

[4] T. Elrad, F. Maymir-Ducharme Distributed Language
Design: Constructs for Controlling Preferences, Proceedings
of the 1986 International Conference on Parallel Processing in
St. Charles, Illinois, August 19-22, 1986, pp. 176-183.

[5] T. Elrad, F. Maymir-Ducharme Efficiently Controlling
Communication in Ada Using Preference Control, Proceedings
of the IEEE 1986 Military Communications Conference in
Monterey, California, October 5-9, 1986, pp. 22.3.1-22.3.8.

[6] T. Elrad, F. Maymir-Ducharme Race Control for the
Validation and Verification of Ada Mulitasking Programs,
Proceedings of the Sixth Annual National Conference on Ada
Technology, March 14-17, 1988.

[7] T. Elrad, F. Maymir-Ducharme Satisfying Emergency
Communication Requirements With Dynamic Preference
Control, Proceedings of the Sixth Annual National Conference
on Ada Technology, March 14-17, 1988.

[8] T. Elrad, F. Maymir-Ducharme Letter to the Editor in
response to the A. Burns Jan./Feb. 1987 article "Using Large
Families for Handling Priority Requests." Ada LETI'ERS May,
June 1987 Vol. VII, No. 3, vii. 3-14 - vii.3-16.

[9] T. Elrad, Comprehensive Race Controls: a Versatile
Scheduling Mechanism for Real-time Applications, Proceedings
of the Ada-Europe International Conference, Madrid, June 13
-15, 1989.

[10] T. Elrad, F. Maymir-Ducharme Preference Control: A
Language Feature for A I D A Applications, Proceedings of the
1987 Third Annual Conference on Artificial Intelligence &
Ada, George Mason University, VA, October 14 - 15, 1987.

[11] N. Gehani, W. Roome Concurrent C* AT&T Bell
Laboratories, Murray Hill, New Jersey 07974, 1985.

[12] N. Gehani, W. Roome The Concurrent C Programming
Language Silicon Press, New Jersey, 1989.

[13] J. Goodenough, L. Sha, Real-Time Scheduling Theory
and Ada., Technical Report CMU/SEI-89-TR-14 ESD-TR-89-
22, April 1989.

[14] C.A.R. Hoare, Communicating Sequential Processes,
Prentice Hall, 1985.

[15] A Catalog of Interface Features and Options for the Ada
Runtime Environment, Ada Runtime Environment Working
Group Interfaces Subgroup, ACM SIGAda, December 1987.

162 Washington Ada Symposium Proceedings. June 1990

