
TECHNOLOGY INSERTION:
ESTABLISHING AN OBJECT-ORIENTED LIFE-CYCLE M E T H O D O L O G Y

John A. Anderson

Computer Sciences Corporation
CSC Technology Center

3160 Fairview Park Drive
Falls Church, Virginia 22042

ABSTRACT

Computer Sciences Corporation (CSC) is establishing a comprehensive

object-oriented life-cycle methodology for Ada software development.

The development and introduction of this methodology include many

technical, managerial, and logistical challenges that go beyond creating

and/or selecting software analysis and design techniques. Like any other

large project, such an endeavor must be planned with a specific set of

approaches and deliverables, milestones to measure progress, and evalu-

ation criteria to determine quality. This paper identifies the components

of a comprehensive life-cycle methodology and the necessary steps

required to introduce it into an existing development environment. Rec-

ognizing that such a methodology cannot be created and established in-

stantaneously, this paper suggests criteria formaking trade-offs during the

creation, introduction, and refinement of these life-cycle methodology

components. Finally, the paper reports CSC's progress in developing and

inserting its life-cycle methodology into practice.

BACKGROUND

Thorough research and experience can establish a set of techniques or

tools that could greatly improve the software development process,

increasing the quality of the product and the productivity of development

staff. Unfortunately, the effective and efficient introduction of innovative

technology into the mainstream of software development is as much a

challenge as the creation of the innovation itself. For an organization to

easily accept and apply new methods, techniques, or tools, they must fit

neatly into the current method of operation and be reasonably similar to

those they replaced.

The Ada language program is an example of the difficulty in introducing

new technology. Although the Ada language [DOD83] supports powerful

COPYRIGHT 1990 BY THE ASSOCIATION FOR COMPUTING
MACHINERY, INC. Permission to copy without fee all or part
of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise,
or to republish, requires a fee and or specific permission.

software engineering principles such as abstraction and information hid-

ing, its early applications resulted in software differing little from that of

FORTRAN or Pascal. These experiences signalled the need for more

effective design methods to exploit the features of the language, and

object-oriented design became in vogue. In recent years, large Govern-

ment projects have continued to exhibit problems with Ada and object-

oriented design, not because Ada and object-oriented design concepts are

improper, but because they have not been effectively integrated with

existing development standards and functional requirements analysis.

The Government and software contractors must recognize that efficient

and effective software development re.quires more than establishing a set

of independent methods and techniques to be applied at various phases of

the life cycle. CSC is establishing a comprehensive object-oriented life-

cycle methodology to control the complexity of software development,

leading to the economic production of reliable and efficient Ada software.

A comprehensive life-cycle methodology cannot be established instanta-

neously; CSC will achieve such a goal by incrementally creating and

introducing the methodology into CSC's existing development environ-

ments and projects.

ADOPTING A STRATEGY

Software development periodicals, conferences, and forums present abun-

dant powerful techniques, methods, and new approaches for solving the

software crisis. Relatively few of these are effectively applied and adopted

by the software development community at large. In fact, one source

states that only about one per cent of organizations fully deploy a manual

methodology [CASE90]. However, inadequate deployment is not neces-

sarily a reflection of the technicalmerit of the methodologies. Achieving

acceptance of new technology is as much of a challenge as developing the

innovation itself. Project managers are rightfully hesitant m increase the

risk on their projects by adopting techniques lacking a proven track record.

Creating a comprehensive methodology, introducing it into an existing

corporate structure, and having it accepted by software developers are

formidable and potentially expensive tasks to say the least. A powerful

technique for risk reduction is to pattern the developmem plan after

Washington Ada Symposium Proceedings. June 1990 163

http://crossmark.crossref.org/dialog/?doi=10.1145%2F327011.327073&domain=pdf&date_stamp=1990-07-01

successful case studies of other technology insertion programs. One of the

most successful technology insertion efforts was Thomas Edison's intro-

duction of the incandescent light bulb into American society.

The light bulb was an innovation that was not guaranteed success. At the

time of its invention, electricity was commonly considered a mysterious

and dangerous power. The introduction of electrical lighting into every

home in the United States was considered incredible and impractical.

Edison recognized the potential of harnessing such power and attacked the

problem with a well-planned strategy. Reasonable milestones were

identified to establish proof of concept (lighting of his laboratory in Menlo

Park), to stabilize and support the technology (establishment of a company

to invent and manufacture electrical generation, distribution, and applica-

tion devices), and to demonstrate the practicality of deployment (electrifi-

cation of the first neighborhood). As with innovative software techniques,

the effort related to inventing the light bulb was minor compared to that of

establishing and stabilizing the technology support. Edison's "90%

perspiration" was invested in identifying and establishing the infrastruc-

ture necessary to support commonplace household incandescent lighting,

thus feeding the "10% inspiration" of inventing the tools necessary to

achieve his goal. This monumental effort spanned a broad spectrum of

difficulty from designing and inexpensively manufacturing relatively

simple appliances such as replaceable light bulbs and sockets, to inventing

and installing more sophisticated apparatuses such as generators, meters,

and distribution mechanisms.

Using Edison's success as a model for introducing an object-oriented

development methodology, methodology investigations should apply the

greatest proportion of the effort to establishing an infrastructure for its

support. The development of the infrastructure will drive the technology:

identifying specific technology support deliverables, assisting prioritlza-

tion, and inspiring more innovations.

REUSE, REPLACE, RENEW

The world is just now recognizing how precious and limited our natural

resources arc, and that to survive we must recycle. Software projects

constantly suffer from a shortage of resources, and management is simi-

larly recognizing the necessity of reusable software components. How-

ever, software code reuse is only a small part of solution. To substantially

reduce the effort (and thus the cost) necessary to solve large software

problems, a much more global software recycling mechanism must be

established. Software recycling must encompass not only code (or

product) reuse, but all levels of information reuse. Most software devel-

opment efforts include the expense of creating and establishing their

software development infrastructure [HUMP88], a tedious, resource-

consuming process that delays solving the software problem at hand. The

establishment of a comprehensive object-oriented life-cycle methodology

will substantially decrease this expense and allow personnel and capital

resources to be expended more efficiently. Further, reuse is not a complete

recycling method; a comprehensive methodology must also include a

feedback mechanism that completes the cycle and guarantees continued

process improvement.

Ironically, despite their overall goal for increasing productivity, method-

ology investigations often have even tighter budgets than software devel-

opment projects, and thus a more intense requirement for information

reuse in Freeman's categories of tech-transfer and development knowl-

edge [FREE83]. The areas with the most significant potential within tech-

transfer and development knowledge are process reuse and experience

reuse. Process reuse relates to the definition of a developmental process

and the techniques applied during software development, including the

definition of "meta-produets" such as deliverable documents, project

standards, and support tools. Experience reuse is a tougher challenge, that

of tapping the variety and depth of experience of the practitioners through-

out a project or corporation.

PROCESS REUSE

Standards are not a result of reuse, reuse is the result of standards.

Standards are the foundation of process reusability because they document

the intended software process, and when effective can determine the

quality of that process. An effective methodology must establish and

maintain a set of standards to document its very definition. Technology

insertion requires special attention to standards, because the standards are

more likely to be volatile. Management and practitioners must be aware

of the role of standards. On any project, standards must be considered a

quality filter to identify deviations, not a constraint from doing the job

correctly. When a technology is being introduced, any deviations are from

an intended model, not from a perfected model. Quality assurance

organizations must be especially careful to identify and evaluate the

reasons for frequent deviations, determine if the standards really discrimi-

nate quality, and feed this information back into the standards definition.

Whether a software methodology is intended for Government projects or

not, it makes sense to adopt or address Government standards and require-

ments. Government standards are defined to control expenses, and they

result from years of experience and problem solving. Although far from

perfect, Government standards represent a substantial investment of time.

Developers should capitalized upon this experience.

Recently a standard software development process has been established in

DOD-STD-2167 [DOD85] and revised in DOD-STD-2167A [DOD88a].

The life-cycle model described in DOD-STD-2167A establishes uniform

requirements for software development that are applicable throughout the

system life cycle and provide the basis for Government insight into a

contractor's software development, testing, and evaluation efforts.

However, although DOD-STD-2167A provides a standard vocabulary for

the life cycle and defines the minimal requirements for recommended

deliverable software development products, it was not intended to impose

a development process upon software contractors. (To do so could

significantly increase software development costs and inhibit innovative

techniques.) The standard vocabulary and recommended set of dellver-

ables must be (re)used as a framework for establishing a life-cycle

methodology for economical reasons: alternate life-cycle models and

vocabulary require substantial investment and justification on Govern-

ment contracts, and addressing established standards provides a broader

164 Washington Ada Symposium Proceedings. June 1990

base of potential (re)users. Unfortunately, DOD-STD-2167A's focus on

products has resulted in software development being often viewed only in

terms of the separate deliverable products for each individual life-cycle

phase. The processes applied during software development are just as

important as the products, and just as interrelated. A comprehensive

methodology must define, reuse, and refine both the products and proc-

esses of software development and also transcend computer science to

consider the issues related to managing the people, products, and processes

applied during software development.

Sirnilady, software quality standards have been recently established in

DOD-STD-2168 [DOD88b]. Although DOD-STD-2168 defines a frame-

work for a software quality assurance program, it does not impose many

specific requirements on the contractor. The framework requires a set of

well-defined activities and products and requires evaluation criteria and

responsibility to be assigned to each. Applying the DOD-STD-2168

framework to the activities and products of DOD-STD-2167A produces a

voluminous set of requirements for a comprehensive life-cycle methodol-

ogy. For example, Figures I through 3 illustrate the processes and products

that must be defined for the Requirements Analysis through Detailed

Design phases. In addition to these processes and products, a life-cycle

methodology must also define the transition strategy between phases,

ranging from the technical transformation of information between phases

to the management of teams of practitioners changing activities at varying

rates.

The final aspect of process reuse in a comprehensive methodology defini-

tion is automated support. Current trends in Computer Aided Software

Engineering (CASE) support show promise, but an integrated support

system will be necessary to achieve significant gains in productivity

[CASE90]. An automated support system must collect and correlate the

voluminous data about a system's requirements, design, and implementa-

tion; ensure the internal consistency of the products of each phase; assist

transition between phases; maintain the connections among the informa-

tion of aU software phases; and monitor progress and assist management

in strategic decisions. Until integrated support systems are achieved, a set

of recommended tools or job aids must be created and applied. Practical

examples include checklists for inspections and manual or semi-automated

progress reporting mechanisms.

EXPERIENCE REUSE

Experience reuse, however difficult, can be achieved within a particular

organization, and-- in combination with process reuse---from one organi-

zation to another. Experience reuse is the most important mechanism for

advancing and refining technology to achieve its goals. The essential

requirements for experience reuse are communication, cooperation, and a

recognition that practitioners are capable of controLling quality them-

selves.

Experience reuse begins with creating standards and procedures that

constitute the new methodology, as sunning that the methodology is based

on past project experience. New technologies and approaches will change

critical aspects of the development process; however, many traditional

developmental processes and products must be reused until the new

approach's impact can be determined. This reuse capitalizes on the

experience built into those standards and demonstrates that process reuse

in the form of standards is equivalent to experience reuse. Application of

new technology also heightens the need for management experience

reuse. Deploying new approaches effectively requires extensive experi-

ence to manage the trade-offs between strictly enforcing traditional

standards and procedures and freely leaving innovation "to the experts."

Once the new methodology is defined for a project, inanagement and

technical staff must often be trained to ensure effective application. The

expense of live, in -house industrial training can be justified more easily by

exploiting the collective experience of the participants. Less expensive

alternatives to live training, such as books or video tape, are static, limited

in scope, one-way communication mechanisms that are seldom completed

or taken seriously. Live training can and should encourage a controlled

exchange of experiences and "war stories" to reinforce and illuminate the

technology transferred. Becausemost of the components ofnewmethods

were designed as solutions to address common software development

problems, these exchanges are easily initiated. Further, in-house training

may be a rare opportunity for entry level practitioners to openly interact

with their more experienced senior counterparts; the training session can

be an environment for team building and solving problems related to the

specific challenges of a particular project. Additionally, pilot training

programs that introduce new methods and products are excellent for

generating initial feedback on techniques, standards, and job aids.

As the new methodology is applied on a project, experience with the

process and products must be fed back into the methodology. Feedback

will determine the effectiveness of and changes required in the processes,

products, and/or their media. The lessons of the "Quality Revolution"

[SEID891 in manufacturing must also be reused and applied in the

software industry. A culture that includes a systematic way for practitio-

ners to contribute to product and process quality is essential for quality

achievement, increased productivity, and improved developer morale. In

essence, the practitioners themselves must become the methodologists

and quality assurance specialists.

OPTIMIZATION AND TRADE-OFFS

The previous sections describe a monumental set of requirements neces-

sary to establish a comprehensive life-cycle methodology. Creating and

validating processes and products for a new methodology requixe experi-

ence, refinement, and time; all of these require funding. Fiscal responsi-

bility requires that such IR&D funding be limited until the pay-off for such

an investigation is proven. Prudent planning requires that the investiga-

tion of the methodology be carefully optimized to ensure the most critical

areas are addressed first. No matter how well planned the methodology

investigation is, opportunities and unexpected challenges will arise. This

section identifies criteria for optimizing a methodology investigation and

resolving the trade-offs in planning that will inevitably be required.

1. A "Best of Class" approach optimizes the initial construction of the

Washington Ada Symposium Proceedings. June 1990 165

¢L
¢t)

= m

¢t)
w

c

c

E
= m

O"

IZ:
==
3

N ~

o u~

I -
c

,2

o

Figure I

8

c

E

O

¢)

C

166 Washington Ada Symposium Proceed ings. June 1990

¢ o) @

L

~1 \ o ,

,J=
12.

03

O~
= m

E

12.

¢3

L,I.

Figure 2

O
o

o

1=
c

' d

==

,3 ,<

¢=
<

K¢

¢=
O) .==

¢3

c

8
O~
c

O*

E
L~
2
c

fJJ

O

Q.

O
a .

E

¢E

Washington Ada Symposium Proceedings. June 1990 167

t~

D.
C
¢33 = m

C~

"O
= m

C3

a .

O

0~

t -

I
Figure 3

II)

~3

a

c

C .ca

• ID >
. ' ~ ¢

C

I=

\ 1 0 ~ ~,

o

O,"

o

UJ

O

O

==
o I

g :

168 Washington Ada Symposium Proceedings. June 1990

methodology.

Process reuse must occur even in the earliest phases of methodology

investigation. The "Not Invented Here" stigma must be eliminated. The

"Best of Class" approach, named after a similar manufacturing quality

program at Ford Motor Corporation [SEID89], examines industry's tech-

niques and products to determine their best subcomponents and tries to

improve them. Where they cannot be improved, they are adopted as is.

(The existence of standards and/or voluminous documentation for an

approach indicates thorough research or application.) The selected or

refined quality artifacts are then integrated with existing corporate stan-

dards into a life-cycle methodology. Because software development

problems are wide-spread and being attacked throughout the industry,

continued monitoring for additional innovations and better approaches

must be an ongoing process.

2. The front-end of the development life cycle is the most important area

to be defined.

An appropriate strategy must focus on the earliest, most critical phases of

software development. The cost of error detection and correction escalates

in orders of magnitude if left to the later stages of development and

deployment [CASE90]. Further, the later phases of the life cycle manipu-

late the more concrete artifacts of software development such as code, test

plans, and test data, and thus can be managed by traditional standards and

practices. The front-end manipulates more abstract concepts such as

requirements and design. Defining techniques, development products, and

quality evaluation criteria for these otherwise intangible concepts solidi-

fies the life cycle approach and permits further refinement and review.

3. A baseline configuration of the methodology must be defined and

maintained as soon as possible.

As stated above, a methodology is defined in terms of its standards.

Without the establishment of a baseline configuration, it is impossible to

improve on the methodology, either by further augmentation or by refine-

ment based on application experience. The methodology may initially be

defined by references to articles and training materials. Eventually,

standards must be constructed, documented, and maintained to establish a

foundation for process reuse. This baseline configuration for software

development support establishes the foundation for a repeatable develop-

ment process as defined by [HUMP89].

4. Feedback is the most powerful mechanism for quality improvement.

Establishing an experience base for portions of the methodology is a higher

priority than the full augmentation of the methodology. A fully docu-

mented methodology that has not yet been applied will seldom acoomplish

the quality goals intended and is unlikely to be adopted by project

management. Incremental methodology development based on and

refined by project experience will ensure a quality development process

over the long mn and identify detailed support requirements unanticipated

by the original methodology developers. Projects applying portions of the

life-cycle methodology can thus demonstrate the power and flexibility of

techniques without committing to the risks of adopting an entirely new

methodology.

Additional feedback can be obtained through internal and extemal publi-

cations, seminars, and review sessions. Proprietary issues must not

interfere with the dissemination of the technology. Wide-spread distribu-

tion of the methods and techniques will stimulate necessary criticism, and,

if the techniques and standards are effectively refined, acceptance. Broad

acceptance of the methodology will further stimulate others to augment

and possibly automate the methodology in a cooperative atmosphere.

5. Software management issues should be considered to be as important

as technology issues.

Software development management and risk mitigation must be consid-

ered high priority areas for methodology development. The software

crisis is by definition as much a management problem as a technology

problem: "software that is nonresponsive to user needs, unreliable,

excessively expensive, untimely, inflexible, difficult to maintain, and not

reusable" [DIJK72]. Recognizing that software development with tradi-

tional methods will invariably be late and over-budget, few project

managers want to be the first to adopt and apply a new methodology. New

technologies increase risk and management will not adopt them if the

project control mechanisms are ill-defined.

6. Deliverable documents are the most important standards to be deemed.

The software documents required for delivery on Government contracts

have rigorous minimum requirements. Constructing a mapping between

the information elicited by the analysis and design techniques and their

corresponding documentation vehicles, the Software Requirements Speci-

fication [DOD88c] and the Software Design Document [DOD88d], will

identify additional methodology requirements. Upon completion, the

existence of such a mapping lends credibility to the use of the techniques

by demonstrating that they are necessary and sufficient to meet govern-

ment requirements. Further, the mapping facilitates the construction of

deliverable documents, allowing document production to be streamlined.

Finally, the mapping establishes requirements for interfaces between

CASE support tools and automated document generators.

The most comprehensive of DOD-STD-2167A deliverable documents is

the Software Development Plan (SDP), as defined by Data Item Descrip-

tion DI-MCCR-80030A [DOD88e]. The SDP describes a contractor's

plans for conducting software development, including standards and

procedures, management, and contract work. Once an effective SDP is

constructed referencing the documented standards in the methodology

baseline, the methodology can be proposed on largerprojeets with reduced

risk.

MILESTONES FOR TECHNOLOGY INSERTION

The previous sections outline the components of a comprehensive life-

cycle methodology and the strategies for developing and introducing the

Washington Ada Symposium Proceedings. June 1990 169

methodology into the mainstream of an existing organization. Such a plan

is not complete without specific milestones and evaluation criteria to

monitor its progress. This section describes milestones that can be used to

determine the quality of the technology development and insertion.

Level 1 : Technical Investigation

This is the initial stage of methodology development and the precursor to
technology insertion. A project or organization enters this stage upon
recognizing that there must be a better approach to solving its problems.

Activities in this stage include literature searches, correspondence with

consultants, selection of new methods and techniques, and experimental

application of techniques. Some organizations may intemally fund com-

plete software development projects within the scope of technical investi-

gations. Incremental methodology development requires continued con-

current technology investigation for some areas of the methodology, while

others advance to Level Two.

Level 2: Minimal Project Support Established

This stage of technology insertion requires two conditions: enough docu-

mentation of the methodology exists to support projects outside of the

methodology investigation, and a project is willing to accept the risks

related to applying a newmethodology ormethodology subcomponent. If

either of the pre-conditions is not complete, it will become quickly evident.

If a project applies a methodology without sufficient support, the project

management and technical practitioners will not waste time in saying so.

And of course, not being able to convince project management and

practitioners to adopt the methodology indicates that insufficient technical

and management documentation exists to support them. Projects in this

stage of technology insertion, although outside the scope of the methodol-

ogy investigation, are often experimental or low risk efforts. Examples

may include internal tool development or Government-funded methodol-

ogy experiments.

Level 3: Assisted Methodology Application

This stage of technology insertion corresponds with the adoption of the

methodology by a software project that must deliver a product to an outside

customer. The adoption is based on a well-defined software development

process, and the risk is mitigated by personnel support from the method-

ology investigation team. This liaison between methodologists and

practitioners permits a steady stream of feedback and quick refinement of

techniques, standards, and job aids.

Level 4: Initial Independent Methodology Application

This level of technology insertion signifies that the documentation of the

methodology is sufficient for independent practitioners to apply it inde-

pendent of the methodology investigation team. Level Four can only be

achieved after Level Three insertion efforts have provided sufficient feed-

back to create a Repeatable Process for software development (as defined

by Humphrey [HUMP89]). CASE and automated management support

may exist for some or all of the techniques defined in the methodology.

The methodology investigation should continue to correspond with these

projects for two major reasons: in a crisis, tbe project may inappropriately

abandon or alter methodology components; and independent application

will identify additional support requirements that were not needed as long

as the methodology investigation team was present and in control.

Level 5: Maturing Independent Methodology Application

At this levelofinsertion, technology is successfully in place. Projects that

have adopted the development methodology independently refine it to

their specific environments. Projects that can effectively control their

projects while refining the processes tomeet their own specific needs have

achieved Humphrey's process maturity level of a Defined Process. At this

stage, the methodology will continue to mature within the application

project's organization.

PROGRESS AT CSC

CSC has sponsored the initial investigation for the comprehensive object-

oriented life-cycle methodology through Internal Research and Develop-

ment (IR&D). The first year effort focused on Level One technology

investigation activities. CSC's IR&D effort (1988-89) proved that a

comprehensive object-oriented life-cycle methodology for Ada software

development is feasible and made excellent progress toward its establish-

ment. The team investigated and evaluated work in object-oriented

software development, selected and applied techniques of various ap-

proaches, and established the Object-Oriented Requirements Analysis

and Design (OORA/D) method for Ada software. The greatest amount of

resources was allocated to the selection and refinement of an Object-

Oriented Requirements Analysis (OORA) method that creates multiple,

interconnected models of system requirements, organized around the

entities inthe problem domain. As part of that first yeareffort, theOORA/

D method was successfully applied to the development of a small Ada

application in order to provide preliminary validation and to establish

software products for further analysis. The first year results were pub-

lished [ANDE89], and received substantial technical acceptance by the

Ada community.

The second yea r of the project (1989 -90) built upon the progress of the first

year and eventually achieved limited Level Two and Level Three technol-

ogy insertion. Standards for OORA processes and products were estab-

lished based on prototype documents from the initial year investigation;

projects outside the scope of the IR&D project applied the OORA/D

methodology on their own test projects; and the design method was

documented in the form of a workshop that permits project members to

apply the method to their own project in place of contrived exercises. The

design method was created using the "Best of Class" concept and thus can

be considered a hybrid built on the process experience of many other

projects. A particularly significant risk-reduetion characteristic of the

design method is that the entire design is graphically defined in terms of

an abstraction hierarchy of interacting objects before the creation of Ada

170 Washington Ada Sympos ium Proceed ings . June 1990

specifications. This initial logical design can be constmcted rapidly and

provides early management insight into the size and technical intricacies

of the application. The logical design is then transformed into a physical

Ada software system; however, any programming language can be used.

Publication and application have elicited significant feedback to refine the

OORA/D methodology. Construction of OORA standards was possible

because existing documentation and training were available on the particu-

lar method selected before the techniques were applied. Standards were

defined for the analysis process and the interim documentation produced

during that process [NASA90], as well as the final DOD-STD-2167A

compliant SRS that documents them as a Government deliverable

[WARD90]. The object-oriented design workshop has been delivered, and

the method was applied to several external projects. Although the hybrid

nature of the design method deterred standards construction, the initial
workshops contributed signifieandy to method refinement. The final

deliverable design product is the most concrete and tangible form of a

design because it immediately precedes Ada coding. Therefore it was

possible to define management control structures for its development and

maintenance [ANDE90] and to tailor the DOD-STD-2167A Software

Design Document [DAHL90].

In keeping with the approach presented in this paper, the CSC Technology

Center encourages discussion regarding this technology insertion ap-

proach and its comprehensive object-oriented life-cycle methodology.

Managers, practitioners, and researchers may contact the author for further

information, including access to standards, training, development support,

and updates to the methodology.

ACKNOWLEDGEMENT

The author wishes to express Ms appreciation to Dr. Pamela A. Miller,

whose inspiration and unyielding concern for quality made this paper
possible.

REFERENCES

[ANDE89] Anderson, John, & Holland, Lance, & McDonald, Jane, &

Scranage, Elaine, "Automated Object-Oriented Requirements Analysis

and Design," Proceedings of the Sixth Washington Ada Symposium, June

26-29, 1989. Association for Computing Machinery, Inc.

[ANDE90] Anderson, John A. & Dahlke, Carl E.,"Controlling Complex-

ity in Ada Design Representation," Proceedings of the Ada-Europe Dublin

1990 Conference 12-14 June 1990, published in Ada: Experiences and
Prospects, Cambridge University Press, Ada Companion Series, 1990.

[CASE90] Case, A., "What is an Analysis and Design Tool Worth?,"

Software Engineering Strategies, File: Strategic Planning SPA-238-394,

Gartner Group, Inc., March 30, 1990.

[DAHL90] Dahlke, Carl & Anderson, John A., "Tailoring The DOD STD-

2t67A Software Design Document To Support Layered Abstractions,"

Proceedings of the Structured Development Forum XI, April 30-May 3,

1990.
[DLIK72] Dijkstra, E. W., "The Humble Programmer" (Turing Award

Lecture), Communications of the ACM, Vol. 15, No. 10 (October 1972),

Association for Computing Machinery, Inc.

[DOD83] U.S. Department of Defense, ReferenCe Manual for the Ada

Proeramrnin g Lan eua~e. ANSI/MIL-STD- 1815A- 1983.17 February 1983.

[DOD85] U.S. Department of Defense.Military Standard Defense System

Software Development, DOD-STD-2167. 4 June 1985.

[DOD88a] U.S. Department of Defense, Military Standard Defense Sys-

tem Software Development, DOD-STD-2167A. 29 February 1988.

[DOD88b] U.S. Deparmaent of Defense, Military Standard Defense SW-

tern Software Oualitv Prrogram, DOD-STD-2168.29 April 1988.

[DOD88c] U.S. Department of Defense, Military Standard Defense Sys-

tern Software Development Data Item Description for the Software

Requirements Specification, DI-MCCRS0025A. 29 February 1988.

[DOD88d] U.S. Department of Defense, Military Standard Defense Sys-

tem Software Development Data Item Description for the Software

Design Document, DI-MCCR8OO12A. 29 February 1988.

[DOD88e] U.S. Department of Defense, Military Standard Defense Sys-

tem Software Development Data Item Description for the Software

Development Plan, DI-MCCR80030A. 29 February 1988.

[FREE83] Freeman, Peter, "Reusable Software Engineering: Concepts

and Research Directions," Tutorial: Software Reusability, IEEE Com-

puter Society Order No. 750, IEEE Computer Society Press, 1987.

[HUMP87] Humphrey, W. S., & Sweet, W. L., A Method for Assessing

the Software Engineering Capability of Contractors, September, 1987,

Software Engineering Institute, Carnegie Mellon University, Pittsburgh,

PA 15213.

[HUMP89] Humphrey, Waus S., 1V~anatzing the Software Process, Ad-

dison-Wesley Publishing Company, Inc., Reading, MA, 1989.

[NASA90] NASA Goddard Space Flight Center, "Flight Software Sys-

tems Branch (FSSB)Software Standards and Procedures (FSSP)Manual"

Standards 800 - 804, control number B202A3-25, March 29, 1990.

[SEID89] Siedor, CoUin & Byerly, Steve, producers, "The Quality Revo-
lution," (Television program), Dystar Television, Inc., 1989.

[WARD90] Ward, Elaine S., & Anderson, John A., "Documenting Ob-

ject-Oriented Requirements Analysis Understandably for DOD-STD-

2167 A," Proceedings of the Structured Development Forum XI, April 30-

May 3, 1990.

Washington Ada Symposium Proceedings. June 1990 171

