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Abstract 

The kind of parallel computation that can be readily 
expressed with forall statements is not ordinarily well 
supported by implementations of Ada tasking because tasks 
demand too much memory to permit their use in large 
numbers. For a restricted class of tasks with properties 
well-suited to forall parallelism, we have developed imple- 
mentation techniques that require only limited space for an 
array of tasks, regardless of the number of tasks in the 
array. Together with techniques for efficient task creation, 
initialization, and execution, this makes Ada tasking 
practical for certain kinds of fine-grained parallelism and 
highly-parallel computation. 

1. Introduction 

With the emergence of massively-parallel computers, it 
is becoming increasingly important for language implemen- 
tations to provide efficient support for highly-parallel 
algorithms. While Ada is unusual among major languages 
in providing direct support for parallel programming 
through its tasking facilities [ALRM83], typical Ada task 
implementations are not well suited to fine-grained tasking 
or the use large numbers of tasks, due to the costs in both 
time and space associated with individual tasks. These costs 
arise from the power and generality of Ada tasking, so it is 
possible to provide more efficient support for certain 
restricted classes of tasks. 

A common construct for explicit parallel computation is 
the forali (or DOALL) statement. A statement such as 
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f o r a l I  I i n  1 . .  N do 
C ( t )  := A ( I )  + B ( 1 ) ;  

end f o r a t t ;  

indicates that the body of the statement is to be executed 
N times, each time with the variable I assuming a different 
value in the range from 1 to tl. The separate executions of 
the body may be carried out in any order or in parallel, 
with synchronization only after all executions have complet- 
ed. While its use is limited to cases in which there are no 
dependencies among the executions of the body, this 
construct is conceptually simple, and can specify parallel 
execution from the subprogram level (through enclosed 
procedure calls) down to the statement level, as in the 
above example. It also allows expression of high degrees of 
parallelism, potentially calling for millions of executions of 
the statement body. This makes it useful for programming 
massively parallel systems. Since the body can contain 
conditional statements, it is suitable for programming 
MIMD (multiple instruction, multiple data) architectures. 

Ada tasking can be used to specify parallel execution 
comparable to that of forall statements by defining a task 
type enclosing the body and creating an array of these tasks. 
But several problems arise in attempting to use tasks for 
fine-grained or highly-parallel programming: 

1. Typical implementations of Ada tasks are prohibi- 
tively inefficient for the creation and execution of 
the tasks needed: execution overhead precludes 
efficient use of tasks for fine-grained parallelism; 
storage overhead precludes the simultaneous use of 
large numbers of tasks. Implementations may be 
unable to support even a few hundred tasks, let 
alone thousands or millions. 

2. The individual tasks must be provided with the 
appropriate values of the forali index variable 
through explicit initialization, which can be a serial 
bottleneck [YEMI82]. 

3. It is syntactically more complex than the simple 
forall statement, resulting in awkward expression of 
certain algorithms. 
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generic 
N: INTEGER; -- Square matrix size 

package MATRIX_PACKAGE is 

subtype MATRIX_INDEX is INTEGER range 1.,N; 
type MATRIX is  

array (MATRIX_INDEX, MATRIX_INDEX) of FLOAT; 

procedure MULTIPLY(A, B: in MATRIX; 
C: out MATRIX); 

end MATRIX_PACKAGE; 

Figure 1. Ada generic package speci f icat ion for 
matrix m u t t i p t i c a t i o n  

procedure MULTIPLY(A, B: in MATRIX; C: out MATRIX) is 
begin 

for_a l l  I in MATRIX_INDEX do 

-- Execute body for each row of result matrix: 
dec t are 

SUM: FLOAT; 
begin 

for J in MATRIX_INDEX Loop 
SUM := 0.0; 
for K in MATRIX_INDEX loop 

SUM := SUM + A( I ,  K) * B(K, J); 
end loop; 
C(l ,  J) := SUM; 

end Loop; 
end; 

end fo r_a l l ;  
end HULTIPLY; 

Figure 2. Matrix mu l t ip l i ca t ion  with a hypothetical 
Ada fo r_a l l  statement 

This paper describes an Ada tasking optimization that can 
solve the first problem: providing space- and time-efficient 
tasks suitable for the kinds of parallel computation for 
which forall constructs are useful. The techniques are 
explained, a prototype implementation is described, and 
some performance data for example programs are dis- 
cussed. Our program examples also illustrate approaches 
to the other two problems described above, but full discus- 
sion of them is beyond the scope of this paper. 

2. A Matrix Multiplication Example 

The Ada generic package specification shown in 
Figure 1 defines a data type representing an N-by-N matrix, 
and specifies a procedure for matrix multiplication. 
Figure 2 shows one way the matrix multiplication procedure 
could be implemented in an Ada-like language with a forall 
statement. The forall statement controls parallel computa- 
tion of each row of the result, and a serial loop controls 
computation of each element of each row, carried out by 
the innermost serial loop. This program could be modified 
for finer granularity of parallel execution by replacing the 

procedure MULTIPLY(A, B: in MATRIX; C: out MATRIX) is 

task type ROId CALC i s  
entry INITTALIZE(ROW: in MATRIX_INDEX); 

-- To receive index of row to compute 
end ROW CALC; 

MULT_TASK: array (MATRIX INDEX) of ROW_CALC; 

task body ROtJ_CALC is 
I :  MATRIX_INDEX; 
SUM: FLOAT; 

begin 
accept INITIALIZE(ROW: in MATRIX_INDEX) do 

I := ROW; 
end INITIALIZE; 
for  J in MATRIX_INDEX Loop 

SUM := 0.0; 
for K in MATRIX_INDEX loop 

SUM := SUM + A( I ,  K) * B(K, J);  
end Loop; 
C( l ,  J) := SUM; 

end loop; 
end ROW CALC; 

begin 
for I in MATRIX INDEX loop 

NULT TASK(I),INITIALIZE(1); 
end loop; 

end MULTIPLY; 

Figure 3. Matrix mu l t ip l i ca t ion  using Ada tasks 

outer serial loop statement with a forall statement. Note 
that data dependencies preclude the use of a forall state- 
ment for the innermost loop. 

A comparable technique for using Ada tasks to express 
parallel matrix multiplication is shown in Figure 3. This 
implementation uses an array of N tasks, each of which 
computes the results for one row of the result correspond- 
ing to its own index. The entry INITIALIZE is used to tell 
each task what its row index is; each task then reads values 
from the input matrices A and B to compute the values 
needed, and places results in the matrix C. 

This example illustrates the problems enumerated 
above. It is obviously more complex than the forall version 
of Figure 2, primarily due to the need to declare the task 
type, task array, and task body. Adapting it for finer 
granularity would introduce still more complexity. Typical 
implementations of Ada tasks would require the serial 
allocation of task control blocks and stack space for each 
task at the time of task array elaboration, resulting in a 
serial bottleneck and possibly exhausting available resources 
for large values of N. The initialization of the tasks 
through the INITIALIZE entry is another serial bottleneck 
for this example. While it may not be a serious problem in 
the version shown, a version using f'mer granularity (e.g., 
one task per result element) could be seriously hampered. 
It would require N 2 rendezvous to initialize all of the tasks, 
while the processing time for each task would be O(N), so 
for sufficiently large N, the initialization could take much 
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package FA_BEACON is 
type FA BEACON_TYPE is Limited pr ivate;  
funct ion FETCHADD (B: in FA_BEACON_TYPE) 

return INTEGER; 
pr ivate 

task type FABEACON_TASK is 
entry FETCH_ADD(L: out INTEGER); 

end FA_BEACON_TASK; 
type FA_BEACON_TYPE is new FA_BEACOH_TASK; 

end FA_BEACON; 

package body FA_BEACON is  
task body FA_BEACON_TASK i s  

V: INTEGER := O; 
begin 

toop 
select 

accept FETCH_ADD(L: out INTEGER) do 
L := V; V := V + 1; 

end FETCH_ADD; 
o r  

terminate; 
end select;  

end Loop; 
end FA_BEACON_TASK; 

funct ion FETCH_ADD (B: in FA_BEACON_TYPE) 
return INTEGER is 

RESULT: INTEGER; 
begin 

B.FETCH_ADD(RESULT); 
return RESULT; 

end FETCHADD; 
end FA_BEACON; 

Figure 4. The FA BEACON package can be used for 
e f f i c i en t  task i n~ t i a t i za t i on .  

longer than an individual task execution, limiting effective 
parallelism. 

A solution to the initialization problem is available for 
parallel hardware that supports combinable fetch-add 
operations. In work associated with the NYU Ultracom- 
puter, Schonberg and Schonberg [SCHO85] describe the 
use of beacons for task initialization. Beacons are tasks 
with an entry having the semantics of the fetch-add opera- 
tion: returning the current value of a variable, and incre- 
menting the variable by a specified value. An Ada imple- 
mentation of a simple beacon package is shown in Figure 4 
(For simplicity, the package shown self-initializes the 
beacon value to zero, and always increments by one, while 
our usual implementation provides an initialization entry 
and an increment parameter for F E T C H A D D ) .  If an 
implementation using hardware fetch-add operations is 
provided, calls to the beacon FETCH ADD entry can be 
handled without causing the caller to block. Any number 
of processors could then perform their task initializations 
simultaneously. The adaptation of matrix multiplication to 
use beacons is shown in Figure 5. It is actually somewhat 
simpler than the use of initialization entries in Figure 3. 

with FA_BEACON; 
proceclureMULTIPLY(A, B: in MATRIX; C: out MATRIX) is 

BEACON: FA_BEACON,FABEACONTYPE; 

task type ROI,~CALC; 

MULT_TASK: array (MATRIX_INDEX) of ROI~CALC; 

task body ROg_CALC is 
I: MATRIX_INDEX; 
SUM: FLOAT; 

begin 
I := FA_BEACON.FETCHADD(BEACON); 
for J in MATRIX iNDEX loop 

SUM := 0.0;  
for K in MATRIX_INDEX ioop 

SUM := SLIM + A ( I ,  K) * B(K, d); 
end toop; 
C(l ,  J) := SUM; 

end toop; 
end ROt~CALC; 

begin 
nuLL; -- ALLow tasks to execute, auait comptetion. 

end MULTIPLY; 

Figure 5. Hatr ix  r~Jt t lp t ieat ion with i n i t i a l i z a t i o n  
using beacons 

The simple use of beacons can provide only a single 
integer value to each task, and the distribution of the values 
is arbitrary: a given task may receive any unique value from 
the effective range, not necessarily its own index. For  some 
algorithms this is adequate, but for others it may be 
necessary to implement more complex initialization schemes 
to provide several values (possibly other than integers) by 
using auxiliary computations or arrays of initialization 
values. 

3. Implementing Efficient forall Tasks 

A major cost of using large numbers of tasks in typical 
Ada implementations is memory. The demand on memory 
arises from the need to maintain the complete state of each 
task if it is suspended. The state information required 
includes not only the contents of machine registers and data 
associated with control of the task (such as entry queues 
and priority information), but also the task's workspace: 
data typically contained in stack activation records, such as 
the contents of local variables. To allow tasks to make 
subprogram calls, a generous stack space must be allocated 
to each task when it begins activation, to be deallocated 
when the task completes. This is expensive when large 
numbers of tasks are live simultaneously. (We say that a 
task is live if it has started its activation, but has not yet 
completed its execution. With this definition, a suspended 
task is live, though not executing.) 

Our optimization limits the cost of large groups of tasks 
(such as task arrays) by placing bounds on the number of 
tasks that are live at any given time. Tasks meeting certain 
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conditions described below can be scheduled in a manner 
that limits the number of such tasks that are simultaneously 
live. The conditions are based on the properties of typical 
forall bodies, which do not require synchronizations, delays, 
or other actions that would result in suspension. Each 
execution of a body can proceed without suspending itself, 
so that once a processor is assigned to it, it can execute to 
completion independently and release its resources. 

To take advantage of this approach, we define the class 
of autonomous tasks, and describe a scheduling policy that 
yields bounds on live autonomous tasks. A task type (and 
each task object of this type) is called autonomous if 

1. it has no entries, 

2. its body makes no entry calls, and does not call 
(directly or indirectly) any subprograms that make 
entry calls (except for specially-implemented non- 
blocking entry calls such as the beacons described 
earlier), 

3. its body contains no delay statements, and does 
not call (directly or indirectly) any subprograms that 
contain delay statements or could otherwise block 
execution (e.g., blocking I / O  operations), 

4. it creates no subtasks, and does not call (directly 
or indirectly) any subprograms that create subtasks. 

Conditions I through 3 ensure that tasks of this type do not 
attempt rendezvous, delays, or other actions that would 
cause them to be suspended. Condition 4 ensures that such 
tasks will not wait for the activation or completion of any 
subtasks. These conditions could be weakened (e.g., to 
allow the task body to contain entry calls if they are never 
executed), but as stated they could be verified (on the basis 
of special pragmas) or possibly even detected by an imple- 
mentation. With these conditions, any autonomous task can 
proceed from the beginning of its activation through 
completion without "voluntarily" suspending to await any 
actions of other tasks. 

Large numbers of autonomous tasks can be efficiently 
executed by using a restricted scheduling policy: 

Scheduling Policy for Autonomous Tasks: Once a 
processor is allocated to an autonomous task t, it 
cannot be reallocated to any other task of the same 
type until t completes. 

The conditions defining an autonomous task ensure that the 
completion of t does not depend on the actions of any task 
whose execution could be deferred by this scheduling policy, 
so the completion of an autonomous task will not be 
impeded. Since this policy only affects scheduling choices 
between tasks of the same type, and therefore the same 
priority, it does not conflict with the required semantics of 
task priorities. 

An immediate result of this scheduling policy is the 
following bound on live tasks: 

Live Task Bound for Autonomous Tasks: The 
number of live tasks of any autonomous task type 
cannot exceed the number of processors. 

Even if arrays of thousands of autonomous tasks have been 
declared, at most one task of each autonomous type can be 
live for each processor. Since only live tasks require stack 
space, large arrays of autonomous tasks will require only 
limited stack space. Autonomoustasksmaybesuspended 
to handle interrupts or to schedule higher-priority tasks, but 
only one task of each autonomous type could possibly be 
suspended for each processor, so the bound on memory 
allocation still holds. Unless the preempting tasks result in 
starvation, the autonomous tasks will eventually resume and 
complete. While such preemption will force context 
switching, the autonomous tasks can otherwise proceed very 
efficiently, without context switches. In multiprocessor 
systems, it may be possible for most processors to avoid 
context switching during the execution of autonomous tasks. 
Another technique for gaining efficiency is to immediately 
reallocate the processor and stack space of a completed 
autonomous task to any waiting task of the same type, to 
avoid the costs of deallocating and reallocating such 
resources. 

Similar treatment can be given to a broader class of 
tasks, allowing the creation of subtasks. We define dynastic 
task types by imposing conditions 1 through 3 of autono- 
mous task types, but changing condition 4 to the following: 

4'. Any task created by a task of dynastic type T (or 
by a subprogram called directly or indirectly by the 
task) must be a dynastic task with priority not less 
than that of T. 

Note that this allows a dynastic task to create tasks of any 
dynastic type, requiring only that the subtasks' priorities be 
at least as high as the parent 's priority. Dynastic tasks need 
a modified scheduling policy, allowing such tasks to relin- 
quish control to their "children": 

Scheduling Policy for Dynastic Tasks: Once a 
processor is allocated to a dynastic task t, it cannot 
be reallocated to any other task of the same type, 
except for (direct or indirect) subtasks of t, until t 
completes. 

This scheduling policy is compatible with Ada  semantics 
because of the subtask priority restriction for dynastic tasks. 
If  task t is suspended while a subtask activates, the subtask's 
equal or higher priority will permit any other task of the 
parent type to be deferred. 

The bound on live tasks must now be formulated 
differently, since tasks that recursively create new tasks of 
their own type could cause arbitrary numbers of dynastic 
tasks to be live simultaneously. 

Live Task Bound for Dynastic Tasks: The number 
of live tasks of any dynastic type, created directly by 
any single task, cannot exceed the number of 
processors. 
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This still results in the same bound on the number of live 
tasks in an array of tasks: one per processor. 

While the properties of autonomous and dynastic tasks 
allow them to be handled with limited stack space, they also 
reduce the amount of task-related data needed by the Ada 
runtime system. Since these tasks have no entries and 
cannot engage in rendezvous, no entry queue data is 
needed for them, and their scheduling priorities cannot 
change, so no per-task priority information is needed. With 
some additional restrictions, it is possible to completely 
eliminate the need for task-specific information other than 
the internal state of the task itself during its execution. We 
define simple task types as dynastic task types with the 
following additional conditions: 

1. The program contains no abort statements that 
identify tasks of this type, and 

2. the program contains no references to the CALL- 
ABLE or TERMINATED attributes of tasks of this 
type. 

As a result of these restrictions, the program cannot refer 
to any individual simple task, except to access certain 
attributes (SIZE, STORAGE_SIZE, and ADDRESS) that 
have the same value for any task of the type. Certain 
information required by the runtime system, such as the 
master of each task, is the same for all tasks which are 
components of a single array or other structure. Conse- 
quently, the runtime system does not need to retain any 
information about individual tasks of simple types, unless 
they are live. The task control blocks (TCBs) and task 
identifiers typically used in task implementations are 
unnecessary. A small data structure containing a few items 
(such as the unactivated task count, the amount of stack 

generic 
with procedure PARALLEL_BODY(INDEX: in INTEGER); 

procedure FOR ALL(FRON, TO= in INTEGER); 

with FA_BEACON; 
procedure FOR_ALL(FROH, TO: in INTEGER) is 

J : FA_BEACON.FA_BEACON_TYPE; 

task type PARALLEL_TASK; 

TASK_ARRAY: array (FROM .. TO) 
of PARALLEL_TASK; 

task body PARALLEL_TASK is 
begin 

PARALLEL_BODY(FABEACON.FETCNADD(J)); 
end PARALLEL_TASK; 

begin 
hurt; 

end FORALL; 

Figure 6. Generic FORALL procedure for specifying 
parattet execution 

space to be allocated for each task, and the address of the 
machine code for the task body) is all that is needed for an 
array of simple tasks, regardless of the number of tasks in 
the array. An array of  several million simple tasks could 
require only a few words of memory. For  large enough N, 
an array of N simple tasks could require less memory than 
an array of N Booleans! 

In addition to being space-efficient, simple tasks can be 
very efficiently executed because they avoid much of the 
context-switching needed to handle the suspension and 
resumption of ordinary tasks; they also contain few synchro- 
nization points at which the runtime system must check for 
abnormal status or for preemption by higher-priority tasks. 

In spite of the restrictions imposed, simple tasks remain 
useful. Their properties are based on the normal properties 
of forall statement bodies, whose executions must be 
independent. While they are incapable of engaging in 
ordinary rendezvous to exchange information, they can 
access shared variables and data structures. By allowing 
simple tasks to call specially-optimized entries like the 
beacon FETCH_ADD, which never cause the caller to 
block, the beacon task-initialization technique can be 
applied to arrays of simple tasks, so that procedures such as 
that shown in Figure 5 can be efficiently supported. 

4. Hiding the Details: a Generic FORALL Procedure 

Ada's  generic procedure facility can be used to encapsu- 
late much of the complexity of using tasks for parallel 
programming. Figure 6 shows a generic FOR ALL 
procedure that provides a straightforward means of sl~ecify- 
ing parallel execution. The use of this procedure to 
program the matrix multiplication example is shown in 
Figure 7. This approach completely suppresses the linguis- 
tic complexity of the tasks, but is still somewhat awkward 
due to the need to express each forall body as a procedure. 
This can be cumbersome for algorithms such as matrix 
multiplication, where the bodies are very simple, but it 
would be reasonable for more complex algorithms, where 
bodies may be large enough to warrant separate procedures 
anyway. 

Variations on this basic FOR ALL procedure could 
even be used to go beyond the semantics of the simple 
forall statement by varying more than one parameter  to the 
body procedure. This could be done to distribute array 
indices to multidimensional arrays of tasks, for example. 
While such techniques can be very application-dependent, 
the use of generic procedures with procedure parameters 
still serves to encapsulate the details of tasking and task 
initialization. In fact, such generic procedures can be 
implemented to use completely different approaches to the 
use of tasks. One implementation of F O R  ALL could use 
the simple-task approach described above'~ another could 
use one task per physical processor, with each task making 
sequential calls to the body procedure to handle all parame- 
ter values; and a third, suitable for a single processor, could 
be completely sequential. This provides a method for 
encapsulating approaches suitable for different hardware 
architectures or runtime system implementations, to 
promote portability. 
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with FOR_ALL; 
procedure MULTIPLY(A, B: in MATRIX; C: out MATRIX) is 

procedure ROUNULTIPLY(ROg: in MATRIX_INDEX) is 
SUN= FLOAT; 

begin 
for J in MATRIX_INDEX Loop 

SUN := 0.0;  
for K in MATRIX_INDEX Loop 

SUN := SUM + A(ROg, K) * B(K, J); 
end Loop; 
C(ROW a J) := SUN; 

end Loop; 
end ROkIHULTIPLY; 

procedure FOR ALL ROWS is FOR_ALL(R~_MULTIPLY); 

begin 
FOR ALL ROgS(NATRIX_INDEX~FIRST, 

MATRIX INDEXmLAST); 
-- Invoke ROW MULTIPLY for each row index 
--  (in parat tet ) .  

end MULTIPLY; 

Figure 7. Using the generic FORALL procedure for 
matrix muLtipLication 

5. Prototype Implementation 

We have developed a prototype implementation of 
optimized simple tasks for the MIPS-by-four computer, a 
four-processor system built as a testbed for development of 
the Multitude architecture. The Multitude architecture is 
a shared-memory parallel processor architecture under 
development by Unisys. In this architecture, each processor 
resides in a node that also contains its local memory, I / O  
hardware, and an interface to a multistage interconnection 
network that provides access to the local memories of all 
other nodes. As in the NYU Ultracomputer [GOTT83] and 
IBM RP3 [PFIS85], the interconnection network provides 
support for combinable operations such as fetch-add. This 
allows any number of processors to simultaneously perform 
a combinable operation on the same memory location 
without blocking. The result is as if the operations had 
been performed in some particular serial order. Special 
features of the Multitude network minimize contention 
problems to provide efficient global memory access. The 
architecture is designed to be scalable to thousands of 
processors, to support fault-tolerance, and to allow efficient 
creation of many parallel threads of control (lightweight 
processes). 

The MIPS-by-four computer contains four processor 
nodes, each with a MIPS Inc. R2300 CPU card, 8 mega- 
bytes of local memory, various I / O  cards, and an interface 
to interconnection hardware that simulates the Multitude 
interconnection network through a set of four separate 
VMEbuses. An operating system kernel for the MIPS-by- 
four computer provides facilities that can efficiently create 
large numbers of lightweight processes. The essential 
mechanism for creating lightweight processes is the proce- 

dure createJight, which creates N lightweight processes, 
each of which will execute the same specified procedure 
with a different parameter value in the range from zero to 
N-1. The create light procedure returns when all of the 
processes have completed execution. 

Our prototype implementation of optimized simple tasks 
is based on the MIPS.Ada system (a version of the Verdix 
VADS system for the MIPS M/120 computer), and targets 
our MIPS-by-four computer. The code generated by the 
MIPS-Ada compiler is directly executable by the MIPS-by- 
four processors, so all that was necessary was to replace the 
runtime system with one designed for the MIPS-by-four 
computer, and based on the techniques described above. 

Because we restricted programs to use only simple tasks, 
the runtime system implementation was straightforward. 
While a typical Ada implementation uses a record known 
as a task control block (or TCB) for each task, we use a 
single TCB for a group of tasks of the same type (such as 
a task array) created by a single declaration or allocator. 
Task creation involves setting up a TCB containing the 
information needed to execute the task: the amount of 
stack space required, the address of the task body, and a 
pointer to the activation record of the master (i.e., a static 
link). If  a declaration or allocator creates two or more 
tasks, all of the same type (as for a task array), the compiler 
calls the runtime task-creation procedure once for each 
task. After the first, each of these identical tasks is created 
by simply incrementing a task count in the TCB. Ideally, 
task arrays should be hanrdled differently by the compiler: 
instead of sequentially calling the task creation procedure, 
a special runtime system call should create a TCB with the 
proper task count. Since we did not modify the compiler 
itself for this prototype, we are not taking full advantage of 
the optimizations possible. 

Activation of the tasks is handled by using the kernel's 
create_light facility to create a lightweight process for each 
task. The parent suspends while the tasks for a single TCB 
are executed, with as many available processors as needed 
participating in the execution of the tasks. After all of the 
tasks for a TCB have terminated, the next TCB (if any) for 
the same declarative part or allocator is handled. The 
parent resumes only after all tasks represented by these 
TCBs have terminated. This simple scheduling policy is 
unusual (and inappropriate for tasks in general, which may 
need to interact with parents or siblings), but it is consistent 
with proper Ada semantics for simple tasks, and can be 
handled very efficiently by the MIPS-by-four system. 

We have also implemented a package based on the 
Schonberg beacon [SCHO85] to permit access to fetch-add 
operations. This package is similar to that shown in 
Figure 4, although it is implemented using a kernel function 
call for the fetch-add operation, instead of using a specially- 
optimized task. The generic FOR_ALL procedure of 
Figure 6 is also provided. 

With these facilities, we have run various parallel Ada 
programs using arrays of up to 25,000 tasks. These pro- 
grams include fast Fourier transform procedures, prime- 
number sieves, and matrix-multiplication procedures such as 
those discussed above. Performance data (see Table I) 
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indicate that the execution-time overhead for tasking is 
quite low. The procedure in Figure 7, applied to 40-by-.40 
matrices (so that 40 tasks are used), exhibits less than 1% 
overhead compared to a similar version in which a single 
task performs the matrix multiplication serially. A version 
using much finer granularity (one task per result element, 
or 1600 tasks) exhibits about 30% overhead, putting it near 
the limit for practical use of fine-grained parallelism for 
our current implementation. A similar program executed 
on the MIPS M/120 system, using conventional Ada 
tasking, experienced execution-time overhead in excess of 
96%, and ran slowly due to page faults resulting from the 
large amount of memory (using default task size) allocated 
to the 1600 tasks. 

6. Conclusions 

We have shown that Ada tasking can be used to express 
the kind of parallel computation associated with the forall 
statement, and that efficient support for this style of tasking 
can be provided to make its use practical for highly parallel 
processing. 

Our simple tasks, based on the properties of normal 
forall statement bodies, allow an optimized implementation 
that provides for time- and space-efficient support. While 
the conditions imposed on simple tasks are restrictive in 
comparison to full Ada tasking, they still permit a conceptu- 
ally simple and natural expression of parallel computation. 
Together with the use of beacons for task initialization (in 
an architecture that supports combinable fetch-add opera- 
tions), this approach makes the use of large arrays of Ada 
tasks practical even for relatively fine-grained parallelism. 

Tasks M / 1 2 0  

1 0.7 

40 

1600 20.2 

MIPS-by-Four Processors  

1 2 3 

10.6 

10.6 

13.7 8.6 6.1 

Table I. Execution t imes (in seconds) for 40-by-40 matr ix 
mult ipl ication using one task, 40 tasks, and 1600 tasks 
on the MIPS M/120 system, and on the MIPS-by-four 
computer. For the 1600-task version, t imes for 1 
through 3 MIPS-by-four processors are shown. 

Note: While the M/120and MIPS-by-four computers use similar 
R2000 processors, their speeds differ greatly due to different 
clock speeds, data busses, and cache sizes..Also, data in the 
MIPS-by-four computer was Interleaved among processor nodes, 
so that most data accesses were to remole memory, resulting in 
slower access. For these programs, instructions resided in node 
0 memory, resulting In slow access for other processors; this 
was the primary reason for the highly nonlinear performance 
Improvement with 2 and 3 processors. 

By using generic procedures, the complexities of Ada tasks 
can be encapsulated to make the expression of parallel 
algorithms clearer. 

Further work is needed to integrate our techniques for 
the implementation of simple tasks with more general 
methods suitable for full Ada tasking to provide for 
complete implementation. It may be possible to develop 
other related optimizations for additional classes of Ada 
tasks. Such approaches will make highly-parallel computers 
efficient hosts for Ada applications. 
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