
Ada Tasking for Parallel Computation:
Supporting Fine-Grained forall Parallelism

J a m e s E. H a s s e t t

U n i s y s C o r p o r a t i o n
E l e c t r o n i c a n d I n f o r m a t i o n S y s t e m s G r o u p

Abstract

The kind of parallel computation that can be readily
expressed with forall statements is not ordinarily well
supported by implementations of Ada tasking because tasks
demand too much memory to permit their use in large
numbers. For a restricted class of tasks with properties
well-suited to forall parallelism, we have developed imple-
mentation techniques that require only limited space for an
array of tasks, regardless of the number of tasks in the
array. Together with techniques for efficient task creation,
initialization, and execution, this makes Ada tasking
practical for certain kinds of fine-grained parallelism and
highly-parallel computation.

1. Introduction

With the emergence of massively-parallel computers, it
is becoming increasingly important for language implemen-
tations to provide efficient support for highly-parallel
algorithms. While Ada is unusual among major languages
in providing direct support for parallel programming
through its tasking facilities [ALRM83], typical Ada task
implementations are not well suited to fine-grained tasking
or the use large numbers of tasks, due to the costs in both
time and space associated with individual tasks. These costs
arise from the power and generality of Ada tasking, so it is
possible to provide more efficient support for certain
restricted classes of tasks.

A common construct for explicit parallel computation is
the forali (or DOALL) statement. A statement such as

Author's address: Unisys Corporation, P.O. Box 64525, MS U1J14,
St. Paul, Minnesota 55164-0525;
Electronic mail: hassett@alice.sp.unisys.com

COPYRIGHT 1990 BY THE ASSOCIATION FOR COMPUTING
MACHINERY, INC. Permission to copy without fee all or part
of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise,
or to republish, requires a fee and or specific permission.

f o r a l I I i n 1 . . N do
C (t) := A (I) + B (1) ;

end f o r a t t ;

indicates that the body of the statement is to be executed
N times, each time with the variable I assuming a different
value in the range from 1 to tl. The separate executions of
the body may be carried out in any order or in parallel,
with synchronization only after all executions have complet-
ed. While its use is limited to cases in which there are no
dependencies among the executions of the body, this
construct is conceptually simple, and can specify parallel
execution from the subprogram level (through enclosed
procedure calls) down to the statement level, as in the
above example. It also allows expression of high degrees of
parallelism, potentially calling for millions of executions of
the statement body. This makes it useful for programming
massively parallel systems. Since the body can contain
conditional statements, it is suitable for programming
MIMD (multiple instruction, multiple data) architectures.

Ada tasking can be used to specify parallel execution
comparable to that of forall statements by defining a task
type enclosing the body and creating an array of these tasks.
But several problems arise in attempting to use tasks for
fine-grained or highly-parallel programming:

1. Typical implementations of Ada tasks are prohibi-
tively inefficient for the creation and execution of
the tasks needed: execution overhead precludes
efficient use of tasks for fine-grained parallelism;
storage overhead precludes the simultaneous use of
large numbers of tasks. Implementations may be
unable to support even a few hundred tasks, let
alone thousands or millions.

2. The individual tasks must be provided with the
appropriate values of the forali index variable
through explicit initialization, which can be a serial
bottleneck [YEMI82].

3. It is syntactically more complex than the simple
forall statement, resulting in awkward expression of
certain algorithms.

Wash ing ton Ada S y m p o s i u m P r o c e e d i n g s . June 1990 205

http://crossmark.crossref.org/dialog/?doi=10.1145%2F327011.327086&domain=pdf&date_stamp=1990-07-01

generic
N: INTEGER; -- Square matrix size

package MATRIX_PACKAGE is

subtype MATRIX_INDEX is INTEGER range 1.,N;
type MATRIX is

array (MATRIX_INDEX, MATRIX_INDEX) of FLOAT;

procedure MULTIPLY(A, B: in MATRIX;
C: out MATRIX);

end MATRIX_PACKAGE;

Figure 1. Ada generic package speci f icat ion for
matrix m u t t i p t i c a t i o n

procedure MULTIPLY(A, B: in MATRIX; C: out MATRIX) is
begin

for_a l l I in MATRIX_INDEX do

-- Execute body for each row of result matrix:
dec t are

SUM: FLOAT;
begin

for J in MATRIX_INDEX Loop
SUM := 0.0;
for K in MATRIX_INDEX loop

SUM := SUM + A(I , K) * B(K, J);
end loop;
C(l , J) := SUM;

end Loop;
end;

end fo r_a l l ;
end HULTIPLY;

Figure 2. Matrix mu l t ip l i ca t ion with a hypothetical
Ada fo r_a l l statement

This paper describes an Ada tasking optimization that can
solve the first problem: providing space- and time-efficient
tasks suitable for the kinds of parallel computation for
which forall constructs are useful. The techniques are
explained, a prototype implementation is described, and
some performance data for example programs are dis-
cussed. Our program examples also illustrate approaches
to the other two problems described above, but full discus-
sion of them is beyond the scope of this paper.

2. A Matrix Multiplication Example

The Ada generic package specification shown in
Figure 1 defines a data type representing an N-by-N matrix,
and specifies a procedure for matrix multiplication.
Figure 2 shows one way the matrix multiplication procedure
could be implemented in an Ada-like language with a forall
statement. The forall statement controls parallel computa-
tion of each row of the result, and a serial loop controls
computation of each element of each row, carried out by
the innermost serial loop. This program could be modified
for finer granularity of parallel execution by replacing the

procedure MULTIPLY(A, B: in MATRIX; C: out MATRIX) is

task type ROId CALC i s
entry INITTALIZE(ROW: in MATRIX_INDEX);

-- To receive index of row to compute
end ROW CALC;

MULT_TASK: array (MATRIX INDEX) of ROW_CALC;

task body ROtJ_CALC is
I : MATRIX_INDEX;
SUM: FLOAT;

begin
accept INITIALIZE(ROW: in MATRIX_INDEX) do

I := ROW;
end INITIALIZE;
for J in MATRIX_INDEX Loop

SUM := 0.0;
for K in MATRIX_INDEX loop

SUM := SUM + A(I , K) * B(K, J);
end Loop;
C(l , J) := SUM;

end loop;
end ROW CALC;

begin
for I in MATRIX INDEX loop

NULT TASK(I),INITIALIZE(1);
end loop;

end MULTIPLY;

Figure 3. Matrix mu l t ip l i ca t ion using Ada tasks

outer serial loop statement with a forall statement. Note
that data dependencies preclude the use of a forall state-
ment for the innermost loop.

A comparable technique for using Ada tasks to express
parallel matrix multiplication is shown in Figure 3. This
implementation uses an array of N tasks, each of which
computes the results for one row of the result correspond-
ing to its own index. The entry INITIALIZE is used to tell
each task what its row index is; each task then reads values
from the input matrices A and B to compute the values
needed, and places results in the matrix C.

This example illustrates the problems enumerated
above. It is obviously more complex than the forall version
of Figure 2, primarily due to the need to declare the task
type, task array, and task body. Adapting it for finer
granularity would introduce still more complexity. Typical
implementations of Ada tasks would require the serial
allocation of task control blocks and stack space for each
task at the time of task array elaboration, resulting in a
serial bottleneck and possibly exhausting available resources
for large values of N. The initialization of the tasks
through the INITIALIZE entry is another serial bottleneck
for this example. While it may not be a serious problem in
the version shown, a version using f'mer granularity (e.g.,
one task per result element) could be seriously hampered.
It would require N 2 rendezvous to initialize all of the tasks,
while the processing time for each task would be O(N), so
for sufficiently large N, the initialization could take much

206 Washington Ada Sympos ium P r o c e e d i n g s . June 1990

package FA_BEACON is
type FA BEACON_TYPE is Limited pr ivate;
funct ion FETCHADD (B: in FA_BEACON_TYPE)

return INTEGER;
pr ivate

task type FABEACON_TASK is
entry FETCH_ADD(L: out INTEGER);

end FA_BEACON_TASK;
type FA_BEACON_TYPE is new FA_BEACOH_TASK;

end FA_BEACON;

package body FA_BEACON is
task body FA_BEACON_TASK i s

V: INTEGER := O;
begin

toop
select

accept FETCH_ADD(L: out INTEGER) do
L := V; V := V + 1;

end FETCH_ADD;
o r

terminate;
end select;

end Loop;
end FA_BEACON_TASK;

funct ion FETCH_ADD (B: in FA_BEACON_TYPE)
return INTEGER is

RESULT: INTEGER;
begin

B.FETCH_ADD(RESULT);
return RESULT;

end FETCHADD;
end FA_BEACON;

Figure 4. The FA BEACON package can be used for
e f f i c i en t task i n~ t i a t i za t i on .

longer than an individual task execution, limiting effective
parallelism.

A solution to the initialization problem is available for
parallel hardware that supports combinable fetch-add
operations. In work associated with the NYU Ultracom-
puter, Schonberg and Schonberg [SCHO85] describe the
use of beacons for task initialization. Beacons are tasks
with an entry having the semantics of the fetch-add opera-
tion: returning the current value of a variable, and incre-
menting the variable by a specified value. An Ada imple-
mentation of a simple beacon package is shown in Figure 4
(For simplicity, the package shown self-initializes the
beacon value to zero, and always increments by one, while
our usual implementation provides an initialization entry
and an increment parameter for F E T C H A D D) . If an
implementation using hardware fetch-add operations is
provided, calls to the beacon FETCH ADD entry can be
handled without causing the caller to block. Any number
of processors could then perform their task initializations
simultaneously. The adaptation of matrix multiplication to
use beacons is shown in Figure 5. It is actually somewhat
simpler than the use of initialization entries in Figure 3.

with FA_BEACON;
proceclureMULTIPLY(A, B: in MATRIX; C: out MATRIX) is

BEACON: FA_BEACON,FABEACONTYPE;

task type ROI,~CALC;

MULT_TASK: array (MATRIX_INDEX) of ROI~CALC;

task body ROg_CALC is
I: MATRIX_INDEX;
SUM: FLOAT;

begin
I := FA_BEACON.FETCHADD(BEACON);
for J in MATRIX iNDEX loop

SUM := 0.0;
for K in MATRIX_INDEX ioop

SUM := SLIM + A (I , K) * B(K, d);
end toop;
C(l , J) := SUM;

end toop;
end ROt~CALC;

begin
nuLL; -- ALLow tasks to execute, auait comptetion.

end MULTIPLY;

Figure 5. Hatr ix r~Jt t lp t ieat ion with i n i t i a l i z a t i o n
using beacons

The simple use of beacons can provide only a single
integer value to each task, and the distribution of the values
is arbitrary: a given task may receive any unique value from
the effective range, not necessarily its own index. For some
algorithms this is adequate, but for others it may be
necessary to implement more complex initialization schemes
to provide several values (possibly other than integers) by
using auxiliary computations or arrays of initialization
values.

3. Implementing Efficient forall Tasks

A major cost of using large numbers of tasks in typical
Ada implementations is memory. The demand on memory
arises from the need to maintain the complete state of each
task if it is suspended. The state information required
includes not only the contents of machine registers and data
associated with control of the task (such as entry queues
and priority information), but also the task's workspace:
data typically contained in stack activation records, such as
the contents of local variables. To allow tasks to make
subprogram calls, a generous stack space must be allocated
to each task when it begins activation, to be deallocated
when the task completes. This is expensive when large
numbers of tasks are live simultaneously. (We say that a
task is live if it has started its activation, but has not yet
completed its execution. With this definition, a suspended
task is live, though not executing.)

Our optimization limits the cost of large groups of tasks
(such as task arrays) by placing bounds on the number of
tasks that are live at any given time. Tasks meeting certain

Wash ing ton Ada Sympos ium P r o c e e d i n g s . June 1990 207

conditions described below can be scheduled in a manner
that limits the number of such tasks that are simultaneously
live. The conditions are based on the properties of typical
forall bodies, which do not require synchronizations, delays,
or other actions that would result in suspension. Each
execution of a body can proceed without suspending itself,
so that once a processor is assigned to it, it can execute to
completion independently and release its resources.

To take advantage of this approach, we define the class
of autonomous tasks, and describe a scheduling policy that
yields bounds on live autonomous tasks. A task type (and
each task object of this type) is called autonomous if

1. it has no entries,

2. its body makes no entry calls, and does not call
(directly or indirectly) any subprograms that make
entry calls (except for specially-implemented non-
blocking entry calls such as the beacons described
earlier),

3. its body contains no delay statements, and does
not call (directly or indirectly) any subprograms that
contain delay statements or could otherwise block
execution (e.g., blocking I / O operations),

4. it creates no subtasks, and does not call (directly
or indirectly) any subprograms that create subtasks.

Conditions I through 3 ensure that tasks of this type do not
attempt rendezvous, delays, or other actions that would
cause them to be suspended. Condition 4 ensures that such
tasks will not wait for the activation or completion of any
subtasks. These conditions could be weakened (e.g., to
allow the task body to contain entry calls if they are never
executed), but as stated they could be verified (on the basis
of special pragmas) or possibly even detected by an imple-
mentation. With these conditions, any autonomous task can
proceed from the beginning of its activation through
completion without "voluntarily" suspending to await any
actions of other tasks.

Large numbers of autonomous tasks can be efficiently
executed by using a restricted scheduling policy:

Scheduling Policy for Autonomous Tasks: Once a
processor is allocated to an autonomous task t, it
cannot be reallocated to any other task of the same
type until t completes.

The conditions defining an autonomous task ensure that the
completion of t does not depend on the actions of any task
whose execution could be deferred by this scheduling policy,
so the completion of an autonomous task will not be
impeded. Since this policy only affects scheduling choices
between tasks of the same type, and therefore the same
priority, it does not conflict with the required semantics of
task priorities.

An immediate result of this scheduling policy is the
following bound on live tasks:

Live Task Bound for Autonomous Tasks: The
number of live tasks of any autonomous task type
cannot exceed the number of processors.

Even if arrays of thousands of autonomous tasks have been
declared, at most one task of each autonomous type can be
live for each processor. Since only live tasks require stack
space, large arrays of autonomous tasks will require only
limited stack space. Autonomoustasksmaybesuspended
to handle interrupts or to schedule higher-priority tasks, but
only one task of each autonomous type could possibly be
suspended for each processor, so the bound on memory
allocation still holds. Unless the preempting tasks result in
starvation, the autonomous tasks will eventually resume and
complete. While such preemption will force context
switching, the autonomous tasks can otherwise proceed very
efficiently, without context switches. In multiprocessor
systems, it may be possible for most processors to avoid
context switching during the execution of autonomous tasks.
Another technique for gaining efficiency is to immediately
reallocate the processor and stack space of a completed
autonomous task to any waiting task of the same type, to
avoid the costs of deallocating and reallocating such
resources.

Similar treatment can be given to a broader class of
tasks, allowing the creation of subtasks. We define dynastic
task types by imposing conditions 1 through 3 of autono-
mous task types, but changing condition 4 to the following:

4'. Any task created by a task of dynastic type T (or
by a subprogram called directly or indirectly by the
task) must be a dynastic task with priority not less
than that of T.

Note that this allows a dynastic task to create tasks of any
dynastic type, requiring only that the subtasks' priorities be
at least as high as the parent 's priority. Dynastic tasks need
a modified scheduling policy, allowing such tasks to relin-
quish control to their "children":

Scheduling Policy for Dynastic Tasks: Once a
processor is allocated to a dynastic task t, it cannot
be reallocated to any other task of the same type,
except for (direct or indirect) subtasks of t, until t
completes.

This scheduling policy is compatible with Ada semantics
because of the subtask priority restriction for dynastic tasks.
If task t is suspended while a subtask activates, the subtask's
equal or higher priority will permit any other task of the
parent type to be deferred.

The bound on live tasks must now be formulated
differently, since tasks that recursively create new tasks of
their own type could cause arbitrary numbers of dynastic
tasks to be live simultaneously.

Live Task Bound for Dynastic Tasks: The number
of live tasks of any dynastic type, created directly by
any single task, cannot exceed the number of
processors.

208 Washington Ada Symposium Proceedings. June 1990

This still results in the same bound on the number of live
tasks in an array of tasks: one per processor.

While the properties of autonomous and dynastic tasks
allow them to be handled with limited stack space, they also
reduce the amount of task-related data needed by the Ada
runtime system. Since these tasks have no entries and
cannot engage in rendezvous, no entry queue data is
needed for them, and their scheduling priorities cannot
change, so no per-task priority information is needed. With
some additional restrictions, it is possible to completely
eliminate the need for task-specific information other than
the internal state of the task itself during its execution. We
define simple task types as dynastic task types with the
following additional conditions:

1. The program contains no abort statements that
identify tasks of this type, and

2. the program contains no references to the CALL-
ABLE or TERMINATED attributes of tasks of this
type.

As a result of these restrictions, the program cannot refer
to any individual simple task, except to access certain
attributes (SIZE, STORAGE_SIZE, and ADDRESS) that
have the same value for any task of the type. Certain
information required by the runtime system, such as the
master of each task, is the same for all tasks which are
components of a single array or other structure. Conse-
quently, the runtime system does not need to retain any
information about individual tasks of simple types, unless
they are live. The task control blocks (TCBs) and task
identifiers typically used in task implementations are
unnecessary. A small data structure containing a few items
(such as the unactivated task count, the amount of stack

generic
with procedure PARALLEL_BODY(INDEX: in INTEGER);

procedure FOR ALL(FRON, TO= in INTEGER);

with FA_BEACON;
procedure FOR_ALL(FROH, TO: in INTEGER) is

J : FA_BEACON.FA_BEACON_TYPE;

task type PARALLEL_TASK;

TASK_ARRAY: array (FROM .. TO)
of PARALLEL_TASK;

task body PARALLEL_TASK is
begin

PARALLEL_BODY(FABEACON.FETCNADD(J));
end PARALLEL_TASK;

begin
hurt;

end FORALL;

Figure 6. Generic FORALL procedure for specifying
parattet execution

space to be allocated for each task, and the address of the
machine code for the task body) is all that is needed for an
array of simple tasks, regardless of the number of tasks in
the array. An array of several million simple tasks could
require only a few words of memory. For large enough N,
an array of N simple tasks could require less memory than
an array of N Booleans!

In addition to being space-efficient, simple tasks can be
very efficiently executed because they avoid much of the
context-switching needed to handle the suspension and
resumption of ordinary tasks; they also contain few synchro-
nization points at which the runtime system must check for
abnormal status or for preemption by higher-priority tasks.

In spite of the restrictions imposed, simple tasks remain
useful. Their properties are based on the normal properties
of forall statement bodies, whose executions must be
independent. While they are incapable of engaging in
ordinary rendezvous to exchange information, they can
access shared variables and data structures. By allowing
simple tasks to call specially-optimized entries like the
beacon FETCH_ADD, which never cause the caller to
block, the beacon task-initialization technique can be
applied to arrays of simple tasks, so that procedures such as
that shown in Figure 5 can be efficiently supported.

4. Hiding the Details: a Generic FORALL Procedure

Ada's generic procedure facility can be used to encapsu-
late much of the complexity of using tasks for parallel
programming. Figure 6 shows a generic FOR ALL
procedure that provides a straightforward means of sl~ecify-
ing parallel execution. The use of this procedure to
program the matrix multiplication example is shown in
Figure 7. This approach completely suppresses the linguis-
tic complexity of the tasks, but is still somewhat awkward
due to the need to express each forall body as a procedure.
This can be cumbersome for algorithms such as matrix
multiplication, where the bodies are very simple, but it
would be reasonable for more complex algorithms, where
bodies may be large enough to warrant separate procedures
anyway.

Variations on this basic FOR ALL procedure could
even be used to go beyond the semantics of the simple
forall statement by varying more than one parameter to the
body procedure. This could be done to distribute array
indices to multidimensional arrays of tasks, for example.
While such techniques can be very application-dependent,
the use of generic procedures with procedure parameters
still serves to encapsulate the details of tasking and task
initialization. In fact, such generic procedures can be
implemented to use completely different approaches to the
use of tasks. One implementation of F O R ALL could use
the simple-task approach described above'~ another could
use one task per physical processor, with each task making
sequential calls to the body procedure to handle all parame-
ter values; and a third, suitable for a single processor, could
be completely sequential. This provides a method for
encapsulating approaches suitable for different hardware
architectures or runtime system implementations, to
promote portability.

Washington Ada Symposium Proceedings. June 1990 209

with FOR_ALL;
procedure MULTIPLY(A, B: in MATRIX; C: out MATRIX) is

procedure ROUNULTIPLY(ROg: in MATRIX_INDEX) is
SUN= FLOAT;

begin
for J in MATRIX_INDEX Loop

SUN := 0.0;
for K in MATRIX_INDEX Loop

SUN := SUM + A(ROg, K) * B(K, J);
end Loop;
C(ROW a J) := SUN;

end Loop;
end ROkIHULTIPLY;

procedure FOR ALL ROWS is FOR_ALL(R~_MULTIPLY);

begin
FOR ALL ROgS(NATRIX_INDEX~FIRST,

MATRIX INDEXmLAST);
-- Invoke ROW MULTIPLY for each row index
-- (in parat tet) .

end MULTIPLY;

Figure 7. Using the generic FORALL procedure for
matrix muLtipLication

5. Prototype Implementation

We have developed a prototype implementation of
optimized simple tasks for the MIPS-by-four computer, a
four-processor system built as a testbed for development of
the Multitude architecture. The Multitude architecture is
a shared-memory parallel processor architecture under
development by Unisys. In this architecture, each processor
resides in a node that also contains its local memory, I / O
hardware, and an interface to a multistage interconnection
network that provides access to the local memories of all
other nodes. As in the NYU Ultracomputer [GOTT83] and
IBM RP3 [PFIS85], the interconnection network provides
support for combinable operations such as fetch-add. This
allows any number of processors to simultaneously perform
a combinable operation on the same memory location
without blocking. The result is as if the operations had
been performed in some particular serial order. Special
features of the Multitude network minimize contention
problems to provide efficient global memory access. The
architecture is designed to be scalable to thousands of
processors, to support fault-tolerance, and to allow efficient
creation of many parallel threads of control (lightweight
processes).

The MIPS-by-four computer contains four processor
nodes, each with a MIPS Inc. R2300 CPU card, 8 mega-
bytes of local memory, various I / O cards, and an interface
to interconnection hardware that simulates the Multitude
interconnection network through a set of four separate
VMEbuses. An operating system kernel for the MIPS-by-
four computer provides facilities that can efficiently create
large numbers of lightweight processes. The essential
mechanism for creating lightweight processes is the proce-

dure createJight, which creates N lightweight processes,
each of which will execute the same specified procedure
with a different parameter value in the range from zero to
N-1. The create light procedure returns when all of the
processes have completed execution.

Our prototype implementation of optimized simple tasks
is based on the MIPS.Ada system (a version of the Verdix
VADS system for the MIPS M/120 computer), and targets
our MIPS-by-four computer. The code generated by the
MIPS-Ada compiler is directly executable by the MIPS-by-
four processors, so all that was necessary was to replace the
runtime system with one designed for the MIPS-by-four
computer, and based on the techniques described above.

Because we restricted programs to use only simple tasks,
the runtime system implementation was straightforward.
While a typical Ada implementation uses a record known
as a task control block (or TCB) for each task, we use a
single TCB for a group of tasks of the same type (such as
a task array) created by a single declaration or allocator.
Task creation involves setting up a TCB containing the
information needed to execute the task: the amount of
stack space required, the address of the task body, and a
pointer to the activation record of the master (i.e., a static
link). If a declaration or allocator creates two or more
tasks, all of the same type (as for a task array), the compiler
calls the runtime task-creation procedure once for each
task. After the first, each of these identical tasks is created
by simply incrementing a task count in the TCB. Ideally,
task arrays should be hanrdled differently by the compiler:
instead of sequentially calling the task creation procedure,
a special runtime system call should create a TCB with the
proper task count. Since we did not modify the compiler
itself for this prototype, we are not taking full advantage of
the optimizations possible.

Activation of the tasks is handled by using the kernel's
create_light facility to create a lightweight process for each
task. The parent suspends while the tasks for a single TCB
are executed, with as many available processors as needed
participating in the execution of the tasks. After all of the
tasks for a TCB have terminated, the next TCB (if any) for
the same declarative part or allocator is handled. The
parent resumes only after all tasks represented by these
TCBs have terminated. This simple scheduling policy is
unusual (and inappropriate for tasks in general, which may
need to interact with parents or siblings), but it is consistent
with proper Ada semantics for simple tasks, and can be
handled very efficiently by the MIPS-by-four system.

We have also implemented a package based on the
Schonberg beacon [SCHO85] to permit access to fetch-add
operations. This package is similar to that shown in
Figure 4, although it is implemented using a kernel function
call for the fetch-add operation, instead of using a specially-
optimized task. The generic FOR_ALL procedure of
Figure 6 is also provided.

With these facilities, we have run various parallel Ada
programs using arrays of up to 25,000 tasks. These pro-
grams include fast Fourier transform procedures, prime-
number sieves, and matrix-multiplication procedures such as
those discussed above. Performance data (see Table I)

210 Washington Ada Sympos ium P r o c e e d i n g s . June 1990

indicate that the execution-time overhead for tasking is
quite low. The procedure in Figure 7, applied to 40-by-.40
matrices (so that 40 tasks are used), exhibits less than 1%
overhead compared to a similar version in which a single
task performs the matrix multiplication serially. A version
using much finer granularity (one task per result element,
or 1600 tasks) exhibits about 30% overhead, putting it near
the limit for practical use of fine-grained parallelism for
our current implementation. A similar program executed
on the MIPS M/120 system, using conventional Ada
tasking, experienced execution-time overhead in excess of
96%, and ran slowly due to page faults resulting from the
large amount of memory (using default task size) allocated
to the 1600 tasks.

6. Conclusions

We have shown that Ada tasking can be used to express
the kind of parallel computation associated with the forall
statement, and that efficient support for this style of tasking
can be provided to make its use practical for highly parallel
processing.

Our simple tasks, based on the properties of normal
forall statement bodies, allow an optimized implementation
that provides for time- and space-efficient support. While
the conditions imposed on simple tasks are restrictive in
comparison to full Ada tasking, they still permit a conceptu-
ally simple and natural expression of parallel computation.
Together with the use of beacons for task initialization (in
an architecture that supports combinable fetch-add opera-
tions), this approach makes the use of large arrays of Ada
tasks practical even for relatively fine-grained parallelism.

Tasks M / 1 2 0

1 0.7

40

1600 20.2

MIPS-by-Four Processors

1 2 3

10.6

10.6

13.7 8.6 6.1

Table I. Execution t imes (in seconds) for 40-by-40 matr ix
mult ipl ication using one task, 40 tasks, and 1600 tasks
on the MIPS M/120 system, and on the MIPS-by-four
computer. For the 1600-task version, t imes for 1
through 3 MIPS-by-four processors are shown.

Note: While the M/120and MIPS-by-four computers use similar
R2000 processors, their speeds differ greatly due to different
clock speeds, data busses, and cache sizes..Also, data in the
MIPS-by-four computer was Interleaved among processor nodes,
so that most data accesses were to remole memory, resulting in
slower access. For these programs, instructions resided in node
0 memory, resulting In slow access for other processors; this
was the primary reason for the highly nonlinear performance
Improvement with 2 and 3 processors.

By using generic procedures, the complexities of Ada tasks
can be encapsulated to make the expression of parallel
algorithms clearer.

Further work is needed to integrate our techniques for
the implementation of simple tasks with more general
methods suitable for full Ada tasking to provide for
complete implementation. It may be possible to develop
other related optimizations for additional classes of Ada
tasks. Such approaches will make highly-parallel computers
efficient hosts for Ada applications.

References

[ALRM83] U.S. Department of Defense, Reference
Manual for the Ada Pro~rammin~ Language MIDSTD
1815A, Feb. 1983.

[GOTl'83] Gottlieb, A., Grishman, R., Kruskal, C.P.,
McAuliffe, K.P., Rudolph, L., and Snir, M. "The NYU
Ultracomputer--Designing an MIMD parallel computer."
IEEE Trans. on Computers C-32, 2 (Feb. 1983), pp. 75-89.

[PFIS85] Pfister, G.F., Brantley, W.C., George, D.A.,
Harvey, S.L., Kleinfelder, W.J., McAuliffe, K.P., Melton,
E.A., Norton, V.A., and Weiss, J. "The IBM Research
Parallel Processor Prototype (RP3): Introduction and
architecture." Proceedings of the 1985 International Confer-
ence on Parallel Processing (St. Charles, Ill., Aug. 1985) pp.
764-771.

[SCHO85] Schonberg, E., and Schonberg, E. "Highly
parallel Ada--Ada on an Ultracomputer." Ads in Use:
Proceedings of the Ada International Conference (Paris,
May 14-16, 1985) Cambridge University Press, 1985, pp. 58-
71.

[YEMI82] Yemini, S. "On the suitability of Ada multitask-
ing for expressing parallel algorithms." Proceedings of the
AdaTec Conference on Ada (Arlington, VA, Oct. 1982) pp.
91-97.

W a s h i n g t o n A d a S y m p o s i u m P r o c e e d i n g s . J u n e 1 9 9 0 211

