
REUSE IN THE TELECOMMUNICATION DOMAIN USING
OBJECT ORIENTED TECHNOLOGY AND ADA

Anders Sixtensson, W e n c h u a n Ye
D e p a r t m e n t of C o m m u n i c a t i o n Sys t ems

L u n d I n s t i t u t e of Techno logy

Box 118 S-221 00 Sweden
Emai l : anderss@t t s . l th . se

M a y 4, 1990

A b s t r a c t

An overall object oriented method supporting all
steps from a given requirement specification to an
implementation in Ada is presented. The method
is formulated from the experiences when extending
POTS (Plain Ordinary Telephony Service) with a
number of new service features on a prototyping
system. Reuse is achieved on different levels. Sys-
tem Interactive Diagrams (SID) and Object Inter-
active Diagrams (OID) are used to transform the
initial functional requirement into an object ori-
ented model. An extended version of SDL called
OSDL (Object oriented SDL) and Ada are chosen
as specification, design and implementation tools.
Ada multi sublibraries are studied for reuse.

The paper is produced at the Department of Com-
munication Systems at Lund Institute of Technol-
ogy in the research project ARISE (A Reuse Infras-
tructure for Software Engineering) which is part of
the RACE (research in Advanced Communication
Technologies in Europe) programme.

Keywords: software reuse, object orientation, Ada,
telecommunication.

COPYRIGHT 1990 BY THE ASSOCIATION FOR COMPUTING
MACHINERY, INC. Permission to copy without fee all or part
of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise,
or to republish, requires a fee and or specific permission.

1 I N T R O D U C T I O N

Software reuse is widely believed to be a major key
to improve the productivity and quality of software
development. By using existing software compo-
nents that already have been tested and proven
effective, the cost and the time for developing a
new product are reduced. The software quality is
improved.

Object oriented Software Engineering (OOSE) is
the most promising technique known today for
attaining the goals of extensibility and reuse [1].
Object oriented techniques have their main power
in their ability to model a specific domain, i.e.
changes or modifications can be described fairly
straightforward. Specifically Object Oriented Do-
main Analysis (OODA), has been found vital for
the success of reuse. Software components that
result from domain analysis are better suited for
reuse because they capture the essential function-
ality required in that domain.

The intention of the research work has been to
analyse some of the technical aspects of reuse
within the telecommunication domain such as:

• How to achieve reuse in the early phases of
the development life cycle.

• The use of OOSE for large and critical appli-
cations such as telecommunication system.

• How to make an consistent transformation
from the initial functional requirements to an
object oriented model of the problem space.

Wash ing ton Ada S y m p o s i u m P r o c e e d i n g s . June 1990 231

http://crossmark.crossref.org/dialog/?doi=10.1145%2F327011.327107&domain=pdf&date_stamp=1990-07-01

• Make an efficient use of Ada.

An overall object oriented method has evolved
from the research work on the prototyping system
[2] and has been used repeatedly when extend-
ing the POTS software. A pragmatic approach
has been taken; obtaining knowledge and experi-
ence by analysing and reimplementing existing sys-
tems. The basic concept of the method is similar
to Objectory [3] but an emphasis is made on reuse
in telecommunication applications using OSDL [4]
and Ada as implementation languages.

2 T H E P R O T O T Y P I N G
S Y S T E M

The research work was based on a prototyping sys-
tem. The prototyping system is a Line Interface
Module (LIM) from the MD 110 PABX system by
Ericsson and a SUN 3/50 workstation. LIM is a
micro processor controlled unit and can connect a
number of subscriber extension lines, trunk lines
and operator lines. It can work as an autonomous
exchange as well as part of a system comprising
several LIM's connected via a switch.

The call handling software, implemented and exe-
cuted on the SUN 3/50, replaces the basic switch-
ing and control functions normally made by the
LIM. This is obtained by making the LIM trans-
parent. The signals from the telephone units in
the LIM are sent directly to the LIM inpu t /ou tpu t
unit, which in turn sends the signals to the SUN via
serial ports, see fig 1. The system makes it possi-
ble to experiment with software architectures in a
very flexible manner and to examine the trade offs
between different methods to produce telecommu-
nication software. Though the research work relied
on the prototyping system, the method outlined in
the next section, is of a general nature.

3 O V E R A L L O B J E C T ORI-
E N T E D M E T H O D

To achieve reuse in an efficient and powerful way
requires a consistent method during the life time
of the system. Consistency helps to reduce com-
plexity, and increases reliability. The method de-
scribed in this section has evolved from the re-

Figure 1: The prolotyping syslem

search work on the prototyping system. For fre-
quently modified systems, software development
can be regarded as modifying from one version of
a system to another. A special case is the creation
of a system i.e. starting from nothing. The general
phases for extending a system with a new service
feature may be outlined as follows:

1. Requirement Specification

2. Requirement Analysis

3. Domain Analysis

4. System Design

5. Detailed Design

6. Implementation

It is of course allowed and necessary, to backtrack
and iterate between the phases until a satisfied so-
lution is reached. A traditional bo t tom up test
activity is performed, i.e. unit test on code level,
module test on design level, and so on, all the way
up to system integration, acceptance test and vali-
dation. This paper will however not emphasize on
testing methodology.

R e q u i r e m e n t S p e c i f i c a t i o n

A description, often textual, is made to define what
is required of the system. These initial require-
ments are often functional, usually appearing as
certain inputs to the system and certain outputs
from the system. For example, the required be-
haviour for ordering a call transfer could briefly be

232 Washington Ada Symposium Proceedings. June 1990

described as follows: Call transfer is possible to or-
der by dialing the sequence ,3 , (t ransfer telephone
number)l~ on the telephone provided a dial tone is
given. The dial tone should go off as soon as the
first digit is dialed. A completed order is acknowl-
edged by a tone, a dial tone if the order has been
accepted otherwise an error tone.

Requirement Analysis

This phase will end up in System Interaction Di-
agrams (SID) made by analysts. A SID describes
how a user and the system interacts by means of
signals or commands to fulfill the requirements for
normal use of the system. Exceptions are dealt
with later. The SID for ordering a call transfer
is shown in fig 2. The two vertical lines repre-
sent the user and the system respectively, while
the directed lines between the user and the sys-
tem denote the signal flow between the user and
the system. The vertical arrow line and numbers
denote the sequence of events. From the user's
point of view, fig 2 means that when making off
hook, he should hear a dial tone. Then he can dial
a digit and as soon as he dials a digit, the dial
tone should go off. From the system point of view,
the SID means that on receiving off hook, system
should give a dial tone and as soon as a digit is
received, system should cut off the dial tone.

The simple diagram effectively encapsulates the
user and the system interaction. It is very impor-
tant that the people responsible for the require-
ment specification and the analysts agree on this
translation. By always comparing the SID to al-
ready existing SID's, some identical parts of user
interactions with the system can be identified and
marked as reusable. SID's are also very suitable
for making test specifications on system level.

Domain A n a l y s i s

Domain analysis is the key for OOD as well as for
reuse. It is during this phase, that the objects and
their operations are found. In order to reflect the
problem space and to capture essential concepts,
domain knowledge is necessary.

There are three steps in domain analysis. The first
step is to make a conceptual model and analyse it
together with the SID's to recognise objects and

1

2

3

4

$

6

7
ransfer t~ephone

n u m b e r
8

9

start
dialing

user S v s t O rt'l

,of f Hook

diaffoneOn

dlalToneOff

3

digit

dialToneOn

time

Figure 2: Example of a SID

their operations. Exceptions are also considered
in this step but are explicitly dealt with in the de-
tailed design. The second step is to look in the
library to see whether the objects found during
step one already exist, and can be reused, per-
haps with some minor modifications. If the ob-
jects don' t exist, then a decision is made whether
the new objects should be put in the library to
be classified as components. Finally an Object In-
teraction Diagram (OID) is made to capture the
dynamic behaviour of the system; the sequence of
communication is established. The operations of
the objects appear as signals in the OID. see fig 3.

In fig 3, the vertical lines denote objects de-
composed from the system, such as lelephoneA,
toneDevice, switch, call etc. The directed lines
among objects represent signal passing between
objects. The vertical numbers indicate the se-
quence of events. An OID is in fact an expanded
SID. If a part of a SID is reused, then the corre-
sponding OID to that par t should also be reused.

Another approach of OODA is to let the library
manager give a first proposal of a proper set of
components before making the conceptual model.
However, this approach requires very intelligent li-
brary manager tools which are not available for the
moment.

Washington Ada Symposium Proceedings. June 1990 233

telephone AdtsDatatoneOevlce
subscriber
~eeonditi~n idle switch

. J
3 "1 dlalTo~eOf f

, d ialToneqff

s 3 =1

7 digit ~
transfer

telephone.
number "

8

se ~allTra
9 dialTQ e O n .

dialTonoE -I
10 q

star t
dialing

t ransfer
call Data

isfer

Figure 3: Example of an OID

I m p l e m e n t a t i o n

In this step, each object, i.e each Ada pack-
age body, is implemented. Both bo t tom up and
top down developments are used. OSDL pro-
cess graphs are strong tools for dealing with Ada
tasks that are bidirectional, which is often the case
for telecommunication systems. Candidates for
reusable components are implemented as compila-
tion units in Ada. For those reusable components,
that are bidirectional, recursive export mechanism
has to be used. Supported by APSE, all the com-
pilation units separately compiled are put into the
Ada programme library for reuse. The TeleGen2
environment [7] is used to deal with version con-
trol, configuration management, team works, reuse
of subsystems etc. The inheritance on the subsys-
tem level is achieved with the help of multi subli-
braries. Further discussions on multi sublibraries
will be covered in a following section.

S y s t e m D e s i g n

In this phase the objects are classified into servers
and nonservers (actors and agents) [5] using the
OID's. For complex systems, it is necessary to
combine a set of related objects together to form
subsystems. Now subsystems and objects should
be mapped into OSDL skeleton graphs. Subsys-
tems are translated into blocks and the nonserver
objects are translated into processes or procedures
in OSDL. The server objects only contain one
state and therefore it's no help to describe them
in OSDL. Server objects may be well mapped di-
rectly to Ada package specifications during the
next phase, detailed design.

D e t a i l e d D e s i g n

So far the normal use cases of the requirement
specification have been covered, exceptions and er-
ror conditions are dealt with during this phase.
The detailed OSDL process diagrams will now be
completed and each OSDL block, process, proce-
dure is mapped to Ada package specifications. Ex-
ceptions and server objects which are not described
in OSDL, are added. This step ends with a set of
completed Ada package specifications.

4 O O S E

The benefits of object oriented technology are
enhanced if it is addressed throughout the soft-
ware engineering process as indicated in the term
OOSE. However, effective reuse requires an em-
phasis on the early phases of OOSE, i.e. object
oriented domain analysis (OODA) and object ori-
ented design (OOD).

O O D A

How to model a specific domain and to identify
the operations, objects and structures which com-
monly occur within the domain is a process called
OODA. OODA should be used a number of times
during the life time of a system. An initial OODA
is an activity occurring prior to an existing and im-
plemented version of a system inside the domain.
The major reason for this is tha t we want to have
a stable domain model not influenced by a spe-
cific version of the system. A stable domain model
is a prerequisite to achieve reuse and robustness
with respect to future demands of increased func-
tionality. Within the domain of telecommunica-
tion for example, typical objects are subscribers,
telephones, lines, tonedevices etc. and operations
are connect two telephones, generate a busy tone,
send digits etc.

234 Washington Ada Symposium Proceedings. June 1990

The result from this initial OODA will serve as a
framework for developing other versions of the sys-
tem inside the domain. OODA will also be used
when analysing requirements for a specific version
to be developed. Specific objects and operations
are introduced or expanded from the framework
to meet the user requirements for that specific
version. For example, in the initial OODA, we
have introduced an object called terminal which is
an abstraction of different subscriber equipments
such as telephone, telex, telefax etc. When doing
OODA for a specific version, a specific object tele-
phone is described in the model by inheriting the
common properties from the object terminal spe-
cialized with specific characteristics.

After several versions have been developed inside
the domain, OODA should be applied again and
more general objects could be found. On the other
hand, this pragmatic approach would also expand
the domain knowledge which is useful for the de-
velopment of new systems inside the domain.

Model l ing o f sy s t em e v o l u t i o n

OODA and OOD are claimed to reflect the prob-
lem space, i.e. changes and modifications in the
real world should have a natural mapping using
an object oriented model. The research work has
also approved of this statement. Here are some
examples.

• When the system was extended with the ser-
vice feature abbreviated dialing (the ability to
define a shorter dialing sequence for a often
used telephone number) the system needed to
store and read a set of abbreviated numbers
associated with every subscriber. This was
modelled by inheriting all subscriber data and
specializing by adding a data field and the op-
erations associated with the added data.

As mentioned earlier, OODA facilitates the
introduction and description of different sub-
scriber terminals like telephone, telefax etc.
which all have some common properties and
some special ones.

Concurrency modelling is implicit for object
oriented systems. Each object is responsible
for its own protection in a concurrent environ-
ment.

A future expansion of the system could possi-
bly lead to a change in the internal representa-
tion of subscriber data. The abstraction con-
cept makes the users of this subscriber data
unaware of the internal change as long as the
defined interface to the object remains. Fur-
thermore, the encapsulation of data and its
operations facilitate the updating of the inter-
nal implementation of the operations working
on the data. Without encapsulation, a search
through the whole system is necessary to find
all (perhaps) functions that operates on the
actual data.

OID - f r o m f u n c t i o n a l r e q u i r e m e n t s t o an
ob j ec t o r i e n t e d m o d e l

The initial requirements on telecommunication
systems specified by a customer are often func-
tional and this leads to a nontrivial transformation
into an object oriented modelling of the problem
space. There is no one to one correspondence be-
tween requirements and objects. One functional
requirement may for example be carried out by
a number of objects, and on the other hand, one
single object may satisfy a number of functional
requirements.

Our solution is to let the OID's in our method be
the connection between the functional view and
the object oriented view. An OID contains both
the proper set of objects found during the analy-
sis phase and how these objects interact with each
other to fulfill the corresponding SID. This well de-
fined transformation process leads to a high con-
sistency of the system.

5 R E U S E

Reuse on d i f fe ren t levels

Software reuse is not limited to source or object
code. Reuse may occur in varies phases of the life
cycle. The initial domain analysis will facilitate
the identification of software components in the
early phases of the software life cycle. By having a
well defined transformation between the different
phases of the method, the reuse effort on higher
levels is automatically transferred to the lower level
of the system description and documentation.

Washington Ada Symposium Proceedings. June 1990 235

For example, by always comparing a newly devel-
oped SID to already existing SID's, some identical
parts of user interactions with the system can be
identified. In this way, reuse on requirement anal-
ysis level is achieved. And reuse on this level will
certainly influence the other phases down to im-
plementation level. It 's obvious that the earlier a
reusable component can be identified, the more we
save in terms of t ime and cost.

R e u s e a n d E x t e n d i b i l i t y

The classification of objects into servers, and non-
servers (agents and actors) [5] is significant since
the characteristics are very different.

Server objects don' t pass any messages to other ob-
jects, they just wait for receiving messages. This
property makes the server objects very similar to
abstract da ta types and are therefore very useful
for building and representing data and structures
in a bo t tom up fashion. A hierarchy of server ob-
jects from application independent at the bot tom
to more application dependent higher up is defined
during the System Design phase. This hierarchy is
easy to represent in Ada using the wi th construct.
Extensions and modifications to server objects is
done very easily, we just have to add the new op-
erations required for a new service feature.

The nonserver objects are used to fulfill the re-
quired behaviour of the system, i.e. the desired
sequence of signals. Usually the agent or actor
objects need some modifications before they can
be reused when extending the system. This is re-
ferred to as extendibility. Well defined interfaces
for these objects are needed to achieve the ex-
tendibility. The general rule is to keep the objects
both cohesive and loosely coupled, so that a change
only affect one or few objects rather than trigger
off a chain reaction of changes over the whole sys-
tem.

R e u s e b e y o n d i n h e r i t a n c e

Within the object orientation community, people
seem to focus on the inheritance mechanism as a
means for reuse too narrowly to notice any other
means. Although reuse via inheritance is not to
be dismissed, there are more powerful reuse mech-
anisms.

A special case of reuse is to have the system ac-
cept new objects that were not defined when the
system was first created, rather than to modify an
old object or to make a specialization of the old
object. For example, the service feature call hold
(make a temporary connection during an already
established call) was implemented by introducing
a new object callHold to handle the required be-
haviour. Object callHold is responsible for saving
the old connection and to restore it after the tem-
porary connection is terminated.

Another powerful reuse mechanism is based on in-
terchangeable parts. These interchangeable parts
are objects when using OOSE. By carefully exam-
ining the functionality of each part , and by hav-
ing well defined interfaces among the parts, the
reuse of each part is greatly enhanced. For exam-
ple, POTS and all the extension software systems
use object telephone. There are many versions of
source code describing object telephone. They are
all interchangeable. Supported by the APSE multi
sublibrary management, the extensions to the sys-
tem with new service features were done easily by
replacing the object telephone. By maintaining a
high degree of consistency in both the interfaces
and functionality of interchangeable parts, a set of
useful families of components can be constructed.
Furthermore, system can be designed to readily
accommodate different family members.

6 A D A

A d a a n d O O D

It is known that Ada is not a truly object ori-
ented programming language. Then why Ada?
Firstly, although the lack of inheritance, Ada con-
tains many unique features, namely concurrency,
exception handling, ability to address hardware,
high degree of portabili ty etc., which are essential
for real time systems such as telecommunication
systems. It is fairly easy to implement concurrent
objects using Ada's package and task facilities.

Secondly, object orientation really applies to more
than just programming. In Ada, object oriented
concepts are actually applied to design. Effec-
tive use of Ada demands that it is applied in the
context of modern software engineering, namely
information hiding, data abstraction, encapsula-

236 Washington Ada Symposium Proceedings. June 1990

tion above the subprogram level and concurrency.
OOD is an approach that exploits Ada's facilities.
In spite of the deficiencies for object oriented pro-
gramming, Ada still provides a useful vehicle for
applying object oriented concepts throughout the
software development life cycle.

A d a and OSDL

One of the things that must be considered in
software engineering is to chose proper languages.
OSDL and Ada are two languages that used to-
gether cover a large part of the development phases
in a traditional life cycle model, from specification
to design and implementation. OSDL is an object
oriented extension of SDL [6] containing concepts
for how to describe a large and complex real time
system at different abstraction levels. The graphi-
cal syntax is very useful for capturing the complex-
ity and functionality of systems. OSDL has con-
cepts like inheritance, remote procedure calls and
virtual procedures which together facilitate the de-
scription of extensions and modifications of a sys-
tem.

The translation from OSDL to Ada is straightfor-
ward using predefined translation rules. Roughly
speaking, system and blocks in OSDL are mapped
to Ada packages and OSDL processes to tasks.
Once the OSDL diagrams was made, the Ada code
was generated manually very easily and quickly.

A d a M u l t i s u b l i b r a r i e s m a n a g e m e n t

The Telegen2 [7] environment provides a power-
ful multi sublibrary mechanism which can be de-
scribed as follows. An Ada library consists of a
number of sublibraries. A library list specifies
the name of the involved sublibraries. In the li-
brary list, the order of the sublibraries is signif-
icant because the compilation results are usually
written into the first sublibrary called tile work-
ing sublibrary. The other sublibraries are read
only. When compiling or linking, the library starts
with searching the working sublibrary and contin-
ues down through each successive sublibrary until
either the unit is found or the list of sublibraries
are exhausted. Multi sublibraries provides a pow-
erful mechanism to generate a new software version
based on old systems for software reuse purposes.

For example, the new service feature call hold was
handled in this way. The sublibrary p o t s . s u b ,
which handles POTS, remained without any
changes when the new sublibrary ¢ a l l H o l d . s u b
was introduced as the working sublibrary. All the
objects added or modified while implementing call
hold were compiled into ¢ a l l H o l d . sub. The other
objects which were not updated, i.e. not recom-
piled, were inherited from p o t s . sub during link-
ing. After linking, a new P O TS version extended
with the service feature call hold was executable. If
pots . sub was put back as the working sublibrary,
a new linking would get the original P O T S exe-
cutable again. In the same way, a set of new service
features were introduced and different sublibraries
were built. By different combinations of the sub-
libraries, a number of versions of POTS software
were acquired.

The hierarchies of server objects which are strongly
recommended for reuse are also dealt with easily
by the multi sublibrary mechanism. For example,
objects callHold and callback both use lists struc-
ture, the library files corresponding calltIold and
callback look like:

library file for callHold:

Name: ca l lHo ld . sub
-- working sublibrary implementing

-- callHold

Name: pots.sub

-- sublibrary for implementing POTS

Name: utility.sub

-- defined in [Booch87]

Name: basicComponent .sub

-- defined in [BoochS7]

library file for callback:

Name: callBack.sub

-- working sublibrary implementing

-- callback

Name : pots. sub

-- sublibrary for implementing POTS

Name: utility.sub

-- defined in [Booch87]

Name: basicComponent .sub

-- defined in [Booch87]

To work in teams is necessary for large system and
is much easier to organize with the help of multi
sublibraries. For example, if one team is working
with the object telephone and the other team is

Washington Ada Symposium Proceedings. June 1990 237

in charge for the object call, the library file could
look like:

Name: c a l l H o l d . s u b
° , . , , .

Name : \t eam2\call, sub
- - to h a n d l e o b j e c t c a l l by team2
Name: \teamt\telephone.sub
-- handle object telephone by teaml
Name: u t i l i t y . s u b
Name: b a s i c C o m p o n e n t . s u b

7 D O C U M E N T A T I O N

It should be noticed that the documentat ion in
all phases must be well organised and kept consis-
tent. From extendibility point of view, the ability
to trace a requirement in the documentat ion of all
phases is very important . No changes are allowed
in a lower level without updating the documents
on higher level and vice versa.

All the documents should be managed by a pow-
erful database which can handle text files, figures
as well as code libraries. Moreover, the reuse rela-
tions must also be documented, if we for example
can identity common parts in different SID's, this
must be reflected in the documentation.

Before delivery of an ordered system an accep-
tance test activity is performed together with the
customer. The customer will accept or reject the
system based on how closely it matches the origi-
nal requirements (often functional). Now we have
use of the SID's developed during the requirement
analysis phase. The SID's will in fact be used as
test specifications. Since the SID's have been used
as a base for the system development work, the
traceability of the system would be increased. The
software thus produced is easily modified and ex-
tended.

The documentat ion should in fact be viewed in an
object oriented manner, i.e. the initial require-
ments are inherited to documents on lower level
which will add more and more detailed description
of the documentat ion until the source code level is
reached. If the requirements are inherited through
all phases then we have a guarantee for traceabil-
ity and quality. Unfortunately, this intelligent han-
dling of documentat ion require tool support and to

our knowledge there is no such tool available yet.

However, an prototype for an intelligent tool to
handle all sorts of documentat ion and the rela-
tions between the documents is the goal for the
next phase of the project. Such a tool is now in an
early stage of development using ARCS [8] which
is a powerful environment for the Telegen2 com-
piler. ARCS is originally made to support and
maintain the relations between different Ada com-
pilation units but ARCS also has the capability of
organizing non-Ada document relations which are
the ones we try to exploit. All experiences gained
at the project have been very valuable when the
tool has been discussed.

8 C O N C L U S I O N S

The research work has, as mentioned before, taken
an pragmatic approach. The project s tarted with a
basic system (POTS) without any service features
added. New service features, such as abbreviated
dialing, call transfer, call hold, call back etc. were
added, one by one to the system. After every new
version of the system, we always tried to identify
the bottlenecks when extending the system. Pro-
posal to solutions was formulated to be verified
during the next evolution of the system. In to-
tal, six version of the system were built and by al-
ways have a specific set of problems to solve for ev-
ery version, great knowledge and experience were
gained during the project. A number of problems
and our proposal to solutions have been identified.
And lessons on reuse, OOSE and Ada have been
learned. A number of conclusions may be drawn
from the experience.

Reuse may occur in all phases of the software
life cycle. The early recognition of reuse is of
great importance.

OOSE is the way toward reuse. Reuse is not
limited to inheritance. Interchangeable parts
are powerful means of reuse.

How to define objects is the main problem in
OOSE. OID provides a good translation from
functional requirements to an object oriented
model.

• Although lack of inheritance, Ada still pro-
vides a powerful vehicle for applying OOD.

238 Washington Ada Symposium Proceedings. June 1990

Ada and OSDL used together cover a large
part of the software life cycle in the telecom-
munication domain.

The multi-library manager supplied by APSE
provides powerful tools for code level reuse,
version control etc. But for a large library of
reusable components including specification,
documentation etc, a general database is nec-
essary.

Identifying and collecting reusable components is
only the first step in a discipline of reuse. A lot of
work, such as formal specification and retrieval of
components etc, has to be done to put the reuse
into practical use in industry.

9 A C K N O W L E D G E M E N T

The authors would like to thank Lars Reneby
for valuable comments and for proofreading the
manuscript.

R e f e r e n c e s

[1] Bertrand Meyer Reusability. The case for Ob-
ject Orienled Design IEEE software, March
1987.

[2] C. Yeh, L. Reneby, B Lennselius, A. Sixtens-
son Art educational development system em-
ploying SDL design and automatic code gen-
eration. Presented at SDL Forum, Lissabon
1989.

[3] I. Jakobsson Object Oriented Development in
art industrial Environment, Proceedings of
OOPSLA'87, 1987.

[4] D. Belsnes, H. Dahle, B. Pedersen Rationale
and Tutorial on OSDL. Mjolner Report Se-
ries.

[5] Grady Booch Software Components with Ada.
The Benjamin Cummings Publishing Com-
pany 1987.

[6] CCITT recommendation, Z.100.

[7] TeleGen2 SUN/Ada version 1.3a User guide,
TeleSoft

[8] ARCS User guide, TeleSoft

Washington Ada Symposium Proceedings. June 1990 239

