
Adding Inheritance to Ada

Jiirgen F.H. Winkler

Siemens AG, Corporate Research
Otto-llahn-Ring 6, D-8000 M6nchen 83, FRG

winkler@ztivax.siemens.com

The paper shows how Ada can be turned into an
object oriented language by adding package types
and an inheritance clause.

Keywords: Ada, Inheritance, Object or iented
p rog ramming , Class, Subclass, Package type

l I n t r o d u c t i o n

Ada provides some elements of object ori-
ented programming (OOP) but it lacks
the mechanism of inheritance, which is a
'very useful mechanism, and which can
save a lot of recompilation and retesting
effort. There are no good workarounds
known, which could be u s e d t o simulate
inheri tance in native Ada. Perez [Per 88]
presents one proposal for simulating in-

heritance in native Ada. His investiga-

t/on shows that inheritance can only be

simulated partially, and that, especially,

• the introduction of new data components

in a subclass is not directly possible. It

seems therefore worthwhile to propose
language constructs which allow for full
inher i tance in Ada. This paper is based on

COPYRIGHT 1990 BY THE ASSOCIATION FOR COMPUTING
MACHINERY, INC. Permission to copy without fee all or part
of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise,
or to republish, requires a fee and or specific permission.

a proposal submitted to the Ada9X project
[Win 89]. Some ideas are also borrowed
from [DSW 90].

The proposal for the introduction of in-
heritance into Ada is based on the concept
of package types (in analogy to task
types). A package type has quite the same
properties as a class in an object oriented
programming language.

Inheri tance is introduced via a new
clause, the inheri tance clause. In this pa-
per we present single inheri tance only.
Multiple inheri tance could also be intro-
duced.

2 Class Defini t ion

We define classes as package types ex-
tending the syntax of Ada as depicted in
the following example:

PACKAGE TYPE Figure IS . . END Figure ; (1)

This is quite the same syntax as tha t for
task types. The definition (1) defines "Fig-
ure" as a private type. In terms of OOP
"Figure" can also be called a class. We
will use the term package type in the rest
of the paper.

Inside the specification par t of such a
package type a new form of subprogram

Washington Ada Sympos ium Proceed ings . June 1990 241

http://crossmark.crossref.org/dialog/?doi=10.1145%2F327011.327109&domain=pdf&date_stamp=1990-07-01

declaration can be used:

CONSTR Figure (Pos PointTy); (2)

Such a declaration defines a constructor
for the package type in whose specifica-
tion par t i t is contained. Such a construc-
tor mus t have the same identifier as the
corresponding package type. Constructors
may be overloaded in the same way as
subprograms. A constructor is automati-
cally called when a variable of the pack-
age type is created. Variables of package
types are created in the very same man-
ner as var iables in Ada (which are actual-
ly called objects):

MyFigure : Figure (Pos => (lO,Z0)); (3)

In the rest of the paper we call the vari-
ables objects as it is done in Ada. The dif-
ference between the object declaration (3)
and an object declaration in Ada is the
fact tha t the type name after the colon is
interpreted as the name of a constructor
subprogram. Since a constructor may
have parameters we obtain the general
form of an object declaration given in (3).
This declaration declares an object named
"MyFigure" of type "Figure". As part of
the elaboration of this declaration the cor-
responding constructor is called with the
given parameter .

Apart from the constructors the speci-
fication part of a package type may con-
ta in the same declarations as a package
specification. Subprograms declared in
the public part of a specification part of a
package type are typically called methods
in the OO world. We call them also meth-
ods because they are called in a s l ight ly
different way than other subprograms. A

method is always called in the context of
an object. The package type "Figure" may
contain the following method declaration:

PROCEDURE Move (To: PointTy); (4)

The application of the method "Move" to
the object "MyFigure" is expressed in the
form general ly used in the OO world:

Myrigure.Move (Vector => (40, 65)); (6)

In this form of call the object is a k ind of
additional and implicit parameter of the
method; i.e. there is a special b inding be-
tween a package type and its methods.
This is different from the relat ion be-
tween a package and its public subpro-
groinS.

The complete specification part of the
package type "Figure" may look like:

PACKAGE TYPE Figure
TYPE Dimensions IS (X, Y);
Lower-Bound : constant := -I00;
Upper-Bound : constant := 100;
TYPE Coordinate-Value IS

Range Lower_Bound . . Upper-Bound:
TYPE PointTy IS

Array (Dimensions) Of Coordinate-Value;

CONSIR Figure;
CONSTR Figure (Pos: PointTy);

FUNCTION Position Return PointTy;
Pragma In l ine(Pos i t ion) ;

PROCEDURE SetPosition (To: PointTy);
PROCEDURE Nove (Vector: PointTy);

PRIVAIE
Center: Point/y;

END Figure;

The body of a package type declaration
contains the bodies of the subprograms
specified in the specification part and
may contain fur ther declarat ions but i t
must not contain any statements.

242 Washington Ada Symposium Proceedings. June 1990

2 S u b c l a s s D e f i n i t i o n

A package type C can be used as a basis to
define fur ther package types which are
then a kind of extensions of C. The O 0
term for such extended package types is
subclass.

A subclass of "Figure" can be defined
as another package type using an inheri-
tance clause:

PACKAGE TYPE C i r c le IS.A Figure IS . . . (6)

The clause "IS_A Figure" is called the in-
heri tance clause and indicates that "Cir-
cle" is a subclass of"Figure". I.e. an object
of type "Circle" consists of two data com-
ponents: "Center" and "Rad' , and all sub-
programs in the visible part of "Figure"
are also implici t ly contained in the visible
part of "Circle". The most important con-
sequence of this property of subclasses is
the fact tha t all methods defined in the
superclass may also be applied to an ob-
ject of the subclass. If we define an object
"YourCircle" as follows:

YourCircle : C i r c le . . . (7)

then we can apply the method "Move"
also to this object:

VourCircle.Move(Vector => (5 ,5)) ; (8)

A complete definition of the specification
of the subclass circle may look like:

PACKAGE TYPE C i r c l e IS_A Figure IS
TYPE RadiusT¥ IS Range 0 .. Upper-Bound;
CONSTR C i r c le

(Pos: PointTy; Radius: RadiusTy);
FUNCTION Radius Return RadiusTy;
PROCEDURE SetRadius (Radius: RadiusTy);
PROCEDURE Draw;

PRIVATE
Rad: gadiusTy;

END C i r c le ;

3 A s s i g n m e n t S t a t e m e n t

Package types can be used in the same
way as other types. Since package types
are private types the operations " :=",
" - " and '7 = " - , are available. The assign-
ment operation is not only defined for the
case where the type of the left hand side
and the type of the r ight hand side are
equal but also for the more general case
in which the type of the r ight hand side is
a subclass of the type of the left hand side.
The effect of the ass ignment s ta tement i s

the copying of the values of the data com-
ponents of the object on the r ight hand
side into the corresponding data compo-
nents of the object on the left hand side.
Therefore the following ass ignment is le-
gal:

NyFigure := YourCirc le; (g)

but not the other way round:

YourCircle := MyFigure; (10)

because there is no "Rad" component in
an object of type "Figure".

Some examples for man ipu la t ing objects
are given in the following procedure
"Main".

With C i rc le , Figure;
PROCEDURE Main IS

Point%: Figure.PointTy;
NyCircle: C i rc le ((5 ,5) , 7);
YourCircle: C i rc le ((8, -10), 3);

BEGIN
MyCircle.Move ((10, 10));
Point ! := NyCirc le. Pos i t ion ;
YourCircle.Draw;
YourCircle := MyCircle;
YourCi rc le .Dra. ;

END Main;

Washington Ada Symposium Proceedings. June 1990 243

3 S u m m a r y

By adding one generalization (package
type) and one new construct (IS.A clause)
Ada has has been turned into a fully ob-
ject oriented language. Since Ada con-
rains already some elements of object ori-
ented programming the extensions fit
into the general framework of the lan-
guage.

We have not treated the integration of
concurrency into the OO framework. The
first idea to solve this problem is to intro-
duce also an inheritance clause for task
types. But this does not work because the
internal structure of Ada tasks is quite
different from the internal structure of
objects in the sense of OOP. We will in-

vestigate this problem further in a future
paper.

R e f e r e n c e s

DSW 90 Diefl], Georg; Schu|z, Georg; Winkler,
Jflrgen F. H.: Object-CHILL: The Road
to Object Oriented Programming with
CHILL. In: Palma, A. (ed.):Proceedings
ofthe 5th CHILL Conference, Rio de
Janeiro, March 1990, 118..125.

Per 88 Perez, Eduardo Perez: Simulating
Inheritance with Ada. Ada Letters
VIII, 5 (1988) pp. 37..46.

Ref83 Reference Manual for the Ada
Programming Language. ANSI / MIL-
STD 1815 A. February 1983.

Win 89 Winkler, Jfirgen F. H.: Ada9X,
Proposal# 8906230125.

244 Washington Ada Symposium Proceedings. June 1990

