
P A R A L L E L P R O C E S S I N G A S A L A N G U A G E D E S I G N P R O B L E M

Jim Savage

Myrias Research Corporation

A discussion of approaches towards the design of parallel
processors is followed by a description of the language
designed by Myrias Research Corporation for parallel pro-
cessing, Myrias Parallel Fortran (MPF), and of the processor
designed to support MPF, the Myrias 4000 system.

I n t r o d u c t i o n

peak rates of about 200 Mflops but its harmonic mean for
the first fourteen Livermore loops is about 19 Mflops 1, while
many important applications run at scalar speeds (3-5
Mflops). In short, hardware restrictions are passed into user
software, restricting algorithm development and use because
of difficulties in programming or performance. The restric-
tion on uses of different algorithms can be very costly since
many more operations may be used to compute a result than
are actually required.

The major goal behind the drive for parallel processors is to
remove the upper bound on processing speeds which is impli-
cit in serial processing. High processing speeds imply a high
memory bandwidth. In addition, most of the problems for
which high processing speeds are required, such as physical
modeling and signal processing, involve large amounts of
data, so a large memory with high bandwidth must be pro-
vided.

Since software development costs are typicMly much larger
than processor costs for most major installations, it is
imperative that a parallel processor be easy to program, have
a simple performance model and require minimal effort for
conversion of existing serial programs.

To date, there have been two major, distinct approaches
towards designing general purpose parallel processors. The
first approach, followed by the vast majority of commercial
and experimental parallel processor designers, consists of a
finite number of relatively fast (usually energy inefficient)
processors with global memory semantics. The main advan-
tage of this approach is that it does not require a radically
different software architecture. The major design effort is
directed towards the hardware architecture, which involves
relatively well understood problems.

The first approach has a number of disadvantages, however.
Since the design is hardware oriented, users are often handed
a piece of hardware for which little or no high level software
support is provided, requiring the user to gain intimate
knowledge of the architecture in order to achieve good per-
formance. The global memory semantics result in compli-
cated and/or restrictive synchronization semantics such as
vector operations, producer consumer variables, Dijkstra
semaphores, etc. The amount of parallelism is restricted
more than is necessary and the hardware tends to be suited
to a small number of classes of algorithms, resulting in a
wide performance spread. For example, the Cray XMP1 has

The second approach, which Myrias has followed, is to
design an expansible architecture, allowing an unbounded
number of energy efficient processors to be devoted to one
problem. One obvious advantage is that the processing
speed is determined by the resources which are allocated to a
problem. Also, the opportunity exists to make a simple per-
formance model with a small number of variables, such as
the number of processors, and to design a simple program-
ming model without complicated synchronization semantics.
Global memory semantics are clearly incompatible with an
expansible architecture because of the non-linear growth in
cost of the processor-memory interconnection.

The major difficulty behind the second approach is that it
requires a radical shift not only in the architecture design
but in the design methodology. The traditional design
method is to pass a hardware design to system programmers
who implement an operating system and then to compiler
writers who implement languages as best as possible, given
the hardware restrictions, and then to the users. The design
methodology used by Myrias consisted of doing a detailed
analysis of the target applications, investigating their parallel
structures. A simple but expressive language construct was
designed to exploit the inherent parallelism of the target
applications. The language then drove the system architec-
ture design, with the goal of an efficient, cost-effective imple-
mentation of a parallel processor which supports that
language construct.

Para l le l L a n g u a g e Design ~ M P F

Any parallel programming language should meet a number
of design criteria. The design criteria used by Myri~ are the
following:

0149-7111/85/0000/0221 $01.00 © 1985 I EEE
221

http://crossmark.crossref.org/dialog/?doi=10.1145%2F327070.327213&domain=pdf&date_stamp=1985-06-01

• The language must imply a simple, intuitive
programming model which is close to the cul-
tural expectations of present programmers,
scientists, engineers and other users. There
should be a simple physical model for the
data flow implied by the language.

• The programming model must be independent
of the number of processors.

• The language must be very expressive, allow-
ing a natural expression of algorithms used in
physical modeling, signal processing, combina-
torial problems and other cycle-intensive com-
puting tasks.

• The conversion costs of present serial pro-
grams and algorithms should be minimized.

• The parallel construct should be easily grafted
onto present serial languages which are used
for cycle-intensive problems, such as Fortran
and C.

• The language construct should allow an
efficient implementation with a low perfor-
mance spread.

• An implementation of a high level failure
recovery mechanism must be enabled by the
language. Otherwise the large number of
components in a large configuration would
limit the MTBF too severely.

The result of the language design done by Myrias is the PAR
DO construct and its associated memory semantics. Elim-
inating global memory semantics eliminates many problems,
both in the programming model (synchronization semantics)
and in the implementation architecture.

For economic reasons, Fortran is the first language onto
which Myrius is grafting the PAR DO construct.

Myrius Parallel Fortran (MPF) was designed to give the user
easy access to parallel processing. There are no restrictions
on the number or heterogeneity of the parallel processes, and
there are no explicit synchronization requirements. Further-
more, by using standard Fortran 77 with some slight exten-
sions, the difficulties of program and algorithm modification
encountered with vector machines are avoided.

The following is a short description of the user-level model
of MPF. It is not meant to be a precise language definition,
nor is any a t tempt made to demonstrate how the implemen-
tation avoids unnecessary work which might be implied by
this model.

The principal means of achieving parallelism in MPF is with
a language extension, the parallel DO. When the calculations
within a DO loop are independent they can be done in paral-
lel by changing the DO keyword to PAR DO. This changes
the memory semantics slightly. Each "iteration" now sees
the machine state as it was at the beginning of the PAR DO

instead of as it was at the end of the previous "i terat ion".
Conceptually, this initial machine state is a parent to many
child tasks or loop "i terat ions". The child tasks may be
completely heterogeneous and, conceptually, are done in
parallel. Of course, the amount of actual parallelism is res-
tricted by the number of processors available. Scheduling is
done by the operating system, not the user.

At the end of a PAR DO, all child tasks are merged into one
machine state using the following rules:

• If no task assigns to a variable (or memory
location), then the variable is unchanged.

• If one task assigns to a variable, the variable
is changed to the assigned value.

If more than one task assigns to a variable,
but the values assigned are identical, then the
variable is changed to the assigned value.

Otherwise, the value of the variable is
unpredictable. If several tusks assign different
values to a variable, there is no natural way
to choose which value it should have after
merging.

Note that there is no communication between sibling tasks.

A Eureka! jump occurs when a GO T O inside a P A R DO
jumps outside the range of the PAR DO. The program
behaves as if the task in which the GO T O is executed is the
only task which was executed. There is no merging of
memory spaces.

PAR DOs can be combined with recursiou. For example, a
dot product of two vectors can be done by dividing the two
vectors in half, recursing, and summing the resultant dot
products. This reduces round-off errors since an operand is
involved in only O(log n) additions instead of O(n). Recur-
sion is also the most convenient method for handling com-
binatorial problems. Parallel recursiou enables a limited
simulation of nondeterministic calculations to be performed.

There are no restrictions on the number of " i terat ions" in a
PAR DO, nor on the depth of nesting of PAR DOs and
recursive subroutines. There is no need to worry about
parallel tasks having different amounts of work to perform or
different memory requirements. Causal restrictions are han-
dled without requiring any complicated synchronization
semantics. The recursive parallel method (RPM) of pro-
gramming made possible by MPF subsumes all vector, paral-
lel and tree-machine architectures.

Several other features facilitate programming with MPF.
Dynamic array allocation eliminates programmed size restric-
tions and wasted memory. Signed and unsigned infinities as
well as control of rounding are provided. Library packages
provide the usual vector and matrix operations based on
both integer and real arithmetic.

222

MPF gives the user access to parallel processing in a form
which is friendly, intuitive and easy to use. We at MRC are
not aware of any calculations which require large numbers of
operations and which cannot be programmed in a natural
way with Myrias Parallel Fortran. MPF extensions to FOR-
T R A N can be adapted to other conventional computer
languages.

T h e M y r i a s 4000 S y s t e m , an M P F I m p l e m e n t a t i o n

The firmware to support MPF must meet a number of
design criteria, including:

• The architecture must efficiently schedule
tasks, support the MPF memory semantics,
minimize the data motion costs, and recover
from hard and soft failures.

• The implementation must result in a simple
performance model for programmers, depend-
ing only on a small number of variables such
as the number of processors.

• The user must be able to specify the number
of processors he wishes to use for his problem,
based on the expected performance.

• A common, usable operating system such as
UNIX must be supported.

• A multiuser environment must be supported.

The design process resulted in the design of data and
management structures required to schedule tasks and sup-
port the MPF memory model, taking advantage of the local-
ity of reference in programs in the same manner as other vir-
tual memory machines. These data structures required a
hierarchical communication system. The hardware architec-
ture wa~ then designed with the additional constraint that
the components used be common, inexpensive and reliable.

The hardware design methodology reflects the general
methodology used by Myrias. An array logic language was
designed and implemented, allowing the use of software
development techniques to design the hardware and giving
the advantage of very quick turn-around time through the
use of PALs.

The M4000 operating system is totally distributed to elim-
inate performance bottlenecks. Virtual memory manage-
ment, process management and resource management are all
distributed via a kernel which resides in every processing ele-
ment of a configuration. Communication is done through
messages ~nd page transfers. Pages are cached at different
levels of the hardware hierarchy.

The communications system firmware of the mult i- level
architecture provides support for performance measurement,
system failure reporting and basic support for the message
and paging systems. The M4000 resource manager collects

performance information and adjusts system tuning parame-
ters. The M4000 recovery subsystem collects processor and
memory damage reports and initiates appropriate recovery
actions.

The hierarchical hardware structure takes advantage of the
locality of da ta references within programs. The basic pro-
cessing element consists of a Motorola 68000 microprocessor,
128 Kbytes memory and a high speed interface to the
board-level bus. Eight processing elements and a service
processor are combined on one board. Sixteen boards, a
printed circuit backplane (no wirewrap), a service module
and a communications board are combined into a cage.
Each cage has its own power supply. The communication
board has 4 full-duplex 20 Mbaud fiber optic terminations
which are used to interconnect the cages.

The Myrias 4000 system supports UNIX, providing a mul-
tiuser environment.

The minimal configuration of the Myrias 4000 system con-
sists of 4000 processing elements resulting in a memory of
512 M~ytes and a usable memory bandwidth of 20000
Mbytes/sec. The minimal configuration can be expanded to
64000 processing elements.

The performance model of the Myrias 4000 system requires
that a user be conscious of the locality of reference in his
program, the degree of parallelism (numbers of parallel
tasks), the memory requirements (numbers of processors
required because of memory) and the ratio of calculations per
processor required for efficient performance.

Because the Myrias 4000 is a vir tual memory machine with a
distributed cache system, it has locality of reference require-
ments which are similar to those of other virtual memory
machines with caches. If a task has to reference large
numbers of variables which have little locality, then system
performance can be degraded because of the data motion
costs. However, performance is not degraded if there is good
locality of reference among related tasks.

The locality of physical processes can be advantageous for
parallel processing if the processing elements are capable of
large heterogeneous calculations. Thus, in contrast to vector
machines, the parallelism of programs should be introduced
at the outer contour levels, as well as the innermost contour
levels. In other words, the PAR DO construct should be
used particularly for the outer reaches of a program.

Put t ing the P A R DOs on the outermost reaches of a pi'o-
gram has a number of benefits. T h e ratio of calculation to
da ta motion cost is maximized. It is usuMly very easy to
modify present programs. Programs written with the PAR
DOs on the outermost reaches are very intuitive and easy to
understand.

The memory semantics of MPF often eliminate extra arrays
that are used for copying, making programs more natural.
However, the size of memory required for a problem does not
necessarily decrease since the memory semantics imply that
both the old and new values of an array which is being
updated must be present until the end of a PAR DO.

223

A general guide to choosing the number of processors to use
for a problem is ((number of calculations per task * number
of parallel tasks) / number of processors) ~ 20
single-precision floating point operations. In addition, the
memory requirement is (memory required in bytes
/ (128 I(bytes * number of processors)) ~ 4. The latter
requirement may vary somewhat due to differences in
memory usage patterns between programs.

Historical F o o t n o t e

The PAR DO memory model was first presented by Colin
Broughton to a Myrias Working group which included Chris
Thomson, Dan Wilson and the author in November 1982.
The working group later formed the core of the Myria~ 4000
implementation team.

References

[1] J. Worlton, "Understanding Supercomputer Benchmarks,"
DATAMATION, pp. 121-130, Sept. l, 1984.

224

