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A discussion of approaches towards the design of parallel 
processors is followed by a description of the language 
designed by Myrias Research Corporation for parallel pro- 
cessing, Myrias Parallel Fortran (MPF), and of the processor 
designed to support MPF, the Myrias 4000 system. 

I n t r o d u c t i o n  

peak rates of about 200 Mflops but its harmonic mean for 
the first fourteen Livermore loops is about 19 Mflops 1, while 
many important applications run at scalar speeds (3-5 
Mflops). In short, hardware restrictions are passed into user 
software, restricting algorithm development and use because 
of difficulties in programming or performance. The restric- 
tion on uses of different algorithms can be very costly since 
many more operations may be used to compute a result than 
are actually required. 

The major goal behind the drive for parallel processors is to 
remove the upper bound on processing speeds which is impli- 
cit in serial processing. High processing speeds imply a high 
memory bandwidth. In addition, most of the problems for 
which high processing speeds are required, such as physical 
modeling and signal processing, involve large amounts of 
data, so a large memory with high bandwidth must be pro- 
vided. 

Since software development costs are typicMly much larger 
than processor costs for most major installations, it is 
imperative that a parallel processor be easy to program, have 
a simple performance model and require minimal effort for 
conversion of existing serial programs. 

To date, there have been two major, distinct approaches 
towards designing general purpose parallel processors. The 
first approach, followed by the vast majority of commercial 
and experimental parallel processor designers, consists of a 
finite number of relatively fast (usually energy inefficient) 
processors with global memory semantics. The main advan- 
tage of this approach is that it does not require a radically 
different software architecture. The major design effort is 
directed towards the hardware architecture, which involves 
relatively well understood problems. 

The first approach has a number of disadvantages, however. 
Since the design is hardware oriented, users are often handed 
a piece of hardware for which little or no high level software 
support is provided, requiring the user to gain intimate 
knowledge of the architecture in order to achieve good per- 
formance. The global memory semantics result in compli- 
cated and/or restrictive synchronization semantics such as 
vector operations, producer consumer variables, Dijkstra 
semaphores, etc. The amount of parallelism is restricted 
more than is necessary and the hardware tends to be suited 
to a small number of classes of algorithms, resulting in a 
wide performance spread. For example, the Cray XMP1 has 

The second approach, which Myrias has followed, is to 
design an expansible architecture, allowing an unbounded 
number of energy efficient processors to be devoted to one 
problem. One obvious advantage is that the processing 
speed is determined by the resources which are allocated to a 
problem. Also, the opportunity exists to make a simple per- 
formance model with a small number of variables, such as 
the number of processors, and to design a simple program- 
ming model without complicated synchronization semantics. 
Global memory semantics are clearly incompatible with an 
expansible architecture because of the non-linear growth in 
cost of the processor-memory interconnection. 

The major difficulty behind the second approach is that it 
requires a radical shift not only in the architecture design 
but in the design methodology. The traditional design 
method is to pass a hardware design to system programmers 
who implement an operating system and then to compiler 
writers who implement languages as best as possible, given 
the hardware restrictions, and then to the users. The design 
methodology used by Myrias consisted of doing a detailed 
analysis of the target applications, investigating their parallel 
structures. A simple but expressive language construct was 
designed to exploit the inherent parallelism of the target 
applications. The language then drove the system architec- 
ture design, with the goal of an efficient, cost-effective imple- 
mentation of a parallel processor which supports that 
language construct. 

Para l le l  L a n g u a g e  Design ~ M P F  

Any parallel programming language should meet a number 
of design criteria. The design criteria used by Myri~ are the 
following: 
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• The  language must imply a simple, intuitive 
programming model which is close to the cul- 
tural expectations of present programmers, 
scientists, engineers and other users. There 
should be a simple physical model for the 
data  flow implied by the language. 

• The programming model must be independent 
of the number of processors. 

• The  language must be very expressive, allow- 
ing a natural  expression of algorithms used in 
physical modeling, signal processing, combina- 
torial problems and other  cycle-intensive com- 
puting tasks. 

• The  conversion costs of present serial pro- 
grams and algorithms should be minimized. 

• The  parallel construct should be easily grafted 
onto present serial languages which are used 
for cycle-intensive problems, such as Fortran 
and C. 

• The  language construct should allow an 
efficient implementation with a low perfor- 
mance spread. 

• An implementation of a high level failure 
recovery mechanism must be enabled by the 
language. Otherwise the large number of 
components in a large configuration would 
limit the MTBF too severely. 

The  result of the language design done by Myrias is the PAR 
DO construct and its associated memory semantics. Elim- 
inating global memory semantics eliminates many problems, 
both in the programming model (synchronization semantics) 
and in the implementation architecture. 

For economic reasons, Fortran is the first language onto 
which Myrius is grafting the PAR DO construct. 

Myrius Parallel Fortran (MPF) was designed to give the user 
easy access to parallel processing. There are no restrictions 
on the number or heterogeneity of the parallel processes, and 
there are no explicit synchronization requirements. Further-  
more, by using standard Fortran 77 with some slight exten- 
sions, the difficulties of program and algorithm modification 
encountered with vector machines are avoided. 

The following is a short description of the user-level model 
of MPF. It is not meant  to be a precise language definition, 
nor is any a t tempt  made to demonstrate how the implemen- 
tation avoids unnecessary work which might be implied by 
this model. 

The principal means of achieving parallelism in MPF is with 
a language extension, the parallel DO. When the calculations 
within a DO loop are independent they can be done in paral- 
lel by changing the DO keyword to PAR DO. This changes 
the memory semantics slightly. Each "iteration" now sees 
the machine state as it was at the beginning of the PAR DO 

instead of as it was at the end of the previous "i terat ion".  
Conceptually, this initial machine state is a parent to many 
child tasks or loop "i terat ions".  The child tasks may be 
completely heterogeneous and, conceptually, are done in 
parallel. Of course, the amount of actual parallelism is res- 
tricted by the number of processors available. Scheduling is 
done by the operating system, not the user. 

At  the end of a PAR DO, all child tasks are merged into one 
machine state using the following rules: 

• If no task assigns to a variable (or memory 
location), then the variable is unchanged. 

• If one task assigns to a variable, the variable 
is changed to the assigned value. 

If more than one task assigns to a variable, 
but  the values assigned are identical, then the 
variable is changed to the assigned value. 

Otherwise, the value of the variable is 
unpredictable. If several tusks assign different 
values to a variable, there is no natural  way 
to choose which value it should have after 
merging. 

Note that  there is no communication between sibling tasks. 

A Eureka! jump occurs when a GO T O  inside a P A R  DO 
jumps outside the range of the PAR DO. The program 
behaves as if the task in which the GO T O  is executed is the 
only task which was executed. There is no merging of 
memory spaces. 

PAR DOs can be combined with recursiou. For example, a 
dot  product of two vectors can be done by dividing the two 
vectors in half, recursing, and summing the resultant dot  
products. This  reduces round-off errors since an operand is 
involved in only O(log n) additions instead of O(n). Recur- 
sion is also the most convenient method for handling com- 
binatorial problems. Parallel recursiou enables a limited 
simulation of nondeterministic calculations to be performed. 

There are no restrictions on the number of " i terat ions"  in a 
PAR DO, nor on the depth of nesting of PAR DOs and 
recursive subroutines. There is no need to worry about 
parallel tasks having different amounts of work to perform or 
different memory requirements. Causal restrictions are han- 
dled without  requiring any complicated synchronization 
semantics. The recursive parallel method (RPM) of pro- 
gramming made possible by MPF subsumes all vector, paral- 
lel and tree-machine architectures. 

Several other features facilitate programming with MPF.  
Dynamic array allocation eliminates programmed size restric- 
tions and wasted memory. Signed and unsigned infinities as 
well as control of rounding are provided. Library packages 
provide the usual vector and matrix operations based on 
both integer and real arithmetic. 
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MPF gives the user access to parallel processing in a form 
which is friendly, intuitive and easy to use. We at MRC are 
not aware of any calculations which require large numbers of 
operations and which cannot be programmed in a natural  
way with Myrias Parallel Fortran.  MPF extensions to FOR- 
T R A N  can be adapted to other conventional computer 
languages. 

T h e  M y r i a s  4000  S y s t e m ,  an  M P F  I m p l e m e n t a t i o n  

The firmware to support  MPF must meet a number of 
design criteria, including: 

• The architecture must efficiently schedule 
tasks, support  the MPF memory semantics, 
minimize the data  motion costs, and recover 
from hard and soft failures. 

• The implementation must result in a simple 
performance model for programmers, depend- 
ing only on a small number of variables such 
as the number of processors. 

• The user must be able to specify the number 
of processors he wishes to use for his problem, 
based on the expected performance. 

• A common, usable operating system such as 
UNIX must be supported. 

• A multiuser environment must be supported. 

The  design process resulted in the design of data and 
management  structures required to schedule tasks and sup- 
port the MPF memory model, taking advantage of the local- 
ity of reference in programs in the same manner as other vir- 
tual memory machines. These data  structures required a 
hierarchical communication system. The hardware architec- 
ture wa~ then designed with the additional constraint that  
the components used be common, inexpensive and reliable. 

The hardware design methodology reflects the general 
methodology used by Myrias. An array logic language was 
designed and implemented, allowing the use of software 
development techniques to design the hardware and giving 
the advantage of very quick turn-around time through the 
use of PALs. 

The  M4000 operating system is totally distributed to elim- 
inate performance bottlenecks. Virtual memory manage- 
ment,  process management  and resource management are all 
distributed via a kernel which resides in every processing ele- 
ment of a configuration. Communication is done through 
messages ~nd page transfers. Pages are cached at different 
levels of the hardware hierarchy. 

The communications system firmware of the mult i- level  
architecture provides support  for performance measurement, 
system failure reporting and basic support  for the message 
and paging systems. The M4000 resource manager collects 

performance information and adjusts system tuning parame- 
ters. The  M4000 recovery subsystem collects processor and 
memory damage reports and initiates appropriate recovery 
actions. 

The hierarchical hardware structure takes advantage of the 
locality of da ta  references within programs. The basic pro- 
cessing element consists of a Motorola 68000 microprocessor, 
128 Kbytes memory and a high speed interface to the 
board-level bus. Eight processing elements and a service 
processor are combined on one board. Sixteen boards, a 
printed circuit backplane (no wirewrap), a service module 
and a communications board are combined into a cage. 
Each cage has its own power supply. The communication 
board has 4 full-duplex 20 Mbaud fiber optic terminations 
which are used to interconnect the cages. 

The Myrias 4000 system supports UNIX, providing a mul- 
tiuser environment. 

The minimal configuration of the Myrias 4000 system con- 
sists of 4000 processing elements resulting in a memory of 
512 M~ytes and a usable memory bandwidth of 20000 
Mbytes/sec.  The  minimal configuration can be expanded to 
64000 processing elements. 

The performance model of the Myrias 4000 system requires 
that  a user be conscious of the locality of reference in his 
program, the degree of parallelism (numbers of parallel 
tasks), the memory requirements (numbers of processors 
required because of memory) and the ratio of calculations per 
processor required for efficient performance. 

Because the Myrias 4000 is a vir tual  memory machine with a 
distributed cache system, it has locality of reference require- 
ments which are similar to those of other virtual memory 
machines with caches. If a task has to reference large 
numbers of variables which have little locality, then system 
performance can be degraded because of the data  motion 
costs. However, performance is not degraded if there is good 
locality of reference among related tasks. 

The locality of physical processes can be advantageous for 
parallel processing if the processing elements are capable of 
large heterogeneous calculations. Thus, in contrast to vector 
machines, the parallelism of programs should be introduced 
at the outer contour levels, as well as the innermost contour 
levels. In other words, the PAR DO construct should be 
used particularly for the outer reaches of a program. 

Put t ing  the P A R  DOs on the outermost reaches of a pi'o- 
gram has a number of benefits. T h e  ratio of calculation to 
da ta  motion cost is maximized. It  is usuMly very easy to 
modify present programs. Programs written with the PAR 
DOs on the outermost reaches are very intuitive and easy to 
understand. 

The memory semantics of MPF often eliminate extra arrays 
that  are used for copying, making programs more natural. 
However, the size of memory required for a problem does not 
necessarily decrease since the memory semantics imply that  
both the old and new values of an array which is being 
updated must be present until  the end of a PAR DO. 
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A general guide to choosing the number of processors to use 
for a problem is ((number of calculations per task * number 
of parallel tasks) / number of processors) ~ 20 
single-precision floating point operations. In addition, the 
memory requirement is (memory required in bytes 
/ (128 I(bytes * number of processors)) ~ 4. The latter 
requirement may vary somewhat due to differences in 
memory usage patterns between programs. 

Historical  F o o t n o t e  

The PAR DO memory model was first presented by Colin 
Broughton to a Myrias Working group which included Chris 
Thomson, Dan Wilson and the author in November 1982. 
The working group later formed the core of the Myria~ 4000 
implementation team. 
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