
Th e transputer

Col in Whi tby-S t revens
INMOS Limited,

;Vhite friars, Lewins Mead,
BRISTOL, BS1 2NP, UK

Abstract

The transputer is a programmable V L S I component with commu-
nication links for point-to-point connection to other transputers.
Occam (*) is a language that enables a multi-transputer system
to be described as a collection o f processes that ogerate concur-
rently and communicate using message passing via named chan-
nels.

The I N M O S transputer architecture is s tandardized at the level
off the def ini t ion o f occam (rather than at the level o f the de f -
inition o f an instruction set). The implementation o f the f irs t
commercial ly available transputers is illustrated by describing
the implementation o f occam.

The paper concludes with outline examples o f some applica-
tions.

1 Introduct ion

The transp~ater a r c h i t e c t u r e has been deve loped to f u l f i l f ou r
ma in object ives:

To c rea te a commerc ia l p r o d u c t r ange t h a t sets new
s t a n d a r d s in ease of p r o g r a m m i n g and ease of engi-
neer ing.

To p rov ide the m a x i m u m p e r f o r m a n c e to the user.

To explo i t f u t u r e deve lopments in VLSI technology
w i t h i n a compa t ib l e family.

To c rea te a p r o g r a m m a b l e c o m p o n e n t t h a t can be used
to bu i ld systems wi th large num ber s of c o n c u r r e n t
c o m p u t i n g elements.

VLSI c u r r e n t l y permi t s 5-10 MIP processors to be m a n u f a c -
t u r ed in vo lume for low prices. The re is t h e r e f o r e no eco-
nomic b a r r i e r to the cons t ruc t i on of very power fu l compu te r
systems c o n t a i n i n g m a n y process ing elements , The cha l lenge
is a t e chn i ca l one: how to eng inee r a system with , say, 1000
processors so as to make the i n h e r e n t c o n c u r r e n c y usable, and
how to suppor t the des ign of app l ica t ions to take advan t age
of th is a m o u n t of concur rency .

(*) oceam is a t r ade m a r k of the INMOS Group of Companies

In the t r a n s p u t e r a r ch i t ec tu re , the exp lo i t a t i on of a h igh de-
gree of c o n c u r r e n c y is made possible t h r o u g h a decen t ra l -
ized model o f compu ta t ion , in which local c o m p u t a t i o n takes
place on local da ta , and c o n c u r r e n t processes c o m m u n i c a t e
by pass ing messages on po in t to po in t channels . The local ized
c o m m u n i c a t i o n s a r c h i t e c t u r e also has subs tan t i a l eng inee r ing
advantages , desc r ibed below.

An i m p o r t a n t des ign ob jec t ive of oecam and the t r a n s p u t e r
was to p rov ide the same c o n c u r r e n t p r o g r a m m i n g t echn iques
bo th for a s ingle t r a n s p u t e r and for a ne twork of t r anspu te r s .
Consequent ly , the f ea tu res of occam were chosen to ensure an
e f f i c i e n t d i s t r i b u t e d i m p l e m e n t a t i o n on t r a n s p u t e r systems.
The c o n c u r r e n t process ing mechan i sms w i t h i n the t r a n s p u t e r
were then des igned to match.

The resu l t is t h a t a p rog ram u l t ima te ly i n t e n d e d for a net-
work of t r a n s p u t e r s can be compi led a n d execu ted e f f i c i en t l y
by a s ingle compu te r used for p rogram development . Once the
logical b e h a v i o u r of the p rog ram has been ver i f i ed , the pro-
g ram may be c o n f i g u r e d for execu t ion by a s ingle t r a n s p u t e r
(low cost), or for execu t ion by a ne twork of t r a n s p u t e r s (h igh
pe r fo rmance) , or for a c o n f i g u r a t i o n r ep resen t ing a t r a d e - o f f
be tween these two ext remes .

The choice of local processing and communications necessi-
tates a s i gn i f i c an t change in p r o g r a m m i n g concepts , and new
a lgo r i t hms need to be deve loped [4]. The s tudy of va r ious
app l i ca t i ons f r o m this po in t of view is showing e n c o u r a g i n g
resul ts ([15], [16], [17], [18], [19], [20], [21], [221) and i l l u s t r a t ive
app l i ca t i ons are g iven at the end of this paper .

2 Transputer archi tecture

2.1 Overv iew

The a r c h i t e c t u r e of the t r a n s p u t e r is d e f i n e d by r e fe rence to
occam. Oceam prov ides the model of c o n c u r r e n c y and com-
m u n i c a t i o n for all t r a n s p u t e r systems. D e f i n i n g the a rch i t ec -
tu re at th is level leaves open the opt ion of us ing d i f f e r e n t pro-
cessor designs in d i f f e r e n t t r a n s p u t e r products . This a l lows
i m p l e m e n t a t i o n s which a re op t imized for d i f f e r e n t purposes.
It also a l lows i m p l e m e n t a t i o n s to evolve w i th changes in tech-
nology, w i t h o u t compromis ing the s t a n d a r d s e s t ab l i shed by
the a rch i t ec tu re .

A t r a n s p u t e r con ta ins memory, a processor and a n u m b e r of
s t a n d a r d po in t - to -po in t c o m m u n i c a t i o n l inks wh ich al low di-
rect c o n n e c t i o n to o the r t ranspute rs . The process ing capab i l -
i ty may be genera l purpose , or may be op t imized to a spec i f ic
purpose. The on -ch ip memory may be ex t ended o f f chip by a
su i t ab le in te r face .

A t r a n s p u t e r may also have specia l purpose in t e r f aces fo r
c o n n e c t i o n to spec i f ic types of ha rdware . The s epa ra t i on of

0149-7111/8510000/0292501.00 © 1985 IEEE
292

http://crossmark.crossref.org/dialog/?doi=10.1145%2F327070.327269&domain=pdf&date_stamp=1985-06-01

the t r a n s p u t e r system in t e r f ace f rom o the r in t e r faces (eg the
memory in te r face) means tha t it is possible to op t imize the
var ious in t e r f aces ind iv idua l ly , s imp l i fy ing the i r use and im-
p rov ing the i r pe r fo rmance .

A system is •cons t ruc ted f rom a col lec t ion of t r anspu te r s
which opera te co ncu r r en t l y and communica t e t h rough the
s t a n d a r d l inks. Oceam formal izes the c o m p u t a t i o n a l model.
I t enables such a system to be descr ibed as a col lect ion of pro-
cesses ope ra t ing c o n c u r r e n t l y and c o m m u n i c a t i n g t h rough
named channels .

T ranspu te r s d i rec t ly imp lemen t the occam model of a pro-
cess. In te rna l ly , an i n d i v i d u a l t r a n s p u t e r can behave like any
occam process w i t h i n i ts capab i l i ty ; in pa r t i cu la r , i t can im-
p lement i n t e rna l concu r r ency by t imesha r ing processes. Ex-
ternal ly , a col lec t ion of processes may be c o n f i g u r e d for a
ne twork of t ranspute rs . Each t r a n s p u t e r executes a compo-
nen t process, and oeeam channe l s are a l loca ted to l inks , which
d i rec t ly imp lemen t oecam message-passing.

2.2 Occam

Oecam [1, 3, 4] enables a system to be desc r ibed as a collec-
t ion of c o n c u r r e n t processes, wh ich communica t e wi th each
o ther a n d w i th p e r i p h e r a l devices t h r ough channels . Occam
programs are bu i l t f r o m three p r imi t i ve processes:

v :ffi e assign express ion e to var iab le v
e I e ou tpu t express ion e to channe l c
e ? v i npu t f r o m channe l e to va r i ab l e v

The p r i m i t i v e processes are combined to fo rm const ructs .
Each cons t ruc t is i n t r o d u c e d by a keyword, fol lowed by a l ist
of the c o m p o n e n t processes:

SEQuent ia l componen t s execu ted one a f t e r a n o t h e r
PARallel componen t s executed together
ALTerna t ive c o m p o n e n t f i r s t ready is executed

A cons t ruc t is i t se l f a process, and may be used as a compo-
nen t of a n o t h e r cons t ruct .

C o n v e n t i o n a l sequen t i a l p rograms can be expressed wi th var i -
ables a n d ass ignments , combined in sequent ia l const ructs . I F
and N H I L E cons t ruc t s are also provided.

C o n c u r r e n t p rograms can be expressed w i th channels , i npu t s
and outputs , wh ich are combined in para l le l and a l t e rna t i ve
constructs .

Each oeeam channe l p rovides a c o m m u n i c a t i o n pa th be tween
two c o n c u r r e n t processes. C o m m u n i c a t i o n is synch ron ized
and takes place w h e n bo th the i n p u t t i n g process and the out-
p u t t i n g process are ready. The da ta to be ou tpu t is t hen
copied f r o m the o u t p u t t i n g process to the i n p u t t i n g process,
and bo th processes cont inue .

An a l t e r n a t i v e process may be ready for i npu t f rom any one
of a n u m b e r of channels . In this ease, the i npu t is t aken f rom
the channe l which is f i r s t used for ou tpu t by ano t he r process.

The choice of synch r on i zed c o m m u n i c a t i o n prevents the loss
of data . The choice of u n b u f f e r e d c o m m u n i c a t i o n removes
the need for any store to be associa ted wi th the channe l .
Copying da ta f r o m the o u t p u t t i n g process to the i n p u t t i n g
process is c lear ly essent ia l for c o m m u n i c a t i o n be tween t rans -
puters , a n d it is easy to make copying wi th in a mach ine f a s t
by use of microcode.

2.2.1 Design correctness

I t is necessary to ensure t ha t systems bu i l t f r om t ranspu te r s ,
possibly invo lv ing h u n d r e d s or t housands of c o n c u r r e n t de-
vices, can be des igned and p r o g r a m m e d effect ively .

The design of occam and the t r a n s p u t e r a r ch i t e c tu r e has fol-
lowed two pr inc ip les to help the des igner increase his conf i -
dence tha t his des ign is correct : s impl ic i ty and formal i ty .

Occam has been kept simple, wi th the a im of mak ing it easy
to learn , and easy to use [3].

Formal t e chn iques become much more i m p o r t a n t w h e n con-
c u r r e n c y is involved, as t echn iques based on exhaus t ive test-
ing are imprac t i cab le . Oecam has been des igned to have a for-
mal semantics . The way tha t this was ach ieved was to d e f i n e
a set of fo rma l p roper t i e s t h a t the language should possess.
These take the f o r m of a n u m b e r of b e h a v i o u r - p r e s e r v i n g
t r a n s f o r m a t i o n s t ha t should be app l icab le to any oceam pro-
g ram [12]. Many seman t i c issues in the des ign and develop-
men t of the l anguage were resolved by r e fe rence to this set
of proper t ies . E n f o r c i n g th is d i sc ip l ine has enab led a fo rma l
semant ics fo r the l anguage to be deve loped [13], and has la id
the basis for so f tware eng inee r i ng tools r ang ing f r o m fo rma l
va l i da t i on to p rogram t r a n s f o r m a t i o n .

P rac t i ca l and immedia t e bene f i t s have been t ha t the l anguage
is very se l f -cons i s ten t (wh ich makes l i fe easier for the com-
pi ler wr i t e r a n d user al ike) , t ha t the equ iva lence of concur-
r en t a lgor i thms can be s tudied, and tha t p rograms can be
t r a n s f o r m e d to have g rea te r or less decen t r a l i s a t i on w i t h o u t
chang ing the i r logical behaviour[4] .

2.2.2 Real t ime

On an i n d i v i d u a l t r anspu te r , a para l le l cons t ruc t may be con-
f i gu red to p r io r i t i ze its components , and an a l t e rna t i ve con-
s t ruc t may be c o n f i g u r e d to p r io r i t i ze its inputs . A h i g h e r
p r io r i t y process a lways proceeds in p re fe rence to a lower pr i -
or i ty one.

The equ iva len t of an i n t e r r u p t (a h igh pr io r i ty process be ing
scheduled in o rder to respond to an ex te rna l s t imulus) is de-
s igned en t i r e ly in oecam, as all i n p u t and ou tpu t is f o rma l i zed
as c h a n n e l commun ica t i on . A h igh p r io r i t y process may wa i t
for the f i r s t of several d i f f e r e n t inpu ts to become ready by
us ing the ALT const ruct .

A h igh p r io r i ty process proceeds un t i l it t e rmina te s or has to
wa i t for a communica t ion . A system can thus be des igned
to meet rea l - t ime cons t ra ins by des ign ing each high p r io r i ty
process so t ha t the a m o u n t of processor t ime it requi res over
a g iven pe r iod is bounded , thus p lac ing a bound on the to ta l
t ime t h a t a h igh p r io r i t y process may have to wai t for the
cpu. In m a n y cases, it may be possible to reason t h a t two or
more h igh p r io r i ty processes will never conf l ic t , and t ha t the
l a t ency reduces to the t ime requ i red to swi tch f rom a low
pr io r i ty process to a hgh p r io r i ty process. Each t r a n s p u t e r
i m p l e m e n t a t i o n places a b o u n d on th is time.

A global synch ron i zed sense of t ime is not prac t icab le , and
not r ep re sen ta t ive of rea l -wor ld s i tua t ions . There is t he r e fo re
a local concep t of t ime, each t imer be ing imp lemen ted as an
i n c r e m e n t i n g clock.

Logically, access to a t imer is t r ea ted as an input . A delayed
i n p u t may be used, wh ich waits unt i l the va lue of the clock
reaches an a p p r o p r i a t e value. A t imer i npu t may be used in
an a l t e r n a t i v e cons t ruc t . This can be used to provide t imeou t
on a commun ica t i on .

293

2.3 Inter-transputer l inks

A l ink be tween two t r an s pu t e r s p rovides a pa i r o f oceam
channels , one in each d i rec t ion . A l ink be tween two t rans -
pu te r s is i m p l e m e n t e d by c o n n e c t i n g a l ink i n t e r f ace on one
t r a n s p u t e r to a l ink i n t e r f a c e on the o the r t r a n s p u t e r by two
one -d i r ec t iona l s ignal lines. Each s ignal l ine car r ies da ta and
cont ro l i n f o r m a t i o n .

C o m m u n i c a t i o n t h r o u g h a l ink involves a s imple protocol ,
wh ich prov ides the s ynch r on i zed c o m m u n i c a t i o n of occam.
The pro tocol p rovides for the t r ansmiss ion of an a r b i t r a r y
sequence of bytes, wh ich allows t r an s pu t e r s of d i f f e r e n t
w o r d l e n g t h to be connected .

Each message is t r a n s m i t t e d as a sequence of s ingle byte com-
mun ica t ions , r e q u i r i n g on ly the presence of a s ingle byte
b u f f e r in the r ece iv ing t r a n s p u t e r to ensure t ha t no in fo r -
m a t i o n is lost.

Each byte is t r a n s m i t t e d as a s ta r t b i t fo l lowed by a one b i t
fo l lowed by the e ight da t a bi ts fol lowed by a stop bit. A f t e r
t r a n s m i t t i n g a da ta byte, the sender wai ts un t i l an acknowl-
edge is received; th i s consis ts of a s ta r t b i t fol lowed by a zero
bit . The acknowledge s ign i f ies bo th t ha t a process was able
to rece ive the acknowledged byte, and t ha t the r ece iv ing l ink
is able to rece ive a n o t h e r byte. The send ing process may pro-
ceed only a f t e r the acknowledge for the f i n a l byte of the mes-
sage has been received.

F igu re 1 L ink pro tocol

Data packet
0 1 2 3 4 5 6 7

Acknowled~ packet

I, Iol
Data bytes and acknowledges are mul t ip l exed down each sig-
na l l ine. An acknowledge is t r a n s m i t t e d as soon as recep t ion
of a da t a byte s tar ts (i f the re is a process wa i t ing for it, a n d i f
t he re is room to b u f f e r a n o t h e r one). Consequen t ly t r ansmis -
s ion may be cont inuous , w i th no delays be tween da ta bytes.

Us ing po in t to po in t ser ia l communica t ions , r a t h e r t h a n
busses has a n u m b e r of advantages :

Board layout is much s impl i f ied .

C o m m u n i c a t i o n s b a n d w i d t h is increased, as m a n y
l inks in a system can opera te concur ren t ly .

Devices of d i f f e r e n t word lengths and p e r f o r m a n c e
can be easi ly in t e rconnec ted .

T r a n s p u t e r s w i t h d i f f e r e n t word leng ths and p e r f o r m a n c e
wil l all i n t e r w o r k toge ther , as will all f u t u r e p roduc t s , ensur -
ing t h a t systems can be read i ly u p g r a d e d as the t echno logy
advances . It is not necessary to d o w n g r a d e the p e r f o r m a n c e
of a connec ted set of componen t s to t ha t of the slowest.

2.3.1 Electrical properties of l inks

The s ignals are TTL compa t ib l e and the i r r ange can be ex-
ten~ded by i n se r t i ng i n d u s t r y s t a n d a r d l ine d r ive r s and re-
ceivers. The s t a n d a r d t r ansmiss ion rate is 10MHz, p r o v i d i n g
a m a x i m u m p e r f o r m a n c e of a b o u t IMByte / sec in each d i rec-
t ion on each l ink.

The l inks are des igned to make the eng inee r i ng of t r a n s p u t e r
systems as easy as possible. I r r e spec t ive of i n t e rna l pe r fo r -
mance, all t r a n s p u t e r s use a r e fe rence clock of 5MHz, a n d
th i s is r e q u i r e d only for a p p r o x i m a t e f r e q u e n c y i n f o r m a t i o n
and not for phase. All f u t u r e t r an spu t e r s wil l also use th is
same f requency . The low f r e q u e n c y was chosen to s imp l i fy
the d i s t r i b u t i o n of the c lock in a large system and it is not
neccesa ry for al l t r a n s p u t e r s to be on the same clock, e n a b l i n g
i n t e r w o r k i n g be tween i n d e p e n d e n t l y des igned systems. Thus,
t r a n s p u t e r s can be i n t e r c o n n e c t e d jus t as easi ly as TTL gates
- indeed , the c o n s t r a i n t on the des igner is jus t the same - he
must not exceed the m a x i m u m capac i tance .

3 Implementat ion

3.1 Instruction set requiremen ts and overview

The f i r s t t r a n s p u t e r p roduc t is the T424, a genera l purpose
32 b i t m a c h i n e w i t h 4K bytes of on-ch ip memory (which can
be e x t e n d e d w i th o f f chip memory) and four h i -d i r ec t i ona l
c o m m u n i c a t i o n s l inks, wh ich prov ide a to ta l of 8Mbytes per
second of c o m m u n i c a t i o n s b a n d w i d t h . Th i s wil l shor t ly be
fo l lowed by the T222, a 16 bi t m a c h i n e p r o v i d i n g s imi la r fa-
ci l i t ies.

The des ign ob jec t ives of the [1 i n s t ruc t i on set and the proces-
sor for these f i r s t t r a n s p u t e r s were as follows:-

To p rov ide an e f f i c i e n t i m p l e m e n t a t i o n of occam, so
t ha t the use of h igh level languages resul ts in e f f i c i e n t
use of s i l icon capabi l i ty , and t ha t h igh ly c o n c u r r e n t
p rograms execute w i th m i n i m u m overheads .

To p rov ide a s imple and d i rec t i m p l e m e n t a t i o n of pc-
cam so t h a t p rograms can be compi led s imply and
s t r a i g h t f o r w a r d l y , and to ensure tha t the re is no need
to cons ide r p r o g r a m m i n g at a lower level t han tha t de-
f i n e d a rch i t ec tu ra l ly .

To p rov ide word l eng th i n d e p e n d e n c e , so t h a t a pro-
g r am can be execu ted us ing processors of d i f f e r e n t
word leng ths w i thou t recompi la t ion .

To p rov ide pos i t ion i n d e p e n d e n c e , so t h a t p rog ram and
workspaces may be a l loca ted a n y w h e r e in memory af -
t e r compi la t ion .

To p rov ide low la tency response to c o m m u n i c a t i o n s
w i t h ex t e rna l devices.

The lowest level of p r o g r a m m i n g t r a n s p u t e r s is to use occam
(occam is e q u i v a l e n t in e f f ec t iveness to a conven t i ona l mi-
c roprocessor ' s assembler) . The i n s t ruc t i on set, and the use of
occam as its p r o g r a m m i n g language , is t h e r e f o r e i l l u s t r a t ed
by desc r ib ing the ma in usage of the var ious regis ters in the
mach ine , and by g iv ing typ ica l i n s t ruc t i on sequences for s im-
ple occam cons t ruc ts . Note t ha t it is not common p rac t i ce to
a b b r e v i a t e the names of the ins t ruc t ions , or to use mnemon-
ics. T r a n s p u t e r sys tem des igners have no genera l need to wr i te
down i n s t r u c t i o n sequences, and us ing fu l l names aids read-
ab i l i t y of the examples.

294

3.2 The I1 Instruction set

3.2.1 Performance note

Two i m p o r t a n t p e r f o r m a n c e measures are the n u m b e r of
bytes to ho ld the program, and the speed of execu t ion pro-
v ided by an implemen ta t ion . It should be rea l ized t h a t the
speed of execu t ion of i n d i v i d u a l i n s t ruc t ions is less impor-
t an t t h a n the speed wi th which key system func t i ons are per-
fo rmed , b e a r i n g in m i n d the i n t ended uses of the machine .

The I1 i n s t r u c t i o n set is des igned spec i f ica l ly w i th a view
to e f f i c i e n t and fast VLSI imp lemen ta t i on , a l t hough var ious
t r ade -o f f s of p e r f o r m a n c e versus s i l icon area are st i l l pos-
sible. On the f i r s t t r anspu te r s , each i n s t ruc t i on is executed
in one or more processor cycles us ing one level microcode.
The f igures g iven in this pape r assume tha t p rogram and da ta
are s tored on chip. Ex t ra cycles may be r equ i red i f p rog ram
a n d / o r da ta are s tored o f f chip, though the s ign i f i cance of
th is can be reduced to a low level wi th ca re fu l o rgan i sa t ion
of the app l ica t ion . Full de ta i l s are given in [14].

I t shou ld be no ted t h a t a l t hough all t r anspu te r s have an ex-
t e rna l clock cycl ing at 5 MHz, the i n t e rna l speed is set as pa r t
of the m a n u f a c t u r i n g process. It is expec ted t ha t the r ange of
speeds of the f i r s t t r anspu te r s will p rov ide in te rna l processor
cycle ra tes of up to 20MHz.

The des ign of the f i r s t t r anspu te r s ca re fu l ly ba lances the
costs of memory access and alu opera t ion , and con ta ins suf-
f i c i en t over lap to ensure a h igh degree of eff ic iency. Many
of the i n s t ruc t i ons execute in a s ingle cycle, and typical se-
quences of commonly used in s t ruc t ions can de l iver a 15 MIPS
execu t ion rate.

3.2.2 Memory organizat ion

The memory address space comprises a s igned l inea r address
space. The i n s t ruc t i on a r ch i t ec tu re does not d i f f e r e n t i a t e be-
tween on-ch ip an d o f f - ch ip memory. This al lows the appl ica-
t ion des igner to have comple te cont ro l over the p lacement of
code and da ta to take advan tage of the p e r f o r m a n c e bene f i t s
of on-ch ip memory.

A byte in memory is i den t i f i ed by a single word value cal led
a poin ter . A po in te r consists of two parts: a word address and
a byte selector. The byte selector con ta ins as many bi ts as are
needed to i d e n t i f y a s ingle byte w i th in a word and occupies
the leas t s i gn i f i c an t bi ts of the pointer . For example , in a
24 bi t t r a n s p u t e r the word address would occupy the 22 most
s i gn i f i c an t b i t s and the by te selector the 2 least s i gn i f i can t
bits.

Special ins t ruc t ions , such as load local pointer and word sub-
script, are p rov ided to cons t ruc t and m a n i p u l a t e pointers .
Po in te r values are t r ea ted as s igned integers, s t a r t ing f r o m
the most nega t ive in teger and con t inu ing , t h r o u g h zero, to the
most posi t ive integer . This enables the s t a n d a r d compar i son
f u n c t i o n s to be used on po in te r values in the same way t h a t
they a re used on numer i ca l values.

The add re s s ing in s t ruc t ions p rov ide access to i tems in da ta
s t ruc tu res , us ing shor t sequences of s ingle byte ins t ruc t ions ,
a l lowing the r ep r e s en t a t i on of da ta s t r uc tu r e access to be in-
d e p e n d e n t of the word leng th of the processor.

3.2.3 Regis ters

The des ign of the t r a n s p u t e r processor exploi ts the ava i lab i l -
i ty of fas t -on-ch ip memory by h a v i n g only a smal l n u m b e r of

regis ters ; six regis ters a re used in the execu t ion of a sequen-
t ia l process. In the i n t e rna l o r g a n i z a t i o n of the processor , al l
i n t e r n a l regis ters and da ta pa ths are the word leng th n u m b e r
of b i t s wide. The smal l n u m b e r of registers , toge ther w i th the
s impl ic i ty of the i n s t ruc t i on set, enables the processor to have
re la t ive ly s imple (and fas t) da ta pa ths a n d cont ro l logic.

The six regis ters are:

The workspace po in t e r wh ich points to an a rea of s tore
where local va r iab les are kept.

The i n s t ruc t i on po in te r which points to the next in-
s t r uc t i on to be executed.

The ope rand regis ter which is used in the f o r m a t i o n
of i n s t r u c t i o n operands ,

The A, B a n d C regis ters which fo rm an eva lua t ion
stack. The eva lua t ion s tack is used for express ion eval-
ua t ion , to ho ld the ope rands of schedu l ing and commu-
n i ca t ion ins t ruc t ions , and to hold pa ramete r s of proce-
du re calls.

F i g u r e 2 Regis te rs for sequen t i a l p rog ramming

Registers Locals Program

A

B

C

Workspace

Next
|nstrucUon

Operand

m

m

The eva lua t ion s tack removes the need fo r i n s t ruc t ions to
speci fy regis ters expl ici t ly . Consequent ly , most of the exe-
cu ted ope ra t ions (typica l ly 80%) are encoded in a s ingle byte.
T h e I1 i n s t ruc t i on set saves on t ime and area t h r o u g h not hav -
ing to decode secondary control f ie lds or regis ter fields.

3.2.4 Support for concurrency

The processor p rov ides e f f i c i e n t suppor t for the occam model
of c o n c u r r e n c y and communica t ion . I t has a scheduler which
enables any n u m b e r of c o n c u r r e n t processes to be execu ted
together , sha r ing the processor time. Th i s removes the need
for a so f tware kernel . The processor does not need to sup-
por t the d y n a m i c a l loca t ion of s torage as the occam compi le r
is able to p e r f o r m the a l loca t ion of space to c o n c u r r e n t pro-
¢esses. The re is also no need for the h a r d w a r e to p e r f o r m
access check ing on every memory reference , resu l t ing in an
overal l improvemen t in pe r fo rmance .

At any t ime, a c o n c u r r e n t process may be

ac t ive be ing execu ted
on a l ist awa i t i ng execut ion

inac t ive r eady to i n p u t
r eady to o u t p u t
wa i t ing un t i l a spec i f ied t ime

295

The act ive processes wai t ing to be executed are held on a list.
This is a l inked list of process workspaces, implemented using
two registers, one of which points to the f i rs t process on the
list, the other to the last.

Figure 3 Concur ren t processes

0ccam Registers

PAR O p J Front

R Back

A

B

C

Workspace

Next
instruction
Operand

Workspaces

P

Program

A start process ins t ruc t ion creates a new process by adding a
new workspace to the end of the schedul ing list, enabl ing the
new concur ren t process to be executed together wi th the ones
a l ready being executed.

The correct t e rmina t ion of a paral lel const ruct is assured by
use of the end process ins t ruct ion. This uses a workspace loca-
t ion as a counter of the components of the paral lel cons t ruct
which have still to terminate . When the components have all
t e rmina ted , the counter reaches zero, and a spec i f ied process
can then proceed.

The processor supports two pr ior i ty levels, implemented us-
ing two lists as descr ibed above. A switch f rom a pr ior i ty
1 process (low prior i ty) to pr ior i ty 0 process (high priori ty) ,
or vice versa, may occur when a process stops, when a chan-
nel becomes ready, or when a communica t ion completes and
causes a pr ior i ty 0 process to become ready.

To allow a max imum latency f igure to be calculated, the in-
s t ruct ions which may take a long t ime to execute have been
implemented to allow a switch dur ing execution. Conse-
quently, the max imum time taken to swi tch f rom pr ior i ty 1
to pr ior i ty 0 is 58 cycles (less than three microseconds wi th
a 50ns processor cycle time). The switch f rom pr ior i ty 0 to
pr ior i ty 1 only takes place when there is no pr ior i ty 0 work
available. The t ime taken for the switch is 17 cycles.

A context swi tch between processes, both execut ing at pri-
or i ty 1, occurs only at t imes when the evaluat ion stack has
no useful contents , and the re fore a f fec t s only the ins t ruc t ion
poin ter and the workspace pointer . With the need to save and
restore registers at a min imum, the implementa t ion of con-
cur rency is very ef f ic ient .

3.2.5 I n s t r u c t i o n f o r m a t

All ins t ruc t ions have the same format . Each is one byte long,
and is d iv ided into two 4 bit parts. The four most s igni f i -
cant bits of the byte are a func t ion code, and the four least
s ign i f i can t bits are a data value.

F igure 4 Ins t ruc t ion fo rmat

7 0

i- ,oo io,. i
The use of a single ins t ruc t ion format requires only a simple
decode mechan ism in the processor, which reduces area and
increases speed. The use of single byte ins t ruc t ions decou-
pies the ins t ruc t ion fo rmat f rom the word length of the ma-
chine. In pa r t i cu la r it avoids the commonly found problems
concerned wi th a l igning ins t ruc t ions on word boundaries .

Short ins t ruc t ions also improve the e f fec t iveness of the in-
s t ruc t ion fe tch mechanism, which in turn improves processor
per formance . The processor uses o therwise spare memory cy-
cles to fe tch instruct ions. As memory is word accessed, a 32
bit t r anspu te r will receive four ins t ruc t ions for every fetch.
There are two words of ins t ruc t ion fe tch b u f f e r so tha t the
processor rarely has to wait for an ins t ruc t ion fe tch before
proceeding (only on t rans fe r s of control if on-chip memory
is used). Since the b u f f e r is short , there is l i t t le t ime penal ty
when a jump ins t ruc t ion causes the b u f f e r contents to be
fi l led.

There is no ins t ruc t ion cache, as only rarely would such a
cache reduce the number of processor cycles required. An
on-chip cache incurs a s ign i f i can t cost in terms of chip area,
as a cache requires several t imes the area of a simple memory
to store the same amount of in format ion . An o f f -ch ip cache
complicates the external in ter face . Both require extra logic,
even when a ided by sof tware (as in the IBM 801 [7]), which
would be likely to slow down the overall speed of opera t ion
and use up even more chip area. The view is taken tha t the
chip area is be t te r spent on provid ing memory for the appli-
cation.

3.2 .6 D i r e c t f u n c t i o n s

The represen ta t ion provides for s ixteen func t ions , each en-
coded as a value in the range 0 to 15. Thi r teen of these values
are used to encode the most impor tan t func t ions p e r f o r m e d
by any computer . These include:

load constant load non local
add constant store non local

load local j u m p
store local conditional j u m p
load local pointer

call

The most common opera t ions in a program are the loading
of small l i teral values, and the loading and storing of one of
a small number of variables. The load constant ins t ruc t ion
enables values between 0 and 15 to be loaded onto the evalu-
a t ion stack wi th a single byte ins t ruct ion. The load local and
store local ins t ruc t ions access locat ions in memory rela t ive to
the workspace pointer . The f i rs t 16 locat ions can be accessed
using a single byte instruct ion.

The load non local and store non local ins t ruct ions behave sim-
ilarly, except that they access locations in memory relat ive
to the A register. Compact sequences of these ins t ruc t ions
allow e f f i c i en t access to data s t ructures , and provide for sim-
ple implementa t ions of the stat ic links or displays used in the
implementa t ion of block s t ruc tured programming languages.
This e l iminates the need for compl ica ted and d i f f i cu l t - to -use
address ing modes.

296

In the fo l lowing examples , X and y are assumed to be local
va r iab les a l loca ted to of fse ts x and y respec t ive ly in the f i r s t
s ix teen words of workspaee.

occam in s t ruc t i on sequence bytes cycles

x := 0 load constant 0 1 1
store local x 1 1

X :-- y load l o c a l y 1 2
store local x 1 1

In th i s example , z is assumed to have been dec la red exter-
na l ly to the PROC which con ta ins this ass ignment s ta tement .
The compi le r a l locates a local workspace loca t ion , a t o f f se t
s ta t ic l ink , to ho ld the address of the workspace t ha t conta ins
the va r i ab le z.

oeeam i n s t r uc t i on sequence bytes cycles

Z :~ i load constant 1 1 1
load local s ta t ic l ink 1 2
store non local z I 2

3.2.7 P re f ix ing func t ions

Two more of the f u n c t i o n codes, p re f ix a n d nega t ive pref ix ,
are used to al low the ope r and of any in s t ruc t ion to be ex-
t e n d e d in length.

All i n s t ruc t ions are execu ted by loading the four da t a bi ts
in to the least s i gn i f i can t four bi ts of the ope rand register ,
wh ich is then used as the the in s t ruc t ion ' s operand. All in-
s t ruc t ions except the p r e f i x i n g ins t ruc t ions end by c lea r ing
the ope rand register , r eady for the nex t ins t ruc t ion .

F igu re 5 Use of ope r and regis ter

I Function ,IData I
k;

The p r e f i x i n s t r uc t i on loads its four da ta bi ts into the ope rand
register , and t hen sh i f t s the ope r and regis ter up four places.
The negat ive p r e f i x i n s t ruc t i on is s imi lar , except tha t it com-
p lements the o p e r a n d regis ter be fore s h i f t i n g it up, Conse-
quen t ly ope rands can be ex tended to any length up to the
l eng th of the o p e r a n d regis ter by a sequence of p r e f i x i n g in-
s t ruct ions . In pa r t i cu la r , ope rands in the range -256 to 255
can be r ep resen ted us ing one p r e f i x i n g ins t ruc t ion .

The fo l lowing example shows the i n s t r uc t i on sequence for
load ing the hexadec ima l cons tan t #754 into the A register ,
and gives the con ten t s of the O regis ter and the A regis ter
a f t e r execu t ing each in s t ruc t ion

O regis ter A regis ter
p r e f i x #7 #7 ?
p r e f i x #5 #75 ?
load constant #4 0 #754

The use of p r e f i x i n g i n s t ruc t i ons has ce r t a in bene f i c i a l con-
sequences. Firs t ly , they are decoded and execu ted in the same
way as every o ther i n s t ruc t i on , wh ich s impl i f ies and speeds
i n s t ruc t i on decoding . Secondly, they s impl i fy language com-
p i la t ion , by p r o v i d i n g a comple te ly u n i f o r m way of a l lowing
any in s t ruc t i on to take an o p e r a n d of any size. Thi rd ly , they
al low ope rands to be represen ted in a fo rm which is i ndepen-
den t of the processor word length .

Each p r e f i x i n g i n s t ruc t i on occupies one byte and takes one
cycle to execute.

3.2.8 Indirect funct ions

The r e m a i n i n g f u n c t i o n code, operate, causes i ts o p e r a n d to
be i n t e r p r e t e d as an opera t ion on the values held in the eval-
ua t ion stack. For example , the plus ope ra t ion adds the values
of the A and B registers. The resul t is le f t in the A register ,
a n d C is copied into the B register.

The operate i n s t ruc t i on allows up to 16 such opera t ions to be
encoded in a s ingle byte ins t ruc t ion . However , the p r e f i x i n g
in s t ruc t ions can be used to ex t end the ope rand of an opera te
i n s t ruc t i on just l ike any other .

The encod ing of the i nd i r ec t f u n c t i o n s is chosen so t ha t the
most f r e q u e n t l y occu r r i ng ope ra t ions are represen ted wi th-
out the use of a p r e f i x i n g ins t ruc t ion . These inc lude a r i t h -
metic , logical and compar i son opera t ions , together wi th the
most f r e q u e n t l y used cont ro l f u n c t i o n s a n d register man ipu -
l a t ion func t ions .

Less f r e q u e n t l y occu r ing opera t ions have encod ings which re-
qu i re a s ingle p r e f i x i n g o p e r a t i o n (the t r a n s p u t e r i n s t ruc t i on
set is not large enough to r equ i re more t han 512 ope ra t ions to
be encoded!).

3.2.9 Express ion evaluat ion

Loading a value on to the eva lua t ion stack pushes B into C,
and A in to B, be fore loading A. Stor ing a value f rom A, Oops
B in to A and C into B.

The A, B and C registers a re the sources and des t i na t i ons for
a r i t h m e t i c and logical opera t ions . For example , the a d d in-
s t ruc t ion adds the A and B registers, places the resul t in the
A register , and copies C into B.

I f the re is i n s u f f i c i e n t room to eva lua te an express ion on the
stack, then the compi le r in t roduces the necessary t e m p o r a r y
va r iab les in the local workspace. However , express ions of
such complex i ty are, in prac t ice , r a re ly encounte red . Th ree
regis ters p rov ide a good ba l ance be tween code compactness
and i m p l e m e n t a t i o n complexity.

Single l eng th s igned and s ingle l eng th modulo a r i t h m e t i c
is d i r ec t ly suppor ted . In add i t ion , a qu ick unchecked mul-
t ip ly is provided , in wh ich the t ime taken is p ropo r t i ona l
to the l o g a r i t h m of the second operand . The p e r f o r m a n c e
of these i n s t ruc t i on sequences compares favourab ly , in bo th
space and t ime, to t ha t ach ieved by more complex in s t ruc t i on
sets. Where a more complex i n s t ruc t i on set c a n n o t ach ieve the
same e f f ec t in a s ingle ins t ruc t ion , the p e r f o r m a n c e gain is
s ign i f i can t .

297

occam

x + 2

(v + w)

i n s t r uc t i on sequence bytes cycles

load local x 1 2
a d d cons tant 2 1 1

* (y + z)
load local v 1 2
load local w 1 2

a d d 1 1
load local y 1 2
load local z 1 2
a d d 1 1
mu l t i p l y 2 7+word leng th

3.2.10 Input and output

A c h a n n e l p rov ides a c o m m u n i c a t i o n pa th be tween two pro-
cesses. Channe l s be tween processes execu t ing on the same
t r a n s p u t e r a re i m p l e m e n t e d by s ingle words in memory (in te r -
na l channe ls) ; channe l s be tween processes execu t ing on d i f -
f e r e n t t r a n s p u t e r s are i m p l e m e n t e d by po in t - to -po in t l inks
(ex te rna l channels) .

As in the oecam model , c o m m u n i c a t i o n takes place w h e n bo th
the i n p u t t i n g and o u t p u t t i n g processes a rc ready. Conse-
quent ly , the process wh ich f i r s t becomes ready must wai t un t i l
the second one is also ready.

A process p repares f o r an i n p u t or an o u t p u t by loading the
e v a l u a t i o n s tack w i th a po in t e r to a bu f f e r , the i den t i t y of
the channe l , a n d the coun t of the n u m b e r of bytes to be t rans -
fe r red . It t hen executes an inpu t m e s s a g e or an outpu t m e s s a g e
i n s t r u c t i o n as appropr i a t e .

The input m e s s a g e and output mes sage i n s t ruc t i ons use the ad-
dress of a c h a n n e l to d e t e r m i n e w h e t h e r the channe l is in-
t e rna l or ex te rna l . Th i s means t h a t the same in s t ruc t i on se-
quence can be used for b o t h i n t e rna l and ex t e rna l channe ls ,
a l lowing a process to be w r i t t e n and compi led w i t h o u t knowl-
edge of whe re its channe l s are connected . In pa r t i cu la r , e i t he r
an i n t e rna l or an ex t e rna l c h a n n e l can be used as the ac tua l
p a r a m e t e r for a c h a n n e l p a r a m e t e r of a n a m e d process.

A c o m m u n i c a t i o n p r i m i t i v e c o m m u n i c a t i n g a block of size n
bytes r equ i res only one byte of p rogram, and on average the
m a x i m u m of (24, 21+(8*n /word leng th)) cycles (inc lud ing the
s chedu l ing overhead) .

I n s t r u c t i o n s for e n a b l i n g and d i sab l ing channe l s p rov ide sup-
por t for an i m p l e m e n t a t i o n of a l t e r n a t i v e i npu t w i t h o u t the
use of pol l ing.

3.3 Discuss ion

The r e q u i r e m e n t s of the t r a n s p u t e r i nd i ca t e t ha t a t r a n s p u t e r
processor should have a s imple design. A t r a n s p u t e r has a sub-
s t an t i a l a m o u n t of a rea given over to memory and communi -
ca t ions , i ndeed a t r a n s p u t e r can be t h o u g h t of as a memory
chip w i th a processor in one corner . In fact , the processor on
the f i r s t t r a n s p u t e r s occupies abou t 25% of the ava i l ab le area.

It was c lear t ha t a s imple processor could be cons t ruc t ed
wh ich would leave the ma jo r i t y of a ch ip area ava i l ab le for
o the r purposes. The ea r ly RISC expe r i ences [6, 7, 8, 9] l en t
f u r t h e r s u p p o r t to the eva lua t ion t ha t p e r f o r m a n c e r e su l t i ng
f r o m us ing a s imple processor need not suf fe r .

Var ious projects , for example the IBM 801 [7] and MIPS [8],
are wi l l ing to pay a pr ice of so f tware complex i ty in o rder

to ach ieve i m p l e m e n t a t i o n eff ic iency. However , the ev idence
of i n t e r p r e t i v e schemes for h igh level l anguages was t ha t a
s imple i n s t r u c t i o n set could be des igned w h i c h would lead to
a b e t t e r h a r d w a r e / s o f t w a r e r e l a t ionsh ip , and hence s imp l i fy
the so f tware as well. This would p robab ly mean re j ec t ing the
s t ra tegy of compi l ing to a level best cons ide red as microcode.

The j u s t i f i c a t i o n for the use of mul t ip le cycle i n s t ruc t i ons
must be t h a t the i n s t ruc t i ons well ma tch the so f tware requi re -
ments . In the t r a n s p u t e r processor for the I1, r epe t i t i ve oper-
a t ions , such as mul t ip ly , and block move, are i m p l e m e n t e d by
mic roeode (wi th h a r d w a r e assistance). The a l t e r n a t i v e RISC
i m p l e m e n t a t i o n [9] is to provide , for example , a s ingle cycle
mu l t ip ly step, and fo r the so f tware to compi le the a p p r o p r i a t e
loop. The e f f i c i ency , in b o t h code space and execu t ion speed,
r e su l t ing f r o m the mic rocoded so lu t ion outweighs the cost of
a rea and capac i t ance in the mic rocode ROM.

The I1 i n s t r u c t i o n set achieves word l eng th i n d e p e n d e n c e , in
t h a t a p rog ram wh ich m a n i p u l a t e s bytes, words and t r u t h val-
ues can be t r a n s l a t e d in to an i n s t ruc t i on sequence which be-
haves iden t i ca l ly w h a t e v e r the w o r d l e n g t h of the processor
execu t ing i t (apa r t f r o m over f low cond i t ions r e su l t ing f r o m
word l eng th dependenc ies) . This resul t s f r o m the f ac t t h a t
the i n s t r u c t i o n size is i n d e p e n d e n t of word l eng th , the m e t h o d
of r ep re sen t ing long ope rands as a sequence of p r e f i x i n g in-
s t ruc t ions , and the memory addres s ing s t ruc ture .

Workspaces are he ld in addressab le memory, which the de-
s igner can choose to a l loca te on chip or o f f chip. Ho ld ing
workspaces on ch ip fo rms a very e f f ec t i ve a l t e r n a t i v e to the
use of cache memory [11], the cost of which has a l r e ady been
discussed. A f u r t h e r a d v a n t a g e is tha t , un l ike cache memory ,
r a re ly accessed da t a need not be b rough t on chip.

In genera l , a p rog ram needs much less store to ho ld it t han an
e q u i v a l e n t p rog ram in a conven t i ona l microprocessor . Since a
p rog ram requ i res less s tore to represen t it, less of the memory
b a n d w i d t h is t aken up w i th f e t ch ing ins t ruc t ions . As memory
is word accessed, the p r o c e s s o r will rece ive severa l ins t ruc-
t ions for every f e t ch (d e p e n d i n g upon the n u m b e r of bytes in
a word).

The overa l l e f f ec t is thus t ha t b o t h compactness and speed
have been ach ieved , toge the r w i th economica l use of sil icon.

4 The transputer as a f a m i l y

The T424 32 b i t t r a n s p u t e r is the f i r s t of a range of t r a n s p u t e r
p roduc t s [14]. The nex t p roduc t s wil l be a 16 bi t t r a n s p u t e r
o f f e r i n g s imi la r fac i l i t i es to the T424, a h igh p e r f o r m a n c e
disk con t ro l l e r and a h igh p e r f o r m a n c e graph ics cont ro l le r .

A t r a n s p u t e r f a m i l y dev ice con t ro l l e r has the same organ-
i sa t ion as a t r an spu t e r , w i th the add i t i on of specia l h igh
speed cont ro l logic and in te r faces . Device cont ro l le rs are pro-
g r a m m a b l e , in occam, in the same way as t r anspu te r s . Th i s
al lows a des igner to ta i lor the con t ro l le r ' s f u n c t i o n to his par-
t i cu la r app l ica t ion .

4.1 A personal works ta t ion

This sec t ion explores the des ign poss ib i l i t i es p rov ided by the
t r a n s p u t e r a r ch i t ec tu re . The f i r s t step is the ou t l ine des ign
of a pe r sona l works t a t ion , wh ich can be des igned a n d bu i l t
us ing f u n c t i o n a l l y d i s t r i b u t e d t ranspute rs . One t r an spu t e r ,
t he app l i c a t i ons processor , accepts the user ' s c o m m a n d s and
ca r r i e s out the a p p r o p r i a t e processing, ca l l ing on two o ther
t r anspu te r s , w h i c h look a f t e r a disk sys tem and a graphics
d i sp lay sys tem respect ively . Each of the l a t t e r two t r a n s p u t e r s

298

and associa ted h a r d w a r e can be replaced by t r a n s p u t e r based
device cont ro l le rs as they become avai lable.

F igure 6 Personal compu te r works ta t ion

K e y b o a r ~ : : ~ ~ Applicati
Proces,,

0 ~ _ ~ Disk ~
Controller)-

Screen I
Memory

S
- - ~ Graphics

Controller
r L

Screen

The t r anspu te r s are connec ted toge ther us ing the s t a n d a r d
t r a n s p u t e r c o m m u n i c a t i o n s l inks. The resu l t ing system can
be eng inee red onto a s ingle card.

The a r c h i t e c t u r e permi t s a n u m b e r of va r i a t ions on the im-
p l emen ta t i on of the works t a t ion to be made wi thou t major
redesign.

For example , the disk con t ro l le r can double as the appl ica-
t ions processor, an d the app l i ca t ions t r a n s p u t e r removed com-
pletely. Al t e rna t ive ly , more processors can be added, and the
occam processes r e d i s t r i b u t e d to take advan tage of the ad-
d i t i ona l concurrency . Vast ly more than I Mbyte of memory
could be a t tached .

4.2 Transputer without external memory

This second example explores the des ign and use of a large
a m o u n t of process ing power based on a t r a n s p u t e r wi th only
l lnk in t e r f aces in, say, a 28 pin chip carr ier .

F igure 7 Single boa rd t r a n s p u t e r system

, ,

-~ 1 2 " ~.

Figure ? shows 128 t r an s pu t e r s on a single p r in ted c i rcu i t
board. The boa rd has 1 /2Mbyte of fas t s ta t ic R A M and up to
1 GIPS (Giga In s t ruc t i on Per Second) of process ing power.

In th is app l ica t ion , the board is used to p rov ide h igh per for -
mance da t abase searching. We assume tha t the da t abase is
pa r t i t i oned , so t ha t the most commonly accessed par ts of a
da t abase can be p laced in the t r a n s p u t e r array,

The concep t is shown in a s impl i f i ed f o r m in f igure 8.

F igu re 8 C o n c u r r e n t da t abase search

Search Requests C

) H
I
I

~ Answers
Here 16 t r anspu te r s are connec ted into a square a r ray w i th
search requests i npu t at one corner of the array, and answers
be ing ou tpu t f rom the o the r corner . Each t r a n s p u t e r keeps a
small par t of the d a t a b a s e in its local memory.

A smal l p rog ram in each t r a n s p u t e r does the search. It can
receive two sorts of input . A search reques t is f o r w a r d e d to
any connec ted t r a n s p u t e r which has not yet rece ived the re-
quest and s imul t aneous ly a search is made t h rough the local
data . The o the r sort of i npu t is an answer f rom a t r a n s p u t e r
which has jus t sea rched its own local memory. This answer
is merged w i th the answer gene ra t ed f rom the local da ta and
fo rwarded .

A s imple p e r f o r m a n c e ana lys i s ind ica tes the l a tency and
t h r o u g h p u t of th i s app l i c a t i on on the 128 t r a n s p u t e r board .
Assume tha t each record is 16 bytes long, and t ha t a search
key is four bytes long. Each t r a n s p u t e r can hold 200 records
a n d the whole sys tem can ho ld 25,000 records. For each t rans -
pu te r to search its own records aga ins t a reques t will take less
t han a mi l l i second.

The t ime t aken to t r ansmi t a search reques t to each t rans -
pu te r in the a r ray is p r o p o r t i o n a l to the longest pa th across
the system, in th is case 24 links.

It takes a b o u t 6 microseconds to send a 4 byte message f r o m
one t r a n s p u t e r to another . It will thus take abou t 150 mi-
croseconds to t r a n s m i t a search request to the whole ar ray ,
and abou t ano the r 150 microseconds to t r a n s m i t the answer.
The whole search of 25,000 records will take less t han 1.3 mil-
l iseconds.

However jus t as an i n d i v i d u a l t r a n s p u t e r can be p e r f o r m i n g
inpu t , o u t p u t and process ing at the same time, so can the ar-
ray. Reques t s can be p ipe l ined t h rough the system wi th a
f u r t h e r reques t be ing inpu t be fo re the prev ious one has come
out.

The size of the d a t a b a s e p a r t i t i o n can be increased by a d d i n g
more boards. The search t h r o u g h p u t is not adverse ly a f f ec t ed
by this.

5 Conclusions

By t ak ing an i n t eg ra t ed app roach to the des ign of a VLSI com-
pu te r and a c o n c u r r e n t p r o g r a m m i n g language it is possible
to p roduce a new level of sys tem bu i ld ing block wh ich pro-
vides a very e f f i c i en t i m p l e m e n t a t i o n of the c o r r e s p o n d i n g
des ign formal i sm.

299

In part icular , i t is possible to support the use of the same con-
current programming techniques both within a single trans-
puter and for a network of transputers. The concurrent pro-
cessing features of a general purpose programming language
can be efficiently implemented by a small, simple and fast
processor.

The result ing transputcr provides the unique concept of a
programmable component enabl ing highly concurrent sys-
tems to be implemented within a formal design framework.

The architecture also provides a straight forward technology
upgrade path. Future transputers can integrate more memory
and more processors. The system architecture means that cur-
rent and future products will be fully compatible and capable
of interworking.

6 Acknowledgemen ts

A large number of people have made invaluable contributions
to the development of the transputer architecture and family
of products, and these contributions are hereby collectively
acknowledged. In particular, the original concept, and the
drive to give it commercial reality, comes from Iann Barton,
one of the founders of INMOS. David May designed occam,
and led the team which developed the instruction set of the
first products. Prof Tony Hoare, of Oxford University, has
advised INMOS both generally on architecture and particu-
larly on the basis for providing occam with a formal seman-
tics.

7 References

[1] INMOS Limited, Occam Programming Manual, Prentice-
Hall International, London, 1984,

[2] Barron, LM. et al., The Transputer, Electronics, 17th Nov
1983, p 109.

[3] May, M.D., OCCAM, ACM SIGPLAN Notices vol 18-4 (Apr
1983) pp69-79.

[4] May, M.D. and Taylor, R.J.B., OCCAM, Microprocessors and
Microsystems vol 8-2 (Mar/Apr 1984)

[5] May, M.D. and Shepherd, R, Occam and the transputer,
IFIP WGI0.3 workshop on Hardware Implementation of Con-
current Languages and Distributed Systems, North Holland
0984)

[6] Patterson, D.A and Sequin, C.H., RISC I: A Reduced Instruc-
tion Set VLSI Computer, Proe 8th International Symposium on
Computer Architecture.

[7] Radin, G, The 801 Minicomputer, IBM Journal of Research
and Development, Vol 27, No 3, pp237-246 (May 1983)

[8] Hennessy, Jet al, The MIPS machine, Proceedings CompCon
Spring 1982, IEEE, (February 1982)

[9] Colwell, R.P. ¢t al, Peering Through the R I S C / C I S C Fog:
An Outline o f Research, Computer Architecture News, Vol 11,
No 1 (March 1983)

[10] Patterson, D.A., RISC Watch, Computer Architecture
News, Vol 12, No 1 (March 1984)

[11] Patterson, D.A. et al, Architecture of a VLSI Instruction
Cache for a RISC, Proe 10th International Symposium on
Computer Architecture, ppl0g-116, ACM (1983)

[12]1 Heart, C.A.R. and Roscoe, A.W., Programs as Executable
Predicates, Proc 1st Intl Conf on Fifth Generation Computer
Systems, ICOT, 1984

[13] Roscoe, A.W., Denotational Semantics for occam, Proc
NSF/SERC Workshop on Concurrency, Springer LNCS, 1984

[14] -, IMS T424 transputer data shee t , INMOS Limited,
Bristol, England

[15] Schindler, M. Real-time languages speak to control applica-
tions, Electronic design, July 21, 1983, pp105-120.

[16] Fay, D. Working with occam: a program for generating dis-
play images, Microprocessors and Microsystems, Vol 8. No 1,
Jan/Fob 1984

[17] Curry, B. Jane, Language based architecture eases system
design, Computer Design, jan 1984, pp127-136

[18] Taylor, R., Graphics with the transputer, Computer Graph-
ics 84, 1984

[19] Pountain, R., The transputer and its special language, oc-
cam, Byte, Vol 9, No 8, Aug 1984

[20] Kcrridge, J.M. and Simpson, D., Three solutions for a robot
arm controller using Pascal-Plus, occam, and Edison, Software
Practice and Experience, Vol 14, No 1, Jan 1984

[21] Harp, J.G. ¢t al, Signal processing with transputers (traps),
Computer Physics Communications (in press)

[22] Broomhcad, D.S. ¢t al, A practical comparison of the systolic
and wave front array processing architectures, 2nd Proc IEEE
Conf on Acoustics, Speech and Signal Processing (March
1985).

300

