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Abstract  

The transputer is a programmable V L S I  component with commu- 
nication links for point-to-point connection to other transputers. 
Occam (*) is a language that enables a multi-transputer system 
to be described as a collection o f  processes that ogerate concur- 
rently and communicate using message passing via named chan- 
nels. 

The I N M O S  transputer architecture is s tandardized  at the level 
off the def ini t ion o f  occam (rather than at the level o f  the de f -  
inition o f  an instruction set). The implementation o f  the f irs t  
commercial ly  available transputers is illustrated by describing 
the implementation o f  occam. 

The paper concludes with outline examples  o f  some applica- 
tions. 

1 Introduct ion 

The  transp~ater a r c h i t e c t u r e  has been  deve loped  to f u l f i l  f ou r  
ma in  object ives:  

To c rea te  a commerc ia l  p r o d u c t  r ange  t h a t  sets new 
s t a n d a r d s  in ease of p r o g r a m m i n g  and  ease of engi-  
neer ing.  

To p rov ide  the  m a x i m u m  p e r f o r m a n c e  to the  user. 

To explo i t  f u t u r e  deve lopments  in  VLSI technology  
w i t h i n  a compa t ib l e  family.  

To c rea te  a p r o g r a m m a b l e  c o m p o n e n t  t h a t  can  be used 
to bu i ld  systems wi th  large num ber s  of  c o n c u r r e n t  
c o m p u t i n g  elements.  

VLSI c u r r e n t l y  permi t s  5-10 MIP processors  to be m a n u f a c -  
t u r ed  in vo lume for  low prices. The re  is t h e r e f o r e  no eco- 
nomic  b a r r i e r  to the  cons t ruc t i on  of  very  power fu l  compu te r  
systems c o n t a i n i n g  m a n y  process ing  elements ,  The  cha l lenge  
is a t e chn i ca l  one: how to eng inee r  a system with ,  say, 1000 
processors  so as to make  the  i n h e r e n t  c o n c u r r e n c y  usable,  and  
how to suppor t  the  des ign  of  app l ica t ions  to take  advan t age  
of  th is  a m o u n t  of concur rency .  

(*) oceam is a t r ade  m a r k  of  the INMOS Group  of  Companies  

In the  t r a n s p u t e r  a r ch i t ec tu re ,  the  exp lo i t a t i on  of  a h igh  de-  
gree of  c o n c u r r e n c y  is made  possible t h r o u g h  a decen t ra l -  
ized model  o f  compu ta t ion ,  in  which  local  c o m p u t a t i o n  takes 
place on local  da ta ,  and  c o n c u r r e n t  processes c o m m u n i c a t e  
by pass ing messages on po in t  to po in t  channels .  The  local ized 
c o m m u n i c a t i o n s  a r c h i t e c t u r e  also has  subs tan t i a l  eng inee r ing  
advantages ,  desc r ibed  below. 

An  i m p o r t a n t  des ign  ob jec t ive  of  oecam and  the  t r a n s p u t e r  
was to p rov ide  the  same c o n c u r r e n t  p r o g r a m m i n g  t echn iques  
bo th  for  a s ingle t r a n s p u t e r  and  for  a ne twork  of  t r anspu te r s .  
Consequent ly ,  the  f ea tu res  of  occam were chosen to ensure  an  
e f f i c i e n t  d i s t r i b u t e d  i m p l e m e n t a t i o n  on t r a n s p u t e r  systems. 
The  c o n c u r r e n t  process ing  mechan i sms  w i t h i n  the  t r a n s p u t e r  
were then  des igned  to match.  

The  resu l t  is t h a t  a p rog ram u l t ima te ly  i n t e n d e d  for  a net-  
work of  t r a n s p u t e r s  can  be  compi led  a n d  execu ted  e f f i c i en t l y  
by a s ingle  compu te r  used for  p rogram development .  Once the  
logical  b e h a v i o u r  of  the  p rog ram has  been  ver i f i ed ,  the  pro- 
g ram may  be  c o n f i g u r e d  for  execu t ion  by a s ingle  t r a n s p u t e r  
(low cost), or for  execu t ion  by a ne twork  of  t r a n s p u t e r s  (h igh  
pe r fo rmance ) ,  or for  a c o n f i g u r a t i o n  r ep resen t ing  a t r a d e - o f f  
be tween  these two ext remes .  

The choice of local processing and communications necessi- 
tates a s i gn i f i c an t  change  in p r o g r a m m i n g  concepts ,  and  new 
a lgo r i t hms  need  to be deve loped  [4]. The  s tudy  of  va r ious  
app l i ca t i ons  f r o m  this  po in t  of  view is showing  e n c o u r a g i n g  
resul ts  ([15], [16], [17], [18], [19], [20], [21], [221) and  i l l u s t r a t ive  
app l i ca t i ons  are  g iven  at  the  end  of  this  paper .  

2 Transputer archi tecture  

2.1 Overv iew 

The  a r c h i t e c t u r e  of  the  t r a n s p u t e r  is d e f i n e d  by r e fe rence  to 
occam. Oceam prov ides  the  model  of  c o n c u r r e n c y  and  com- 
m u n i c a t i o n  for  all  t r a n s p u t e r  systems. D e f i n i n g  the  a rch i t ec -  
tu re  at  th is  level  leaves open  the  opt ion  of  us ing  d i f f e r e n t  pro- 
cessor designs  in d i f f e r e n t  t r a n s p u t e r  products .  This  a l lows 
i m p l e m e n t a t i o n s  which  a re  op t imized  for  d i f f e r e n t  purposes.  
It  also a l lows i m p l e m e n t a t i o n s  to evolve  w i th  changes  in tech-  
nology, w i t h o u t  compromis ing  the  s t a n d a r d s  e s t ab l i shed  by 
the  a rch i t ec tu re .  

A t r a n s p u t e r  con ta ins  memory,  a processor  and  a n u m b e r  of 
s t a n d a r d  po in t - to -po in t  c o m m u n i c a t i o n  l inks  wh ich  al low di- 
rect  c o n n e c t i o n  to o the r  t ranspute rs .  The  process ing  capab i l -  
i ty may be genera l  purpose ,  or may be op t imized  to a spec i f ic  
purpose.  The  on -ch ip  memory  may be ex t ended  o f f  chip  by a 
su i t ab le  in te r face .  

A t r a n s p u t e r  may  also have  specia l  purpose  in t e r f aces  fo r  
c o n n e c t i o n  to spec i f ic  types of ha rdware .  The  s epa ra t i on  of 
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the  t r a n s p u t e r  system in t e r f ace  f rom o the r  in t e r faces  (eg the 
memory  in te r face )  means  tha t  it is possible to op t imize  the 
var ious  in t e r f aces  ind iv idua l ly ,  s imp l i fy ing  the i r  use and  im- 
p rov ing  the i r  pe r fo rmance .  

A system is •cons t ruc ted  f rom a col lec t ion of t r anspu te r s  
which  opera te  co ncu r r en t l y  and  communica t e  t h rough  the 
s t a n d a r d  l inks.  Oceam formal izes  the  c o m p u t a t i o n a l  model.  
I t  enables  such a system to be descr ibed  as a col lect ion of  pro- 
cesses ope ra t ing  c o n c u r r e n t l y  and  c o m m u n i c a t i n g  t h rough  
named  channels .  

T ranspu te r s  d i rec t ly  imp lemen t  the  occam model of  a pro- 
cess. In te rna l ly ,  an i n d i v i d u a l  t r a n s p u t e r  can behave  like any  
occam process  w i t h i n  i ts capab i l i ty ;  in  pa r t i cu la r ,  i t  can  im- 
p lement  i n t e rna l  concu r r ency  by t imesha r ing  processes. Ex- 
ternal ly ,  a col lec t ion  of  processes may be  c o n f i g u r e d  for  a 
ne twork  of t ranspute rs .  Each  t r a n s p u t e r  executes  a compo- 
nen t  process,  and  oeeam channe l s  are  a l loca ted  to l inks ,  which  
d i rec t ly  imp lemen t  oecam message-passing.  

2.2 Occam 

Oecam [1, 3, 4] enables  a system to be desc r ibed  as a collec- 
t ion  of  c o n c u r r e n t  processes, wh ich  communica t e  wi th  each 
o ther  a n d  w i th  p e r i p h e r a l  devices  t h r ough  channels .  Occam 
programs  are  bu i l t  f r o m  three  p r imi t i ve  processes: 

v :ffi e assign express ion  e to var iab le  v 
e I e ou tpu t  express ion  e to channe l  c 
e ? v i npu t  f r o m  channe l  e to va r i ab l e  v 

The  p r i m i t i v e  processes are combined  to fo rm const ructs .  
Each cons t ruc t  is i n t r o d u c e d  by a keyword,  fol lowed by a l ist  
of  the c o m p o n e n t  processes: 

SEQuent ia l  componen t s  execu ted  one a f t e r  a n o t h e r  
PARallel componen t s  executed  together  
ALTerna t ive  c o m p o n e n t  f i r s t  ready  is executed  

A cons t ruc t  is i t se l f  a process, and  may be used as a compo-  
nen t  of  a n o t h e r  cons t ruct .  

C o n v e n t i o n a l  sequen t i a l  p rograms  can  be  expressed wi th  var i -  
ables a n d  ass ignments ,  combined  in sequent ia l  const ructs .  I F  
and  N H I L E  cons t ruc t s  are  also provided.  

C o n c u r r e n t  p rograms  can be expressed w i th  channels ,  i npu t s  
and  outputs ,  wh ich  are combined  in para l le l  and  a l t e rna t i ve  
constructs .  

Each oeeam channe l  p rovides  a c o m m u n i c a t i o n  pa th  be tween  
two c o n c u r r e n t  processes. C o m m u n i c a t i o n  is synch ron ized  
and  takes place w h e n  bo th  the  i n p u t t i n g  process and  the  out-  
p u t t i n g  process  are  ready. The  da ta  to be  ou tpu t  is t hen  
copied f r o m  the  o u t p u t t i n g  process to the i n p u t t i n g  process,  
and  bo th  processes cont inue .  

An a l t e r n a t i v e  process may be ready  for  i npu t  f rom any  one 
of a n u m b e r  of  channels .  In this  ease, the  i npu t  is t aken  f rom 
the  channe l  which  is f i r s t  used for  ou tpu t  by ano t he r  process. 

The  choice of  synch r on i zed  c o m m u n i c a t i o n  prevents  the loss 
of  data .  The  choice of  u n b u f f e r e d  c o m m u n i c a t i o n  removes  
the  need for  any  store to be associa ted wi th  the channe l .  
Copying  da ta  f r o m  the  o u t p u t t i n g  process to the  i n p u t t i n g  
process is c lear ly  essent ia l  for  c o m m u n i c a t i o n  be tween  t rans -  
puters ,  a n d  it  is easy to make copying wi th in  a mach ine  f a s t  
by use of  microcode.  

2.2.1 Design correctness 

I t  is necessary  to ensure  t ha t  systems bu i l t  f r om t ranspu te r s ,  
possibly invo lv ing  h u n d r e d s  or t housands  of  c o n c u r r e n t  de- 
vices, can  be des igned and  p r o g r a m m e d  effect ively .  

The  design of  occam and  the  t r a n s p u t e r  a r ch i t e c tu r e  has fol- 
lowed two pr inc ip les  to help  the  des igner  increase  his conf i -  
dence  tha t  his des ign  is correct :  s impl ic i ty  and  formal i ty .  

Occam has  been  kept  simple,  wi th  the  a im of mak ing  it  easy 
to learn ,  and  easy to use [3]. 

Formal  t e chn iques  become much more  i m p o r t a n t  w h e n  con-  
c u r r e n c y  is involved,  as t echn iques  based on exhaus t ive  test- 
ing are  imprac t i cab le .  Oecam has  been  des igned to have  a for-  
mal  semantics .  The  way tha t  this  was ach ieved  was to d e f i n e  
a set of  fo rma l  p roper t i e s  t h a t  the  language  should  possess. 
These  take the  f o r m  of  a n u m b e r  of  b e h a v i o u r - p r e s e r v i n g  
t r a n s f o r m a t i o n s  t ha t  should  be app l icab le  to any  oceam pro- 
g ram [12]. Many  seman t i c  issues in  the  des ign and  develop-  
men t  of  the l anguage  were resolved by r e fe rence  to this  set 
of proper t ies .  E n f o r c i n g  th is  d i sc ip l ine  has  enab led  a fo rma l  
semant ics  fo r  the l anguage  to be deve loped  [13], and  has  la id  
the  basis for  so f tware  eng inee r i ng  tools r ang ing  f r o m  fo rma l  
va l i da t i on  to p rogram t r a n s f o r m a t i o n .  

P rac t i ca l  and  immedia t e  bene f i t s  have been  t ha t  the l anguage  
is very  se l f -cons i s ten t  (wh ich  makes  l i fe  easier  for  the com- 
pi ler  wr i t e r  a n d  user al ike) ,  t ha t  the  equ iva lence  of concur-  
r en t  a lgor i thms  can  be s tudied,  and  tha t  p rograms can be 
t r a n s f o r m e d  to have  g rea te r  or less decen t r a l i s a t i on  w i t h o u t  
chang ing  the i r  logical  behaviour[4] .  

2.2.2 Real  t ime 

On an  i n d i v i d u a l  t r anspu te r ,  a para l le l  cons t ruc t  may be con- 
f i gu red  to p r io r i t i ze  its components ,  and  an  a l t e rna t i ve  con-  
s t ruc t  may  be  c o n f i g u r e d  to p r io r i t i ze  its inputs .  A h i g h e r  
p r io r i t y  process a lways proceeds  in p re fe rence  to a lower pr i -  
or i ty  one. 

The  equ iva len t  of an  i n t e r r u p t  (a h igh  pr io r i ty  process be ing  
scheduled  in o rder  to respond  to an  ex te rna l  s t imulus)  is de-  
s igned  en t i r e ly  in  oecam, as all  i n p u t  and  ou tpu t  is f o rma l i zed  
as c h a n n e l  commun ica t i on .  A h igh  p r io r i t y  process  may wa i t  
for  the  f i r s t  of several  d i f f e r e n t  inpu ts  to become ready  by 
us ing  the  ALT const ruct .  

A h igh  p r io r i ty  process proceeds  un t i l  it t e rmina te s  or has  to 
wa i t  for  a communica t ion .  A system can thus be des igned  
to meet  rea l - t ime  cons t ra ins  by des ign ing  each high p r io r i ty  
process so t ha t  the  a m o u n t  of  processor  t ime it requi res  over  
a g iven  pe r iod  is bounded ,  thus  p lac ing  a bound  on the  to ta l  
t ime  t h a t  a h igh  p r io r i t y  process may have  to wai t  for  the  
cpu. In m a n y  cases, it may be possible to reason  t h a t  two or 
more  h igh  p r io r i ty  processes will  never  conf l ic t ,  and  t ha t  the  
l a t ency  reduces  to the  t ime  requ i red  to swi tch  f rom a low 
pr io r i ty  process to a hgh  p r io r i ty  process. Each t r a n s p u t e r  
i m p l e m e n t a t i o n  places a b o u n d  on th is  time. 

A global  synch ron i zed  sense of  t ime is not  prac t icab le ,  and  
not  r ep re sen ta t ive  of  rea l -wor ld  s i tua t ions .  There  is t he r e fo re  
a local  concep t  of t ime,  each  t imer  be ing  imp lemen ted  as an  
i n c r e m e n t i n g  clock. 

Logically,  access to a t imer  is t r ea ted  as an  input .  A delayed 
i n p u t  may be  used, wh ich  waits  unt i l  the va lue  of  the  clock 
reaches  an  a p p r o p r i a t e  value. A t imer  i npu t  may be used in 
an  a l t e r n a t i v e  cons t ruc t .  This  can be used to provide  t imeou t  
on a commun ica t i on .  
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2.3 Inter-transputer l inks 

A l ink be tween  two t r an s pu t e r s  p rovides  a pa i r  o f  oceam 
channels ,  one in each d i rec t ion .  A l ink  be tween  two t rans -  
pu te r s  is i m p l e m e n t e d  by c o n n e c t i n g  a l ink  i n t e r f ace  on one 
t r a n s p u t e r  to a l ink  i n t e r f a c e  on the  o the r  t r a n s p u t e r  by two 
one -d i r ec t iona l  s ignal  lines. Each s ignal  l ine  car r ies  da ta  and 
cont ro l  i n f o r m a t i o n .  

C o m m u n i c a t i o n  t h r o u g h  a l ink  involves  a s imple protocol ,  
wh ich  prov ides  the  s ynch r on i zed  c o m m u n i c a t i o n  of  occam. 
The  pro tocol  p rovides  for  the  t r ansmiss ion  of  an  a r b i t r a r y  
sequence  of  bytes,  wh ich  allows t r an s pu t e r s  of  d i f f e r e n t  
w o r d l e n g t h  to be connected .  

Each  message is t r a n s m i t t e d  as a sequence of  s ingle byte com- 
mun ica t ions ,  r e q u i r i n g  on ly  the  presence  of  a s ingle byte  
b u f f e r  in  the r ece iv ing  t r a n s p u t e r  to ensure  t ha t  no in fo r -  
m a t i o n  is lost. 

Each  byte  is t r a n s m i t t e d  as a s ta r t  b i t  fo l lowed by a one b i t  
fo l lowed by the  e ight  da t a  bi ts  fol lowed by a stop bit.  A f t e r  
t r a n s m i t t i n g  a da ta  byte,  the  sender  wai ts  un t i l  an  acknowl-  
edge is received;  th i s  consis ts  of  a s ta r t  b i t  fol lowed by a zero 
bit .  The  acknowledge  s ign i f ies  bo th  t ha t  a process  was able  
to rece ive  the  acknowledged  byte,  and  t ha t  the  r ece iv ing  l ink  
is able  to rece ive  a n o t h e r  byte. The  send ing  process  may pro- 
ceed only a f t e r  the  acknowledge  for  the  f i n a l  byte  of  the  mes- 
sage has  been  received.  

F igu re  1 L ink  pro tocol  

Data packet 
0 1 2 3 4 5 6 7  

Acknowled~ packet 

I, Iol  
Data  bytes  and  acknowledges  are mul t ip l exed  down each sig- 
na l  l ine.  An acknowledge  is t r a n s m i t t e d  as soon as recep t ion  
of  a da t a  byte  s tar ts  ( i f  the re  is a process  wa i t ing  for  it, a n d  i f  
t he re  is room to b u f f e r  a n o t h e r  one). Consequen t ly  t r ansmis -  
s ion may be cont inuous ,  w i th  no delays  be tween  da ta  bytes.  

Us ing  po in t  to po in t  ser ia l  communica t ions ,  r a t h e r  t h a n  
busses has  a n u m b e r  of  advantages :  

Board layout  is much  s impl i f ied .  

C o m m u n i c a t i o n s  b a n d w i d t h  is increased,  as m a n y  
l inks  in  a system can  opera te  concur ren t ly .  

Devices  of  d i f f e r e n t  word lengths  and  p e r f o r m a n c e  
can  be easi ly in t e rconnec ted .  

T r a n s p u t e r s  w i t h  d i f f e r e n t  word leng ths  and  p e r f o r m a n c e  
wil l  all  i n t e r w o r k  toge ther ,  as will  all  f u t u r e  p roduc t s ,  ensur -  
ing t h a t  systems can  be read i ly  u p g r a d e d  as the  t echno logy  
advances .  It  is not  necessary  to d o w n g r a d e  the  p e r f o r m a n c e  
of  a connec ted  set of  componen t s  to t ha t  of  the  slowest. 

2.3.1 Electrical  properties of l inks 

The s ignals  are  TTL compa t ib l e  and  the i r  r ange  can  be ex- 
ten~ded by i n se r t i ng  i n d u s t r y  s t a n d a r d  l ine d r ive r s  and  re- 
ceivers.  The  s t a n d a r d  t r ansmiss ion  rate  is 10MHz, p r o v i d i n g  
a m a x i m u m  p e r f o r m a n c e  of a b o u t  IMByte / sec  in each d i rec-  
t ion  on each l ink.  

The  l inks  are  des igned  to make  the  eng inee r i ng  of  t r a n s p u t e r  
systems as easy as possible.  I r r e spec t ive  of  i n t e rna l  pe r fo r -  
mance,  all  t r a n s p u t e r s  use a r e fe rence  clock of 5MHz, a n d  
th i s  is r e q u i r e d  only  for  a p p r o x i m a t e  f r e q u e n c y  i n f o r m a t i o n  
and  not  for  phase. All  f u t u r e  t r an spu t e r s  wil l  also use th is  
same f requency .  The  low f r e q u e n c y  was chosen to s imp l i fy  
the  d i s t r i b u t i o n  of  the  c lock in a large system and  it  is not  
neccesa ry  for  al l  t r a n s p u t e r s  to be on the  same clock,  e n a b l i n g  
i n t e r w o r k i n g  be tween  i n d e p e n d e n t l y  des igned  systems. Thus,  
t r a n s p u t e r s  can  be  i n t e r c o n n e c t e d  jus t  as easi ly  as TTL  gates 
- indeed ,  the  c o n s t r a i n t  on the  des igner  is jus t  the same - he 
must  not  exceed the  m a x i m u m  capac i tance .  

3 Implementat ion  

3.1 Instruction set requiremen ts and overview 

The  f i r s t  t r a n s p u t e r  p roduc t  is the T424, a genera l  purpose  
32 b i t  m a c h i n e  w i t h  4K bytes  of  on-ch ip  memory  (which  can  
be e x t e n d e d  w i th  o f f  chip memory)  and  four  h i -d i r ec t i ona l  
c o m m u n i c a t i o n s  l inks,  wh ich  prov ide  a to ta l  of  8Mbytes  per  
second of  c o m m u n i c a t i o n s  b a n d w i d t h .  Th i s  wil l  shor t ly  be 
fo l lowed by the  T222, a 16 bi t  m a c h i n e  p r o v i d i n g  s imi la r  fa- 
ci l i t ies.  

The  des ign  ob jec t ives  of  the  [1 i n s t ruc t i on  set and  the proces- 
sor for  these f i r s t  t r a n s p u t e r s  were as follows:- 

To p rov ide  an  e f f i c i e n t  i m p l e m e n t a t i o n  of  occam, so 
t ha t  the  use of h igh  level languages  resul ts  in  e f f i c i e n t  
use of  s i l icon capabi l i ty ,  and  t ha t  h igh ly  c o n c u r r e n t  
p rograms  execute  w i th  m i n i m u m  overheads .  

To p rov ide  a s imple  and  d i rec t  i m p l e m e n t a t i o n  of  pc- 
cam so t h a t  p rograms  can  be compi led  s imply  and  
s t r a i g h t f o r w a r d l y ,  and  to ensure  tha t  the re  is no need 
to cons ide r  p r o g r a m m i n g  at  a lower level t han  tha t  de- 
f i n e d  a rch i t ec tu ra l ly .  

To p rov ide  word l eng th  i n d e p e n d e n c e ,  so t h a t  a pro- 
g r am can  be execu ted  us ing  processors  of  d i f f e r e n t  
word  leng ths  w i thou t  recompi la t ion .  

To p rov ide  pos i t ion  i n d e p e n d e n c e ,  so t h a t  p rog ram and  
workspaces  may be a l loca ted  a n y w h e r e  in memory  af -  
t e r  compi la t ion .  

To p rov ide  low la tency  response  to c o m m u n i c a t i o n s  
w i t h  ex t e rna l  devices.  

The  lowest  level  of  p r o g r a m m i n g  t r a n s p u t e r s  is to use occam 
(occam is e q u i v a l e n t  in  e f f ec t iveness  to a conven t i ona l  mi- 
c roprocessor ' s  assembler) .  The  i n s t ruc t i on  set, and  the  use of  
occam as its p r o g r a m m i n g  language ,  is t h e r e f o r e  i l l u s t r a t ed  
by desc r ib ing  the  ma in  usage of  the  var ious  regis ters  in the  
mach ine ,  and  by g iv ing  typ ica l  i n s t ruc t i on  sequences  for  s im- 
ple occam cons t ruc ts .  Note  t ha t  it is not  common  p rac t i ce  to 
a b b r e v i a t e  the  names  of  the ins t ruc t ions ,  or to use mnemon-  
ics. T r a n s p u t e r  sys tem des igners  have  no genera l  need  to wr i te  
down  i n s t r u c t i o n  sequences,  and  us ing  fu l l  names  aids read-  
ab i l i t y  of the  examples.  
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3.2 The I1 Instruction set  

3.2.1 Performance  note 

Two i m p o r t a n t  p e r f o r m a n c e  measures  are the  n u m b e r  of  
bytes  to ho ld  the  program,  and  the  speed of execu t ion  pro- 
v ided  by an  implemen ta t ion .  It should  be rea l ized  t h a t  the  
speed of  execu t ion  of  i n d i v i d u a l  i n s t ruc t ions  is less impor-  
t an t  t h a n  the  speed wi th  which  key system func t i ons  are per-  
fo rmed ,  b e a r i n g  in m i n d  the  i n t ended  uses of  the  machine .  

The  I1 i n s t r u c t i o n  set is des igned spec i f ica l ly  w i th  a view 
to e f f i c i e n t  and  fast  VLSI imp lemen ta t i on ,  a l t hough  var ious  
t r ade -o f f s  of  p e r f o r m a n c e  versus s i l icon area  are st i l l  pos- 
sible. On the  f i r s t  t r anspu te r s ,  each i n s t ruc t i on  is executed  
in one or more processor  cycles us ing  one level microcode.  
The  f igures  g iven  in this  pape r  assume tha t  p rogram and  da ta  
are  s tored on chip. Ex t ra  cycles may be r equ i red  i f  p rog ram 
a n d / o r  da ta  are  s tored o f f  chip,  though  the s ign i f i cance  of  
th is  can  be reduced  to a low level wi th  ca re fu l  o rgan i sa t ion  
of  the  app l ica t ion .  Full  de ta i l s  are given in [14]. 

I t  shou ld  be no ted  t h a t  a l t hough  all  t r anspu te r s  have  an  ex- 
t e rna l  clock cycl ing  at  5 MHz, the  i n t e rna l  speed is set as pa r t  
of  the  m a n u f a c t u r i n g  process. It is expec ted  t ha t  the  r ange  of  
speeds of  the  f i r s t  t r anspu te r s  will  p rov ide  in te rna l  processor  
cycle ra tes  of  up to 20MHz. 

The  des ign of  the  f i r s t  t r anspu te r s  ca re fu l ly  ba lances  the  
costs of memory  access and  alu opera t ion ,  and  con ta ins  suf-  
f i c i en t  over lap  to ensure  a h igh  degree of eff ic iency.  Many  
of  the i n s t ruc t i ons  execute  in a s ingle cycle, and  typical  se- 
quences  of  commonly  used in s t ruc t ions  can  de l iver  a 15 MIPS 
execu t ion  rate.  

3.2.2 Memory organizat ion  

The  memory  address  space comprises  a s igned l inea r  address  
space. The  i n s t ruc t i on  a r ch i t ec tu re  does not  d i f f e r e n t i a t e  be- 
tween on-ch ip  an d  o f f - ch ip  memory. This  al lows the  appl ica-  
t ion  des igner  to have  comple te  cont ro l  over the p lacement  of  
code and  da ta  to take advan tage  of the  p e r f o r m a n c e  bene f i t s  
of  on-ch ip  memory.  

A byte  in memory  is i den t i f i ed  by a single word value  cal led 
a poin ter .  A po in te r  consists  of  two parts:  a word address  and  
a byte  selector.  The  byte  selector  con ta ins  as many  bi ts  as are 
needed  to i d e n t i f y  a s ingle byte  w i th in  a word and  occupies  
the  leas t  s i gn i f i c an t  bi ts  of the pointer .  For example ,  in  a 
24 bi t  t r a n s p u t e r  the  word address  would occupy the  22 most  
s i gn i f i c an t  b i t s  and  the  by te  selector  the 2 least  s i gn i f i can t  
bits. 

Special  ins t ruc t ions ,  such as load local pointer and  word sub- 
script, are  p rov ided  to cons t ruc t  and  m a n i p u l a t e  pointers .  
Po in te r  values are t r ea ted  as s igned integers,  s t a r t ing  f r o m  
the  most  nega t ive  in teger  and  con t inu ing ,  t h r o u g h  zero, to the  
most  posi t ive  integer .  This  enables  the  s t a n d a r d  compar i son  
f u n c t i o n s  to be  used on po in te r  values in the  same way t h a t  
they  a re  used on numer i ca l  values. 

The  add re s s ing  in s t ruc t ions  p rov ide  access to i tems in da ta  
s t ruc tu res ,  us ing  shor t  sequences  of  s ingle  byte  ins t ruc t ions ,  
a l lowing the  r ep r e s en t a t i on  of  da ta  s t r uc tu r e  access to be in- 
d e p e n d e n t  of  the  word leng th  of  the  processor.  

3.2.3 Regis ters  

The des ign  of  the  t r a n s p u t e r  processor  exploi ts  the  ava i lab i l -  
i ty of  fas t -on-ch ip  memory  by h a v i n g  only  a smal l  n u m b e r  of  

regis ters ;  six regis ters  a re  used in the execu t ion  of  a sequen-  
t ia l  process. In  the  i n t e rna l  o r g a n i z a t i o n  of  the  processor ,  al l  
i n t e r n a l  regis ters  and  da ta  pa ths  are the  word leng th  n u m b e r  
of  b i t s  wide. The  smal l  n u m b e r  of  registers ,  toge ther  w i th  the  
s impl ic i ty  of the  i n s t ruc t i on  set, enables  the processor  to have  
re la t ive ly  s imple  ( and  fas t )  da ta  pa ths  a n d  cont ro l  logic. 

The  six regis ters  are: 

The  workspace  po in t e r  wh ich  points  to an  a rea  of  s tore 
where  local  va r iab les  are  kept. 

The  i n s t ruc t i on  po in te r  which  points  to the  next  in- 
s t r uc t i on  to be executed.  

The  ope rand  regis ter  which  is used in the f o r m a t i o n  
of i n s t r u c t i o n  operands ,  

The  A, B a n d  C regis ters  which  fo rm an  eva lua t ion  
stack. The  eva lua t ion  s tack is used for  express ion eval- 
ua t ion ,  to ho ld  the  ope rands  of schedu l ing  and  commu- 
n i ca t ion  ins t ruc t ions ,  and  to hold pa ramete r s  of  proce-  
du re  calls. 

F i g u r e  2 Regis te rs  for  sequen t i a l  p rog ramming  
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The  eva lua t ion  s tack removes  the  need fo r  i n s t ruc t ions  to 
speci fy  regis ters  expl ici t ly .  Consequent ly ,  most  of the exe- 
cu ted  ope ra t ions  ( typica l ly  80%) are encoded  in a s ingle byte. 
T h e  I1 i n s t ruc t i on  set saves on t ime and  area  t h r o u g h  not  hav -  
ing to decode secondary  control  f ie lds  or regis ter  fields. 

3.2.4 Support  for concurrency 

The  processor  p rov ides  e f f i c i e n t  suppor t  for  the  occam model  
of c o n c u r r e n c y  and  communica t ion .  I t  has  a scheduler  which  
enables  any n u m b e r  of  c o n c u r r e n t  processes to be execu ted  
together ,  sha r ing  the  processor  time. Th i s  removes the  need 
for  a so f tware  kernel .  The  processor  does not  need to sup- 
por t  the  d y n a m i c  a l loca t ion  of s torage as the  occam compi le r  
is able  to p e r f o r m  the  a l loca t ion  of  space to c o n c u r r e n t  pro- 
¢esses. The re  is also no need  for  the  h a r d w a r e  to p e r f o r m  
access check ing  on every  memory  reference ,  resu l t ing  in an  
overal l  improvemen t  in  pe r fo rmance .  

At  any t ime,  a c o n c u r r e n t  process  may be  

ac t ive  be ing  execu ted  
on a l ist  awa i t i ng  execut ion  

inac t ive  r eady  to i n p u t  
r eady  to o u t p u t  
wa i t ing  un t i l  a spec i f ied  t ime 
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The act ive processes wai t ing  to be executed are held on a list. 
This is a l inked list of process workspaces,  implemented  using 
two registers,  one of which  points  to the f i rs t  process on the 
list, the other  to the last. 

Figure 3 Concur ren t  processes 
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A start process ins t ruc t ion  creates a new process by adding  a 
new workspace to the end of the schedul ing list, enabl ing  the 
new concur ren t  process to be executed together  wi th  the ones 
a l ready being executed.  

The correct  t e rmina t ion  of  a paral lel  const ruct  is assured by 
use of  the end process ins t ruct ion.  This  uses a workspace loca- 
t ion as a counter  of the components  of the paral lel  cons t ruct  
which have still to terminate .  When the components  have all 
t e rmina ted ,  the counter  reaches zero, and a spec i f ied  process 
can then  proceed.  

The processor supports  two pr ior i ty  levels, implemented  us- 
ing two lists as descr ibed  above. A switch f rom a pr ior i ty  
1 process (low prior i ty)  to pr ior i ty  0 process (high priori ty) ,  
or vice versa, may occur  when a process stops, when a chan- 
nel becomes ready, or when a communica t ion  completes  and 
causes a pr ior i ty  0 process to become ready. 

To allow a max imum latency f igure  to be calculated,  the in- 
s t ruct ions  which  may take a long t ime to execute have been 
implemented  to allow a switch dur ing  execution.  Conse- 
quently,  the max imum time taken to swi tch f rom pr ior i ty  1 
to pr ior i ty  0 is 58 cycles (less than three microseconds wi th  
a 50ns processor cycle time). The switch f rom pr ior i ty  0 to 
pr ior i ty  1 only takes place when there  is no pr ior i ty  0 work 
available. The t ime taken for  the switch is 17 cycles. 

A context  swi tch between processes, both  execut ing  at pri-  
or i ty  1, occurs  only at  t imes when the evaluat ion stack has 
no useful  contents ,  and the re fore  a f fec t s  only the ins t ruc t ion  
poin ter  and the workspace pointer .  With the need to save and 
restore registers at a min imum,  the implementa t ion  of  con- 
cur rency  is very ef f ic ient .  

3.2.5 I n s t r u c t i o n  f o r m a t  

All ins t ruc t ions  have the same format .  Each is one byte long, 
and is d iv ided  into two 4 bit parts. The four  most s igni f i -  
cant bits of  the byte are  a func t ion  code,  and the four  least 
s ign i f i can t  bits  are a data  value. 

F igure  4 Ins t ruc t ion  fo rmat  
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The use of  a single ins t ruc t ion  format  requires  only a simple 
decode mechan ism in the processor,  which reduces area and 
increases  speed. The use of single byte ins t ruc t ions  decou- 
pies the ins t ruc t ion  fo rmat  f rom the word length  of  the ma- 
chine. In pa r t i cu la r  it  avoids the commonly  found  problems 
concerned  wi th  a l igning ins t ruc t ions  on word boundaries .  

Short  ins t ruc t ions  also improve the e f fec t iveness  of the in- 
s t ruc t ion  fe tch  mechanism,  which in turn  improves processor  
per formance .  The processor uses o therwise  spare memory cy- 
cles to fe tch  instruct ions.  As memory is word accessed, a 32 
bit t r anspu te r  will receive four  ins t ruc t ions  for  every fetch.  
There  are two words of  ins t ruc t ion  fe tch b u f f e r  so tha t  the 
processor  rarely has to wait  for  an ins t ruc t ion  fe tch  before  
proceeding  (only on t rans fe r s  of control  if on-chip  memory 
is used). Since the b u f f e r  is short ,  there  is l i t t le t ime penal ty  
when  a jump ins t ruc t ion  causes the b u f f e r  contents  to be 
fi l led.  

There  is no ins t ruc t ion  cache, as only rarely would such a 
cache reduce the number  of processor  cycles required.  An 
on-chip cache incurs  a s ign i f i can t  cost in terms of chip area, 
as a cache requires  several t imes the area of a simple memory 
to store the same amount  of  in format ion .  An o f f -ch ip  cache 
complicates  the external  in ter face .  Both require  extra  logic, 
even when a ided by sof tware  (as in the IBM 801 [7]), which 
would be likely to slow down the overall  speed of  opera t ion  
and use up even more chip area. The view is taken tha t  the 
chip  area is be t te r  spent  on provid ing  memory for  the appli-  
cation.  

3.2 .6  D i r e c t  f u n c t i o n s  

The represen ta t ion  provides  for  s ixteen func t ions ,  each en- 
coded as a value in the range 0 to 15. Thi r teen  of these values 
are used to encode  the most impor tan t  func t ions  p e r f o r m e d  
by any computer .  These include: 

load constant load non local 
add constant store non local 

load local j u m p  
store local conditional j u m p  
load local pointer 

call 

The most common opera t ions  in a program are the loading 
of  small l i teral  values, and the loading and storing of  one of  
a small number  of variables.  The load constant ins t ruc t ion  
enables  values between 0 and 15 to be loaded onto the evalu- 
a t ion stack wi th  a single byte ins t ruct ion.  The load local and 
store local ins t ruc t ions  access locat ions in memory rela t ive to 
the workspace  pointer .  The f i rs t  16 locat ions can be accessed 
using a single byte instruct ion.  

The load non local and store non local ins t ruct ions  behave sim- 
ilarly, except  that  they access locations in memory relat ive 
to the A register.  Compact  sequences of  these ins t ruc t ions  
allow e f f i c i en t  access to data  s t ructures ,  and provide  for  sim- 
ple implementa t ions  of  the stat ic  links or displays used in the 
implementa t ion  of block s t ruc tured  programming  languages.  
This e l iminates  the need for  compl ica ted  and d i f f i cu l t - to -use  
address ing  modes. 
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In the fo l lowing  examples ,  X and  y are assumed to be  local 
va r iab les  a l loca ted  to of fse ts  x and  y respec t ive ly  in the f i r s t  
s ix teen  words of  workspaee.  

occam in s t ruc t i on  sequence bytes cycles 

x :=  0 load constant  0 1 1 
store local x 1 1 

X :-- y load l o c a l y  1 2 
store local x 1 1 

In th i s  example ,  z is assumed to have  been  dec la red  exter-  
na l ly  to the  PROC which  con ta ins  this  ass ignment  s ta tement .  
The  compi le r  a l locates  a local  workspace  loca t ion ,  a t  o f f se t  
s ta t ic l ink ,  to ho ld  the  address  of  the  workspace  t ha t  conta ins  
the va r i ab le  z. 

oeeam i n s t r uc t i on  sequence bytes  cycles 

Z :~ i load constant  1 1 1 
load local s ta t ic l ink  1 2 
store non local z I 2 

3.2.7 P re f ix ing  func t ions  

Two more  of  the  f u n c t i o n  codes,  p re f ix  a n d  nega t ive  pref ix ,  
are  used to al low the ope r and  of any  in s t ruc t ion  to be ex- 
t e n d e d  in length.  

All i n s t ruc t ions  are  execu ted  by loading  the  four  da t a  bi ts  
in to  the least s i gn i f i can t  four  bi ts  of the ope rand  register ,  
wh ich  is then  used as the  the  in s t ruc t ion ' s  operand.  All in- 
s t ruc t ions  except  the  p r e f i x i n g  ins t ruc t ions  end  by c lea r ing  
the  ope rand  register ,  r eady  for  the nex t  ins t ruc t ion .  

F igu re  5 Use of ope r and  regis ter  

I Function ,IData I 
k; 

The  p r e f i x  i n s t r uc t i on  loads its four  da ta  bi ts  into  the ope rand  
register ,  and  t hen  sh i f t s  the  ope r and  regis ter  up four  places. 
The  negat ive  p r e f i x  i n s t ruc t i on  is s imi lar ,  except  tha t  it com- 
p lements  the  o p e r a n d  regis ter  be fore  s h i f t i n g  it  up, Conse- 
quen t ly  ope rands  can  be ex tended  to any  length  up to the  
l eng th  of  the o p e r a n d  regis ter  by a sequence  of  p r e f i x i n g  in-  
s t ruct ions .  In pa r t i cu la r ,  ope rands  in the range  -256 to 255 
can  be r ep resen ted  us ing  one  p r e f i x i n g  ins t ruc t ion .  

The  fo l lowing  example  shows the  i n s t r uc t i on  sequence  for  
load ing  the  hexadec ima l  cons tan t  #754 into the  A register ,  
and  gives the  con ten t s  of  the  O regis ter  and  the  A regis ter  
a f t e r  execu t ing  each in s t ruc t ion  

O regis ter  A regis ter  
p r e f i x  #7  #7  ? 
p r e f i x  #5 #75 ? 
load constant  #4 0 #754 

The  use of p r e f i x i n g  i n s t ruc t i ons  has  ce r t a in  bene f i c i a l  con- 
sequences.  Firs t ly ,  they are  decoded  and  execu ted  in the same 
way as every  o ther  i n s t ruc t i on ,  wh ich  s impl i f ies  and  speeds 
i n s t ruc t i on  decoding .  Secondly,  they  s impl i fy  language  com- 
p i la t ion ,  by p r o v i d i n g  a comple te ly  u n i f o r m  way of  a l lowing  
any  in s t ruc t i on  to take an  o p e r a n d  of any  size. Thi rd ly ,  they  
al low ope rands  to be represen ted  in a fo rm which  is i ndepen-  
den t  of  the  processor  word length .  

Each p r e f i x i n g  i n s t ruc t i on  occupies  one byte  and  takes one 
cycle to execute.  

3.2.8 Indirect  funct ions  

The  r e m a i n i n g  f u n c t i o n  code, operate,  causes i ts o p e r a n d  to 
be i n t e r p r e t e d  as an  opera t ion  on the values held in the  eval- 
ua t ion  stack. For example ,  the plus ope ra t ion  adds the values 
of  the  A and  B registers.  The resul t  is le f t  in the  A register ,  
a n d  C is copied into the B register.  

The  operate i n s t ruc t i on  allows up  to 16 such opera t ions  to be 
encoded  in a s ingle byte  ins t ruc t ion .  However ,  the  p r e f i x i n g  
in s t ruc t ions  can  be used to ex t end  the ope rand  of  an  opera te  
i n s t ruc t i on  just  l ike any  other .  

The  encod ing  of  the  i nd i r ec t  f u n c t i o n s  is chosen so t ha t  the  
most  f r e q u e n t l y  occu r r i ng  ope ra t ions  are represen ted  wi th-  
out  the  use of  a p r e f i x i n g  ins t ruc t ion .  These  inc lude  a r i t h -  
metic ,  logical  and  compar i son  opera t ions ,  together  wi th  the  
most  f r e q u e n t l y  used cont ro l  f u n c t i o n s  a n d  register  man ipu -  
l a t ion  func t ions .  

Less f r e q u e n t l y  occu r ing  opera t ions  have  encod ings  which  re- 
qu i re  a s ingle  p r e f i x i n g  o p e r a t i o n  ( the  t r a n s p u t e r  i n s t ruc t i on  
set is not  large enough  to r equ i re  more t han  512 ope ra t ions  to 
be encoded!).  

3.2.9 Express ion evaluat ion  

Loading  a value  on to  the  eva lua t ion  stack pushes B into C, 
and  A in to  B, be fore  loading  A. Stor ing  a value  f rom A, Oops 
B in to  A and  C into B. 

The  A, B and  C registers  a re  the  sources and  des t i na t i ons  for  
a r i t h m e t i c  and  logical  opera t ions .  For example ,  the a d d  in- 
s t ruc t ion  adds  the A and  B registers,  places the resul t  in  the  
A register ,  and  copies C into B. 

I f  the re  is i n s u f f i c i e n t  room to eva lua te  an express ion on the  
stack,  then  the compi le r  in t roduces  the  necessary t e m p o r a r y  
va r iab les  in  the  local  workspace.  However ,  express ions  of  
such complex i ty  are,  in  prac t ice ,  r a re ly  encounte red .  Th ree  
regis ters  p rov ide  a good ba l ance  be tween  code compactness  
and  i m p l e m e n t a t i o n  complexity.  

Single l eng th  s igned and  s ingle  l eng th  modulo  a r i t h m e t i c  
is d i r ec t ly  suppor ted .  In add i t ion ,  a qu ick  unchecked  mul-  
t ip ly  is provided ,  in wh ich  the t ime taken  is p ropo r t i ona l  
to the  l o g a r i t h m  of the  second operand .  The  p e r f o r m a n c e  
of  these i n s t ruc t i on  sequences compares  favourab ly ,  in  bo th  
space and  t ime,  to t ha t  ach ieved  by more complex in s t ruc t i on  
sets. Where a more complex i n s t ruc t i on  set c a n n o t  ach ieve  the 
same e f f ec t  in a s ingle  ins t ruc t ion ,  the p e r f o r m a n c e  gain  is 
s ign i f i can t .  
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occam 

x + 2  

(v + w) 

i n s t r uc t i on  sequence  bytes cycles 

load local x 1 2 
a d d  cons tant  2 1 1 

* (y + z) 
load local v 1 2 
load local w 1 2 

a d d  1 1 
load local y 1 2 
load local z 1 2 
a d d  1 1 
mu l t i p l y  2 7+word leng th  

3.2.10 Input and output 

A c h a n n e l  p rov ides  a c o m m u n i c a t i o n  pa th  be tween  two pro- 
cesses. Channe l s  be tween  processes execu t ing  on the  same 
t r a n s p u t e r  a re  i m p l e m e n t e d  by s ingle  words in memory  ( in te r -  
na l  channe ls ) ;  channe l s  be tween  processes execu t ing  on d i f -  
f e r e n t  t r a n s p u t e r s  are  i m p l e m e n t e d  by po in t - to -po in t  l inks  
( ex te rna l  channels) .  

As in the  oecam model ,  c o m m u n i c a t i o n  takes place w h e n  bo th  
the  i n p u t t i n g  and  o u t p u t t i n g  processes a rc  ready. Conse- 
quent ly ,  the  process  wh ich  f i r s t  becomes ready  must  wai t  un t i l  
the  second one is also ready. 

A process  p repares  f o r  an  i n p u t  or an  o u t p u t  by loading  the 
e v a l u a t i o n  s tack  w i th  a po in t e r  to a bu f f e r ,  the  i den t i t y  of  
the  channe l ,  a n d  the  coun t  of  the  n u m b e r  of  bytes  to be t rans -  
fe r red .  It t hen  executes  an  inpu t  m e s s a g e  or an  outpu t  m e s s a g e  
i n s t r u c t i o n  as appropr i a t e .  

The  input  m e s s a g e  and  output  mes sage  i n s t ruc t i ons  use the  ad- 
dress of  a c h a n n e l  to d e t e r m i n e  w h e t h e r  the  channe l  is in-  
t e rna l  or ex te rna l .  Th i s  means  t h a t  the  same in s t ruc t i on  se- 
quence  can  be used for  b o t h  i n t e rna l  and  ex t e rna l  channe ls ,  
a l lowing  a process to be w r i t t e n  and  compi led  w i t h o u t  knowl-  
edge of  whe re  its channe l s  are  connected .  In pa r t i cu la r ,  e i t he r  
an  i n t e rna l  or an  ex t e rna l  c h a n n e l  can be  used as the  ac tua l  
p a r a m e t e r  for  a c h a n n e l  p a r a m e t e r  of  a n a m e d  process. 

A c o m m u n i c a t i o n  p r i m i t i v e  c o m m u n i c a t i n g  a block of  size n 
bytes  r equ i res  only  one byte  of  p rogram,  and  on average  the  
m a x i m u m  of (24, 21+(8*n /word leng th ) )  cycles ( inc lud ing  the  
s chedu l ing  overhead) .  

I n s t r u c t i o n s  for  e n a b l i n g  and  d i sab l ing  channe l s  p rov ide  sup- 
por t  for  an  i m p l e m e n t a t i o n  of  a l t e r n a t i v e  i npu t  w i t h o u t  the  
use of  pol l ing.  

3.3 Discuss ion 

The  r e q u i r e m e n t s  of  the  t r a n s p u t e r  i nd i ca t e  t ha t  a t r a n s p u t e r  
processor  should  have  a s imple  design.  A t r a n s p u t e r  has  a sub- 
s t an t i a l  a m o u n t  of  a rea  given over to memory  and  communi -  
ca t ions ,  i ndeed  a t r a n s p u t e r  can  be t h o u g h t  of as a memory  
chip  w i th  a processor  in  one corner .  In fact ,  the  processor  on 
the  f i r s t  t r a n s p u t e r s  occupies  abou t  25% of the ava i l ab le  area.  

It  was c lear  t ha t  a s imple  processor  could  be cons t ruc t ed  
wh ich  would leave the  ma jo r i t y  of a ch ip  area  ava i l ab le  for  
o the r  purposes.  The  ea r ly  RISC expe r i ences  [6, 7, 8, 9] l en t  
f u r t h e r  s u p p o r t  to the  eva lua t ion  t ha t  p e r f o r m a n c e  r e su l t i ng  
f r o m  us ing  a s imple  processor  need  not  suf fe r .  

Var ious  projects ,  for  example  the  IBM 801 [7] and  MIPS [8], 
are  wi l l ing  to pay a pr ice  of  so f tware  complex i ty  in o rder  

to ach ieve  i m p l e m e n t a t i o n  eff ic iency.  However ,  the  ev idence  
of i n t e r p r e t i v e  schemes for  h igh  level l anguages  was t ha t  a 
s imple  i n s t r u c t i o n  set could  be des igned  w h i c h  would  lead to 
a b e t t e r  h a r d w a r e / s o f t w a r e  r e l a t ionsh ip ,  and  hence  s imp l i fy  
the  so f tware  as well. This  would p robab ly  mean  re j ec t ing  the  
s t ra tegy  of compi l ing  to a level best  cons ide red  as microcode.  

The  j u s t i f i c a t i o n  for  the  use of  mul t ip le  cycle i n s t ruc t i ons  
must  be t h a t  the  i n s t ruc t i ons  well ma tch  the  so f tware  requi re -  
ments .  In the  t r a n s p u t e r  processor  for  the  I1, r epe t i t i ve  oper-  
a t ions ,  such as mul t ip ly ,  and  block move,  are  i m p l e m e n t e d  by 
mic roeode  (wi th  h a r d w a r e  assistance).  The  a l t e r n a t i v e  RISC 
i m p l e m e n t a t i o n  [9] is to provide ,  for  example ,  a s ingle cycle 
mu l t ip ly  step, and  fo r  the  so f tware  to compi le  the  a p p r o p r i a t e  
loop. The  e f f i c i ency ,  in  b o t h  code space and  execu t ion  speed, 
r e su l t ing  f r o m  the  mic rocoded  so lu t ion  outweighs  the  cost of  
a rea  and  capac i t ance  in the  mic rocode  ROM. 

The  I1 i n s t r u c t i o n  set achieves  word l eng th  i n d e p e n d e n c e ,  in  
t h a t  a p rog ram wh ich  m a n i p u l a t e s  bytes,  words  and  t r u t h  val- 
ues can  be t r a n s l a t e d  in to  an  i n s t ruc t i on  sequence  which  be- 
haves  iden t i ca l ly  w h a t e v e r  the  w o r d l e n g t h  of  the  processor  
execu t ing  i t  ( apa r t  f r o m  over f low cond i t ions  r e su l t ing  f r o m  
word l eng th  dependenc ies ) .  This  resul t s  f r o m  the  f ac t  t h a t  
the  i n s t r u c t i o n  size is i n d e p e n d e n t  of word l eng th ,  the  m e t h o d  
of  r ep re sen t ing  long ope rands  as a sequence  of  p r e f i x i n g  in- 
s t ruc t ions ,  and  the  memory  addres s ing  s t ruc ture .  

Workspaces are  he ld  in addressab le  memory,  which  the  de- 
s igner  can choose to a l loca te  on chip  or o f f  chip. Ho ld ing  
workspaces  on ch ip  fo rms  a very  e f f ec t i ve  a l t e r n a t i v e  to the 
use of  cache  memory  [11], the  cost of which  has  a l r e ady  been  
discussed.  A f u r t h e r  a d v a n t a g e  is tha t ,  un l ike  cache memory ,  
r a re ly  accessed da t a  need not  be b rough t  on chip. 

In genera l ,  a p rog ram needs  much  less store to ho ld  it t han  an  
e q u i v a l e n t  p rog ram in a conven t i ona l  microprocessor .  Since a 
p rog ram requ i res  less s tore  to represen t  it, less of the  memory  
b a n d w i d t h  is t aken  up  w i th  f e t ch ing  ins t ruc t ions .  As memory  
is word accessed, the  p r o c e s s o r  will  rece ive  severa l  ins t ruc-  
t ions  for  every  f e t ch  ( d e p e n d i n g  upon  the  n u m b e r  of  bytes  in 
a word).  

The  overa l l  e f f ec t  is thus  t ha t  b o t h  compactness  and  speed 
have  been  ach ieved ,  toge the r  w i th  economica l  use of sil icon. 

4 The transputer  as a f a m i l y  

The  T424 32 b i t  t r a n s p u t e r  is the  f i r s t  of a range  of  t r a n s p u t e r  
p roduc t s  [14]. The  nex t  p roduc t s  wil l  be a 16 bi t  t r a n s p u t e r  
o f f e r i n g  s imi la r  fac i l i t i es  to the  T424, a h igh  p e r f o r m a n c e  
disk con t ro l l e r  and  a h igh  p e r f o r m a n c e  graph ics  cont ro l le r .  

A t r a n s p u t e r  f a m i l y  dev ice  con t ro l l e r  has  the  same organ-  
i sa t ion  as a t r an spu t e r ,  w i th  the  add i t i on  of  specia l  h igh  
speed cont ro l  logic and  in te r faces .  Device  cont ro l le rs  are  pro-  
g r a m m a b l e ,  in  occam,  in the  same way as t r anspu te r s .  Th i s  
al lows a des igner  to ta i lor  the  con t ro l le r ' s  f u n c t i o n  to his  par-  
t i cu la r  app l ica t ion .  

4.1 A personal  works ta t ion  

This  sec t ion  explores  the  des ign  poss ib i l i t i es  p rov ided  by the  
t r a n s p u t e r  a r ch i t ec tu re .  The  f i r s t  step is the  ou t l ine  des ign  
of  a pe r sona l  works t a t ion ,  wh ich  can  be des igned  a n d  bu i l t  
us ing  f u n c t i o n a l l y  d i s t r i b u t e d  t ranspute rs .  One  t r an spu t e r ,  
t he  app l i c a t i ons  processor ,  accepts  the user ' s  c o m m a n d s  and  
ca r r i e s  out  the  a p p r o p r i a t e  processing,  ca l l ing  on two o ther  
t r anspu te r s ,  w h i c h  look a f t e r  a disk sys tem and  a graphics  
d i sp lay  sys tem respect ively .  Each of  the  l a t t e r  two t r a n s p u t e r s  
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and associa ted  h a r d w a r e  can  be replaced by t r a n s p u t e r  based 
device  cont ro l le rs  as they become avai lable.  

F igure  6 Personal  compu te r  works ta t ion  

K e y b o a r ~ : : ~  ~ Applicati 
Proces,, 

0 ~ _ ~  Disk ~ 
Controller )- 

Screen I 
Memory 

S 
- - ~  Graphics 

Controller 
r L 

Screen 

The t r anspu te r s  are connec ted  toge ther  us ing the s t a n d a r d  
t r a n s p u t e r  c o m m u n i c a t i o n s  l inks.  The  resu l t ing  system can 
be eng inee red  onto a s ingle card.  

The  a r c h i t e c t u r e  permi t s  a n u m b e r  of va r i a t ions  on the  im- 
p l emen ta t i on  of the works t a t ion  to be made wi thou t  major  
redesign.  

For example ,  the disk con t ro l le r  can double  as the appl ica-  
t ions  processor,  an d  the app l i ca t ions  t r a n s p u t e r  removed com- 
pletely. Al t e rna t ive ly ,  more processors can be added,  and  the 
occam processes r e d i s t r i b u t e d  to take advan tage  of the  ad- 
d i t i ona l  concurrency .  Vast ly  more than  I Mbyte  of  memory  
could be a t tached .  

4.2 Transputer without  external  memory 

This  second example  explores  the des ign and  use of  a large 
a m o u n t  of  process ing  power based on a t r a n s p u t e r  wi th  only 
l lnk  in t e r f aces  in, say, a 28 pin chip carr ier .  

F igure  7 Single boa rd  t r a n s p u t e r  system 

, ,  

-~ 1 2 "  ~. 

Figure  ? shows 128 t r an s pu t e r s  on a single p r in ted  c i rcu i t  
board.  The  boa rd  has  1 /2Mbyte  of  fas t  s ta t ic  R A M  and  up to 
1 GIPS (Giga In s t ruc t i on  Per Second) of  process ing power.  

In th is  app l ica t ion ,  the  board  is used to p rov ide  h igh  per for -  
mance  da t abase  searching.  We assume tha t  the  da t abase  is 
pa r t i t i oned ,  so t ha t  the  most commonly  accessed par ts  of  a 
da t abase  can be p laced in the t r a n s p u t e r  array, 

The  concep t  is shown in a s impl i f i ed  f o r m  in f igure  8. 

F igu re  8 C o n c u r r e n t  da t abase  search 

Search Requests C 

) H 
I 
I 

~ Answers 
Here  16 t r anspu te r s  are connec ted  into a square  a r ray  w i th  
search requests  i npu t  at  one corner  of  the array,  and  answers  
be ing  ou tpu t  f rom the  o the r  corner .  Each t r a n s p u t e r  keeps a 
small  par t  of the  d a t a b a s e  in its local memory.  

A smal l  p rog ram in each  t r a n s p u t e r  does  the  search.  It  can  
receive  two sorts  of  input .  A search reques t  is f o r w a r d e d  to 
any connec ted  t r a n s p u t e r  which  has  not  yet rece ived  the  re- 
quest  and  s imul t aneous ly  a search is made  t h rough  the  local 
data .  The  o the r  sort  of  i npu t  is an  answer  f rom a t r a n s p u t e r  
which  has  jus t  sea rched  its own local memory.  This  answer  
is merged  w i th  the  answer  gene ra t ed  f rom the  local da ta  and  
fo rwarded .  

A s imple  p e r f o r m a n c e  ana lys i s  ind ica tes  the l a tency  and  
t h r o u g h p u t  of th i s  app l i c a t i on  on the  128 t r a n s p u t e r  board .  
Assume tha t  each record  is 16 bytes long, and  t ha t  a search 
key is four  bytes long. Each t r a n s p u t e r  can  hold  200 records  
a n d  the  whole  sys tem can  ho ld  25,000 records.  For each t rans -  
pu te r  to search its own records  aga ins t  a reques t  will take less 
t han  a mi l l i second.  

The  t ime  t aken  to t r ansmi t  a search reques t  to each t rans -  
pu te r  in the  a r ray  is p r o p o r t i o n a l  to the  longest  pa th  across 
the system, in  th is  case 24 links.  

It  takes a b o u t  6 microseconds  to send a 4 byte  message f r o m  
one t r a n s p u t e r  to another .  It will  thus  take abou t  150 mi-  
croseconds  to t r a n s m i t  a search  request  to the  whole  ar ray ,  
and  abou t  ano the r  150 microseconds  to t r a n s m i t  the answer.  
The  whole  search of  25,000 records  will  take less t han  1.3 mil-  
l iseconds.  

However  jus t  as an  i n d i v i d u a l  t r a n s p u t e r  can  be p e r f o r m i n g  
inpu t ,  o u t p u t  and  process ing at  the  same time, so can  the ar-  
ray. Reques t s  can  be p ipe l ined  t h rough  the system wi th  a 
f u r t h e r  reques t  be ing  inpu t  be fo re  the  prev ious  one has come 
out. 

The  size of  the  d a t a b a s e  p a r t i t i o n  can be increased  by a d d i n g  
more boards.  The  search  t h r o u g h p u t  is not  adverse ly  a f f ec t ed  
by this. 

5 Conclusions 

By t ak ing  an  i n t eg ra t ed  app roach  to the  des ign of  a VLSI com- 
pu te r  and  a c o n c u r r e n t  p r o g r a m m i n g  language  it is possible  
to p roduce  a new level of  sys tem bu i ld ing  block wh ich  pro- 
vides a very e f f i c i en t  i m p l e m e n t a t i o n  of  the  c o r r e s p o n d i n g  
des ign  formal i sm.  
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In part icular ,  i t  is possible to support the use of the same con- 
current programming techniques both within a single trans- 
puter and for a network of transputers. The concurrent pro- 
cessing features of a general purpose programming language 
can be efficiently implemented by a small, simple and fast 
processor. 

The result ing transputcr provides the unique concept of  a 
programmable component enabl ing highly concurrent sys- 
tems to be implemented within a formal design framework. 

The architecture also provides a straight forward technology 
upgrade path. Future transputers can integrate more memory 
and more processors. The system architecture means that cur- 
rent and future products will be fully compatible and capable 
of interworking. 

6 Acknowledgemen ts 

A large number of people have made invaluable contributions 
to the development of the transputer architecture and family 
of products, and these contributions are hereby collectively 
acknowledged. In particular, the original concept, and the 
drive to give it commercial reality, comes from Iann Barton, 
one of the founders of INMOS. David May designed occam, 
and led the team which developed the instruction set of the 
first products. Prof Tony Hoare, of Oxford University, has 
advised INMOS both generally on architecture and particu- 
larly on the basis for providing occam with a formal seman- 
tics. 

7 References  

[1] INMOS Limited, Occam Programming Manual, Prentice- 
Hall International, London, 1984, 

[2] Barron, LM. et al., The Transputer, Electronics, 17th Nov 
1983, p 109. 

[3] May, M.D., OCCAM, ACM SIGPLAN Notices vol 18-4 (Apr 
1983) pp69-79. 

[4] May, M.D. and Taylor, R.J.B., OCCAM, Microprocessors and 
Microsystems vol 8-2 (Mar/Apr 1984) 

[5] May, M.D. and Shepherd, R, Occam and the transputer, 
IFIP WGI0.3 workshop on Hardware Implementation of Con- 
current Languages and Distributed Systems, North Holland 
0984) 

[6] Patterson, D.A and Sequin, C.H., RISC I: A Reduced Instruc- 
tion Set VLSI Computer, Proe 8th International Symposium on 
Computer Architecture. 

[7] Radin, G, The 801 Minicomputer, IBM Journal of Research 
and Development, Vol 27, No 3, pp237-246 (May 1983) 

[8] Hennessy, Jet  al, The MIPS machine, Proceedings CompCon 
Spring 1982, IEEE, (February 1982) 

[9] Colwell, R.P. ¢t al, Peering Through the R I S C / C I S C  Fog: 
An Outline o f  Research, Computer Architecture News, Vol 11, 
No 1 (March 1983) 

[10] Patterson, D.A., RISC Watch, Computer Architecture 
News, Vol 12, No 1 (March 1984) 

[11] Patterson, D.A. et al, Architecture of  a VLSI Instruction 
Cache for a RISC, Proe 10th International Symposium on 
Computer Architecture, ppl0g-116, ACM (1983) 

[12]1 Heart, C.A.R. and Roscoe, A.W., Programs as Executable 
Predicates, Proc 1st Intl Conf on Fifth Generation Computer 
Systems, ICOT, 1984 

[13] Roscoe, A.W., Denotational Semantics for occam, Proc 
NSF/SERC Workshop on Concurrency, Springer LNCS, 1984 

[14] -, IMS T424 transputer data  shee t ,  INMOS Limited, 
Bristol, England 

[ 15] Schindler, M. Real-time languages speak to control applica- 
tions, Electronic design, July 21, 1983, pp105-120. 

[16] Fay, D. Working with occam: a program for generating dis- 
play images, Microprocessors and Microsystems, Vol 8. No 1, 
Jan/Fob 1984 

[17] Curry, B. Jane, Language based architecture eases system 
design, Computer Design, jan 1984, pp127-136 

[ 18] Taylor, R., Graphics with the transputer, Computer Graph- 
ics 84, 1984 

[19] Pountain, R., The transputer and its special language, oc- 
cam, Byte, Vol 9, No 8, Aug 1984 

[20] Kcrridge, J.M. and Simpson, D., Three solutions for a robot 
arm controller using Pascal-Plus, occam, and Edison, Software 
Practice and Experience, Vol 14, No 1, Jan 1984 

[21] Harp, J.G. ¢t al, Signal processing with transputers (traps), 
Computer Physics Communications (in press) 

[22] Broomhcad, D.S. ¢t al, A practical comparison of  the systolic 
and wave front array processing architectures, 2nd Proc IEEE 
Conf on Acoustics, Speech and Signal Processing (March 
1985). 

300 


