
A VERSATILE SYSTOLIC ARRAY FOR MATRIX COMPUTATIONS

Henry Y. H. Chuang and Guo H e r

Department of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260

ABSTRACT
Two critical factors affecting the utility of a VLSI
processor array are 1) the versatility of the array,
and 2) the size problem due to I/O constraints.
In this paper we present a feedback systolic array
system for matrix computations which, in addi-
tion to being able to produce high throughput,
has improved utility. The array system can solve
many matrix problems containing arbitrarily large
matrices. It can also process sparse matrices
efficiently by skipping blocks of zeros.

1. Introduction
VLSI processor arrays such as the systolic arrays can

produce very high throughput due to the high degree of
concurrent processing possible in them. However, the util-
ity of such arrays suffers because 1) different array is gen-
erally required for different algorithm, and 2) only prob-
lems of fixed size can be solved in an array. Several recent
research efforts have aimed at removing these shortcom-
ings. Kung's programmable systolic chip 4 and Snyder's
reconfigurable processor array 1 represent two major efforts
to remove the first shortcoming, while the problem-size
independent systolic array approach of Chuang and He 2
and the partitioned matrix algorithms for VLSI arithmetic
systems of Hwang and Cheng 6 represent the efforts to
remove the second shortcoming. A less drastic approach to
remove the first shortcoming is to find algorithms and their
array implementations which are general-purpose within a
class of problems. Several signal processing arrays and
matrix computation arrays 7,8 are representatives of this
approach. As can be expected, this approach generally
results in simpler processor and/or simpler interconnection,
and thus more array cells can be put into a single chip.

For general-purpose matrix computations, Nash et.
al 8. have proposed a VLSI processor array based on
Faddeev's algorithm a. This array, however, can only per-
form computations on fixed size matrices (usually small)
and the submatrices cannot pipeline through the array due
to the need of preloading. In this paper we present a more
versatile VLSI array for matrix computations which is also
independent of problem size. We obtain this array (or array

• }" Visiting scholar from Wuhan Digital Engineering Institute,
Wuhan, China.

system to be exact) by implementing Faddeev's algorithm
with a systolic array which can be organized into a feedback
array system capable of matrix computations involving arbi-
trarily large matrices. Our feedback array can also process
sparse matrices efficiently by skipping blocks of zeros. In
section 2 of this paper we describe Faddeev's algorithm and
its functional implementation as a systolic array. In section
3 we discuss the I/O bandwidth and the size problems, and
our approach to solve them. Section 4 describes our feed-
back array system. In section 5 we discuss how to efficiently
deal with sparsity in matrices.

2. Faddeev's Algorithm and Systolic Array Implementa-
tion

Consider four matrices A,B,C,D of order n arranged
in the following form:

= - c] ~ - c l , , dlj dl,, (1)

I •
[- c , , ~ - c d,,, 4,,,1

It can be shown that if suitable linear combinations of the
rows above the double line are found and added to the
rows below the double line so that the lower left part
becomes a zero matrix, then the lower right part will be
equal to E= C,4-~B + D. When D=0, C~I (the identity
matrix), and B=b (a column vector), E becomes the solu-
tion A-~b of the linear system Ax~b. When D=0 and A=I,
E is the product of C and B. When D=0 and B=C=I, E is
the inversion of A. Finding linear combinations of upper
rows to eliminate the lower left part can be carried out by
Gaussian elimination.

For the implementation of Faddeev's algorithm, Nash
el. al 8. have suggested a hexagonally connected rectangular
array. For solving ,4x=b, it requires (n+l) 2 array cells,
while for the other operations 2n 2 cells are required. The
array can only process matrices of fixed size, and the
matrices cannot pipeline through it due to the necessary
preloading. Furthermore this array can only process
Faddeev's algorithm.

Our implementation of Faddeev's algorithm is based
on the matrix triangularization systolic array of Gentleman
and Kung 5. We extend their triangular array into a tra-
pezoidal array and slightly modify the array cells. Fig. la

0149-7111/85/0000/0315501.00 © 1985 IEEE
315

http://crossmark.crossref.org/dialog/?doi=10.1145%2F327070.327285&domain=pdf&date_stamp=1985-06-01

dit
-e44 dis

-l;4~ - e N dit
-(:4l -¢]1~ -c114 r i l l

"e4l -e~l " ¢ n "e14 b45
"cllt "eN "ors 044 bit
" t i t "Qtl 0~,I 014. bit
"oil 141 l l l l 1141. bit

|41 I I qlll~l I I I
Oil I I I 41111
11111. I | !

d44
441 d14

d40 d l l d .
dm dB dte

dU dr= b~4
dte ba k~
b4e b~ b~
b j bm kS4
bn bt=
bst

" i
1

e a fin
1411 iol~ o N

14| I~II I B 1141
l i t l ib el:l
on e11
Its

F i g u r e t . a

shows the array and the input and output data flows which
are skewed. Fig. lb gives the cell functions for both pivot-
ing and non-pivoting. The pivoting function is used to pro-
cess the first half of the data flow (i.e., the part consisting
of matrices A and B), and the non-pivoting function is
used to process the second half (i.e., the part consisting of
matrices C and D), The X value in each cell is preset to 0
before the operation begins. This array is decomposed into
a triangular array T and a square array S. It can be shown
that the T array can perform LU decomposit ion and tri-
angularization, and the S array can compute matrix multi-
plication, inner product, and convolution. The combina-
tion of the T and the S arrays implements the Faddeev 's
algorithm by carrying out Gaussian elimination. Faddeev 's
algorithm by itself does not compute LU decomposit ion,
convolut ion, or inner product. But, since the array can

ln terne l Ce l l :

V | n ,~,J'~l...tD.Vo U t =V l n
M l n ~ N o u t = N ! n

IF' Vln=l TH£N
BEGIN

Xout <-X+NI n~Xtn ;
XC-Xln

ELSE
Xout<-Xl n*Mtn~X

X o u t < - X l n + N I n N X

B o u n d e r y C e l l

Mout

°Mout

IF I X I n l ~ IX l THEN
BEGIN

V o u t < - l ;
IF Xtn~O Tl'l£N
H e u t < - - X / X t n

ELSE
Hout<-O

X<-Xtn
ENO

ELSE
Vout<°O;
M o u t < - - X t n / X

cn

; a . / -
&

1

Idout < - - X l n i X

F i g u r e 1 . b

perform Gaussian elimination and the component arrays
can perform other operations, more problems can be
solved with it.

Each boundary cell stores an input data e lement and
sends a modification factor rightwards to modify input data
entering internal cells on the same row. Each internal cell
also stores a data value arriving from the top and passes
downwards all the following data after modification. Thus
as a column of 2n input data flows downwards through the
array, its length is shortened b y , to become a column of n
output data. It is easy to see that, when the array matches
the I /O bandwidth, 5n steps are required to obtain
• C A - ~ B .t- D , 4n+l steps are needed to solve a linear system
of n equations, and 3n steps to do LU decomposition.

3. The I / O Bandwidth and The S ize Problems

Since a VLSI processor array is typically attached to a
host (CPU, memory, and interface), the throughput attain-
able in it is limited by the I /O bandwidth between the array
and the host. A faster and larger array would not produce
higher throughput, in the case of systolic arrays, a larger
array might not be able to solve a larger problem either
because of the strict t iming a systolic array demands of its
input data. The size and the processing speed of the array
should, therefore, be chosen 1o match the I /O bandwidth.

316

When the problem to be solved is larger than the
array, it is generally decomposed into subproblems to be
solved in the array one at a time. The result of each sub-
computat ion is then stored in the host for fur ther process-
ing in the array or within the host. The decomposi t ion, if
possible, and the postprocessing nay be complex or time-
consuming. Passing in termediate results between the host
and the array reduces the th roughput the I /O bandwidth
can support. The interrupted data flow due to problem
decomposi t ion fur ther reduces the throughput because of
the resulting pipeline flush.

In order to more fully utilize the high throughput
potential of VLSI arrays and not to burden users with the
task of problem decomposi t ion and postprocessing, we
solve the problems of ! /O bandwidth and problem size by
s t ructur ing the array as a feedback array system. The feed-
back array system simulates the operation of an arbitrarily
large array by using the small arrays over and over, with
the output of the small arrays fed back to be processed
with other input data al proper time.

The 1/O path between the host and the array deter-
mines the width of input data which can enter the array
and since this is generally smaller than the width of the
input data flow required by a large array, the input data
flow has to be decomposed. Suppose the width of the I /O
path is w. We cut the data flow into strips of width w paral-
lel to the direction of data flow, or bands of width w verti-
cal to data flow. The strips and the bands are fur ther cut
into blocks of length w. Depending on the order in which
the blocks are fed into the array, we have parallel, vertical,
or hybrid decomposit ion as shown in Fig. 2.

4. Feedback Systolic Array Systems

Different decomposi t ions of the input data flow result
in different feedback array systems, due mainly to the
different buffer memory requi rements for the feedback
data. in this connect ion, we also want to point out that
there are two types of internal data flow, one that varies as
it moves across a cell and one that does not vary. Since the
invariant type once saved can be used over and over, the
write access to the buffer storing such internal data is drast-
ically reduced. This means lower buffer access rate and pos-
sibly less memory ports. On the o ther hand, the variant
type requires higher buffer memory access rate. It is, there-
fore, preferable to feed input data into the array in such a
way that the requi rement to save the variant type data in
external buffer memory is lower. In the following, we shall
discuss the feedback array systems for the three types of
input data decomposit ion.

4.1 Feedback array for parallel data flow decomposition

To compute C A - ~ B + D for matrices of size n, the
input data flow (the matrix in (1)) is 2n long and 2n wide.
Suppose the hos t ' s I /O bus is w wide. We decompose the
input data flow along its direction into 2m w wide strips
Vj V2,,,, where n = m w . Fig. 3 shows a full-size array
(for m = 4) composed of T and S componen t arrays of size
w. Since only one input data strip can be fed into the array
at a t ime, this full-size array will not work under the given
1/O constraint . But the feedback array system of Fig. 4,
which receives the input strips one at a t ime cont inuously

" 1 o2

. -

~e'" ld t t . . A A

FJ9uve 2.0 Ftsure 2.b Vloure 2.c

without in terrupt ion, can process correctly under the same
input constraint . The feedback array system simulates the
large array by using the four S arrays and the single T array
over and over with the output of the T array (the horizon-
tal data) fed to the S arrays to meet the vertical data at the
proper time. In order to use the componen t arrays over and
over, a special value is appended to the end of each data
strip to reset the arrays so that X - 0 in each array cell
before the next strip comes in. in this feedback array,
feedback corresponds to repetit ion of S array in the hor-
izontal direction, one feedback loop for each row in the
array. The buffer memor i e s in the feedback loops store the
output data of the T array which are broadcast to the S
arrays.

The total n u m b e r of steps required to compute
C A - ~ B + D in this feedback array system is

(2m × 2row .t- w) .t- m w = (4m + l)n .~- w ~ O (m n) *

The first part on the lef t-hand side of this equat ion is the
t ime required to input all the 2m input strips, and the
second part is the additional t ime for I,'2,, , to pass through
the array system. This system is not quite independent of
problem size because it requires m S arrays and rn buffers.
But, it uses much smaller n u m b e r of array cells to produce
m a x i m u m throughput under the given I /O constraint .

Because all the S arrays in this system are identical,
we can replace the co lumn of S arrays with a single S array
with feedback. This corresponds to the repetit ion in the
vertical direction. One more buffer memory B, is needed to
hold the internal data which flow down from one S array to
the next in the array of Fig. 4. The resulting system shown
in Fig. 5 consists of one T array and one S array only, and
is completely independent of problem size except for the
buffers which, however , can be implemented in an external
memory. An input data strip no longer followed by another
one immediately. Feedback data f rom the output of the S
array have to be inserted between adjacent input data
strips.

t O (k) denotes order of k.

317

"",~Jsz S3 S, Ss Ss S5 Ss

"X~S2 S~ S, S, S~ $4

S= S~ S3 S~ S3

S, S= S= S=
r i g . , , 3 i I $ I

Et E= E3 E4

o n e - d l m o n e l o n a l feedback

Fl9u~e 4

The throughput of this one-S one -T feedback array
system is of course lower. The processing of the first strip
needs 2 m w steps. From the second to the m " strip, pro-

r -2

cessing one strip, e.g. the r 'h strip, needs ~ (2 m - k) w
k--0

steps. From the m + l " strip to the 2m" strip, processing
,,-u

one strip needs ~ (2m-k)w steps. The last strip needs w
k-0

more steps to enter the array and w more steps to pass
through the array, because its last block can not overlay
with other strips. Therefore, the total processing time is

"' 7 2 5 2row -t- ~ (2 m - k) (2 m - k + l) w + 2w - ~ r n n + ~ n -t- 2w = O(m2n)

Using more than one S array in the feedback loop will
reduce the processing t ime proportionally.

two-dlmenelonel f e e d b a c k

~ _ ~ V I hfrt~ ttema~l eo

Figure 5

4.2 Feedback array for vertical data flow decomposition

An array wider than the 1/O can solve a matching
large problem only if the input data flow is skewed and it is
decomposed vertically as shown in Fig. 2b. To see why this
is so, again suppose the i /O is • wide and the array is
2 n = 2 m w wide. We partition the array into subarrays of size
w and interface the array with the host through a 2m-way
demultiplexor in the input side and an m-way multiplexor
in the output side as shown in Fig. 6. The 2n by 2n input
data flow is decomposed into 2 m bands, vertical to its
direction. Each band is further divided into 2m blocks, and
the blocks in a band enter the array through the demulti-
plexor one by one. Because the input data flow is skewed,
each block overlays with its left and right neighbors and the
whole band enters the array continuously as if it were not
decomposed. The last block of a band also overlays with
the first block of the following band. So, the 2m×2m blocks
enter the array continuously, and the total number of steps
to complete the process is

(2m × 2 m w + w) + r o w = (4m + 1)n + w

which equals the processing time of the one-dimensional
feedback array system of Fig. 4. Although the array of Fig.
6 has many more subarrays, the processing speed is not
higher. This is because the array has many more cells than
that the I /O bandwidth can support causing many array
cells to idle.

We can remove the excess subarrays and at the same
time achieve problem-size independence by using feed-
backs. The feedback array system shown in Fig. 7 simulates
the large array of Fig. 6, and performs the computation
with the same number of steps, As in the array of Fig. 6,
data enter the array system block by block without interr-
uption.

Since the blocks in a band are processed continuously,
the data moving rightwards (the invariant type) need not
be saved, and no buffer is needed in the feedback loop. On

318

HOST

N~

, N

Ls

N

HOST
FI 9uee 6

~ e c y ¢ l l n l l evet~y v e'lepe

....... .~__.~ :; ~ ~ ~___..J
- ' ~ - - r - - ' l . ~ :Lr - - - ~ - - ~ L I - - - -

~-.-~....~--~[

Xou'I Xout

-•, p-I

e

Flgure B

HOS'T

W D~X

O~4UX

W

Flgure 7

the other hand, the X values in the cells of the S array
need to be saved as shifting into neighboring block begins,
because these X values will be used in processing the next
band of data. These X values are stored in a recycling shift
register in each cell of the S array. The S" array in the
figure is the S array augmented with recycling shift regis-
ters for storing the X values and feedback loops for pro-
pagating the M values, as shown in Fig. 8. The B~ is for
storing the Xo,, values when the problem is too big (
2n>4w for the array system of Fig. 7). In this case, the
X,,,, values.stored in B~ are processed after the whole data
flow (or the whole strip) has passed the array system, Stor-
ing the 7(values in the recycling shift registers rather than

in an external buffer simplifies control and reduces
memory access and, through time sharing of memory, the
number of memory ports.

4.3 Feedback array for hybrid data flow decomposition

The recycling shift registers of Fig. 8 have finite capa-
city of p. To cope with this finite capacity problem, a hybrid
data flow decomposition as shown in Fig. 2c is used. The
data flow is divided irtto parallel strips of pw wide. Blocks in
each strip are processed as in vertical decomposition, and
processing moves from strip to strip as in parallel decompo-
sition.

During the processing of a block the X values stored
in the output side of the shift registers (stored when pro-
cessing the corresponding block in the previous band, i.e.
the one p block ahead) will be consumed, and the new X
values can be stored in the input side of the shift registers.
When the processing shifts from one band to the next,
however, the flow of the data moving rightward is inter-
rupted. These data have to be saved until processing of the
corresponding band in the next strip begins. The buffer B,
in Fig. 7 is for storing these data.

5. Sparsity in Matrix

Our feedback array system has another important
merit in that we can skip blocks of zeros in the input data
flow, and thus greatly reduce the processing time. Con-
sider the linear system

A s - B (2)

where A is a lower blocked band matrix of order n, i.e.,

319

A22

A : A:i A?2
A?+I,2 •

A:+,
~pl t - l ,p+ l

Am,.m-p.~_l • Atom

[I* anti B = Bt.B2 B m , n : m w , and each A~/ or Bi,

i=1,2 ra.l~<j~<i, is a w by w submatrix.

The data flow is decomposed parallelly into w wide
strips and w by w blocks as shown in Fig. 9a. The -1 blocks
are the diagonal submatr ices of the - 1 matrix. Without
loss of generality, we have assumed the B matr ix to be n
by w. As shown in Fig. 3, V~ is processed by a T array
which generates horizontal data flow (the M's) to modify
data strips on the right, i .e.I.~, i>/2. V 2 is processed by
one S array and then one T array which generates horizon-
tal data flow to fur ther modify data strips on the right.
W h e n the leading block of zeros in V+ passes th rough the S
array S+, the X value in each cell of $2 will be zero, and so
Xo,,, = Xi, in each cell. Namely, all the following blocks A/2,
i=2,3 m will pass th rough $2 unchanged. This means
the S array is not required to process V2, and the first block
of zeros can be skipped. Similarly, the first two blocks of
zeros in I" 3 result in X=0 in each cell of S+ and S 3, and so
we can skip these two blocks of zeros and use only a T
array to process all o ther blocks in this strip. For the same
reason every block of zeros above the main diagonal of
matrix A can be skipped, and the whole input data flow
except for the strip containing the B matrix can be pro-
cessed with just one T array. In processing the input data
strips with the T array, the blocks of zeros between the
lower diagonal border of the band matr ix and the main
diagonal of the - 1 matrix can also be skipped. This is
because Mo,,=O when X,,,=0 in the boundary cell and
Xo,, = X~,, when M~,, = M,,, : 0 in the internal cell. These
blocks of zeros do not cont r ibute to the modification of
data strips on the right and, therefore , can be skipped. For
the same reason, the blocks of zeros below the main diago-
nal of the - 1 matrix can also be skipped.

In Fig. 3 the data strip consisting of B, i.e.
Y,,,+~ = B~,B~ B,,, passes through m S arrays
S,,,+~,S, S+ in that order. As the data strip passes S,,,,.+,
B~ is modified and stored in there• B2,B 3 Bp, where p
is the n u m b e r of non-zero blocks in a co lumn of A, are
modified and dr iven out. B~+~ to B,,, pass it without
modification because the T array on the same row, in pro-
cessing the A matrix portion of V~, produces only p non-
zero blocks of M values to modify this data strip• The only
non-zero block in the - I matrix portion of Vt produces a
non-zero block of M values to turn the first zero block
below B,,, into a non-zero block X~(1). In a similar way the
second S array S,, processes the sequence of data blocks
enter ing it f rom the output of S,,,++.

Because we don ' t need S arrays to process V] to F,,,
we can supply the M data required to modify V,,+~ f rom the
output of T arrays directly• If we use only one T array to
process P'~ to E,, and do not s tore the M data in the
buffers, we cannot use more than one S array to process
E,,+~ concurrent ly because the T array can only supply the

vsv2v3v+vsve e
IIIII1 I i I 111,
illt~]lml I I I ltll
Ililllillllltlll I] fit
[, lllll[llll[lllll I IIII
i I lii,l,llfl,I Iii
[] I IIIlllltttllttilllll
Ea] I I I l J
I l-fl I I I I
l J l-tl I I I
I I 1 1-fl II
l J I I ~ I I
~ i t ~ I I-~,I

F i g u r e 9 . a

t
Ld
Z

I--

A~ '-Bs8283° "
- l ,+s ,s B2(1)
A3s
A~,J N'UX
All.

X2. • • X l

F i g u r e g . b

X e (6)

o

X s (5) B e / 5)

Be (5 : 0

B o (4)

X 4 (4) B S (4)

Be (4~/0
I I

e~...._2 4 ~ _Be (o)

. B s (3)

Ds (3)/ p
.B4 (3") B s (O)

~a~ B 4 (2)

X2(2) B~(2)

.e, (2) / . o

8a (2") B4(O)

B a (1)

.Xs (1) B ~ (I ~

p , c s) / o

B z (I) B 3 (O)

output B;~ (O)
~1.011

S B~. (0)
I npu't II

s

F I 9 U r l l 9 . c

Ma*e,8

- ~ A N V 6

M~s - ! ,,+s s - - ~/'S

M~ A ~ • ---., , -
M~4.+ ;A.

M84 "111+4.4
- " V4
.~]_A.,

' AS4 M44] --

M~,~ I "] II+3,3
- - V3
y,~ A.
I I

M33 I A43 ----~,.... -
M~2.ee A ~

""
M~ y 4 2

24:. :l ..~/.tt

yea Aat

Mss ~ A2t
TT~...-

Ass

I npu ' l "la
¥

M data to one S array at a time. Therefore , we shall use a
single S array with feedback to implement the sequence of
S arrays S,,++ to $2. Fig. 9.b shows a feedback array system
for solving linear system with lower blocked band matrix. It
is to be noted that this system, consisting of one T array
and one S array, is a degenera ted version of the one in Fig.
5 with output of the T array feeding the S array directly
and with the input data strips bypassing the S array• Fig. 9.c
shows the order in which the data blocks are processed in
the T array and the S array. B~(k) denotes the j,h block of
B after being processed by the S array k times• X/ (j) is the
f : ' block of the solution generated dur ing the j : / , iteration.
The empty arrows in the figure deno te pipelining, while the
solid arrows denote feedback.

Since in the array system of Fig. 9.b the processing of
the data strip B and the processing of the rest of the data
strips are concurrent , the total processing t ime is the t ime
required to pipeline all the non-zero blocks in matrices A
and - / w h i c h is

1 (2., k + m) w = C p + t) . - ~p(p-1)
k ~ m - p - I

320

~Vm÷l
V3.V4

I I ~a" x I ~ " , . ~ p . t

F l g u v l 10

When matrix A has non-zero blocks above the main
diagonal, the sparsity cannot be effectively utilized in
Faddeev's algorithm directly to increase the processing
speed. A single non-zero block above the main diagonal
will produce, in the Gaussian elimination, a column of
non-zero blocks in the - 1 matrix above its main diagonal.
Therefore, a large number of additional blocks have to be
processed if the A matrix is not a lower blocked band
matrix. A better way to solve a problem with such a
matrix is to solve it in two phases, In the first phase the
Gaussian elimination is applied to the part of input data
flow consisting of only A and B resulting in an upper band
matrix A u and a modified B denoted as B u. A U is then
transposed horizontally and vertically to obtain a lower
band matrix AL. Bu is turned upside down to become BL.
In the second phase, Faddeev's algorithm is applied to the
whole input data flow consisting of AL, BL and the -1
matrix with the zero blocks skipped as mentioned above.

Suppose matrix A has an upper band of width q and a
lower band of width p. The array system of Fig. 10 can
process the first phase with maximum speed when the
parallel decomposition of input data flow is used. V~ to Vm
are processed in the column of q S arrays (q-2 in the
figure) and one T array on the left one by one. Con-
currently Vm.~ is processed in the S array with feedback
loop on the right. By the same reason as explained previ-
ously, the blocks of zeros can also be skipped in this phase.
In processing one data strip, the q non-zero blocks above
the main diagonal are modified and stored in the q S
arrays, the block on the main diagonal is modified and
stored in the T array, and the remaining p-1 non-zero
blocks in the lower band are modified and used to produce
the M data to modify Vm.~l. Therefore, the capacity of each
of the buffers is p-1 blocks. Since the blocks of zeros can
be skipped and the processing of B is concurrent with the
processing of A, the processing time for the first phase
equals the time to enter all the blocks between the upper
and lower boundaries of the band in A:

p.-I ~_
(~ m - - i) w -~- (~rn - - j)w -- (p+q)n -- (p2+ q2_p+q) w
i-0 ,j-I

V2,V3 _Vm÷ t

output

F l g u v e 11

Because p+q is the band width of matrix A, the processing
time for the first phase is approximately the product of the
order and the bandwidth of A. Comparing the array sys-
tem in Fig. 9.b with the one in Fig. 10, we see that the sys-
tem in Fig. 10 can also process the second phase. Since the
processing time for phase 2 is approximately the product of
the order and the lower bandwidth of matrix A, the total
processing time is approximately (2p + q)n.

The array system of Fig. 10 is not problem-size
independent because it requires q S arrays. To make it size
independent, we can replace the column of q S arrays with
a S array with feedback as shown in Fig. 11. The process-
ing time for the first phase is now about q times as much
because all data strips, except for the first one, have to be
processed by the single S array q times. The processing
time for the second phase is not affected because the
column of q S arrays are not used in the phase. The total
processing time in this array system is, therefore, approxi-
mately q(p .~- q)n + (p -t- 1)n.

References

1. L. Snyder , "Introduction to the Configurable Highly
Parallel Machine," IEEE Computer, pp. 47-64, Janu-
ary, 1982.

H. Y. H. Chuang and G. He, "Design of Problem-size
independent Systolic Array Systems," Proceedings of
the International Conference on Computer Design: VLSI
in Computer, October, 1984.

D. K. Faddeev and V. N. Faddeeva, in Computational
Methods o f Linear Algebra, pp. 150-158, W. H. Free-
man and Company, 1963.

A. L. Fisher, H. T. Kung, L. M. Monier, H. Walker,
and Y. Dohi, "Design of the PSC: A Programmable
Systolic Chip," Proceedings of the Third Caltech Confer-
ence on Very Large Scale Integration, pp. 287-302,
Computer Science Press, March, 1983.

W. W. Gentleman and H. T. Kung, "Matrix Triangu-
larization by Systolic Arrays," Proceedings of SPIE --

2.

3.

4.

5.

321

The International Society of Optical Engineering, vol.
298, pp. 19-26, 1981.

6. K. Hwang and Y. H. Cheng, "Partitioned matrix
Algorithm for VLSI Arithmetic Systems," IEEE
Trans. on Computer, vol. C-31, no. 12, pp. 1215-1224,
December, 1982.

7. H .T . Kung, "Special-purpose Devices for Signal and
Image Processing," SPIE's 24-th Annual Technical
Symposium, San Diego, California, July 28 - August 1,
1980.

8. J .G . Nash, S. Hanson, and G. R. Nudd, "VLSI Pro-
cessor Arrays for Matrix Manipulation," in VLSI Sys-
tems and Computations, pp. 367 - 378, Computer Sci-
ence Press, October, 1981.

322

