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ABSTRACT 
Two critical factors affecting the utility of a VLSI 
processor array are 1) the versatility of the array, 
and 2) the size problem due to I/O constraints. 
In this paper we present a feedback systolic array 
system for matrix computations which, in addi- 
tion to being able to produce high throughput, 
has improved utility. The array system can solve 
many matrix problems containing arbitrarily large 
matrices. It can also process sparse matrices 
efficiently by skipping blocks of zeros. 

1. Introduction 
VLSI processor arrays such as the systolic arrays can 

produce very high throughput due to the high degree of 
concurrent processing possible in them. However, the util- 
ity of such arrays suffers because 1) different array is gen- 
erally required for different algorithm, and 2) only prob- 
lems of fixed size can be solved in an array. Several recent 
research efforts have aimed at removing these shortcom- 
ings. Kung's programmable systolic chip 4 and Snyder's 
reconfigurable processor array 1 represent two major efforts 
to remove the first shortcoming, while the problem-size 
independent systolic array approach of Chuang and He 2 
and the partitioned matrix algorithms for VLSI arithmetic 
systems of Hwang and Cheng 6 represent the efforts to 
remove the second shortcoming. A less drastic approach to 
remove the first shortcoming is to find algorithms and their 
array implementations which are general-purpose within a 
class of problems. Several signal processing arrays and 
matrix computation arrays 7,8 are representatives of this 
approach. As can be expected, this approach generally 
results in simpler processor and/or simpler interconnection, 
and thus more array cells can be put into a single chip. 

For general-purpose matrix computations, Nash et. 
al 8. have proposed a VLSI processor array based on 
Faddeev's algorithm a. This array, however, can only per- 
form computations on fixed size matrices (usually small) 
and the submatrices cannot pipeline through the array due 
to the need of preloading. In this paper we present a more 
versatile VLSI array for matrix computations which is also 
independent of problem size. We obtain this array (or array 
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system to be exact) by implementing Faddeev's algorithm 
with a systolic array which can be organized into a feedback 
array system capable of matrix computations involving arbi- 
trarily large matrices. Our feedback array can also process 
sparse matrices efficiently by skipping blocks of zeros. In 
section 2 of this paper we describe Faddeev's algorithm and 
its functional implementation as a systolic array. In section 
3 we discuss the I/O bandwidth and the size problems, and 
our approach to solve them. Section 4 describes our feed- 
back array system. In section 5 we discuss how to efficiently 
deal with sparsity in matrices. 

2. Faddeev's Algorithm and Systolic Array Implementa- 
tion 

Consider four matrices A,B,C,D of order n arranged 
in the following form: 

= - c ] ~ - c l , ,  dlj dl,, (1) 

I • 
[ - c , , ~ - c  .... d,,, 4,,,1 

It can be shown that if suitable linear combinations of the 
rows above the double line are found and added to the 
rows below the double line so that the lower left part 
becomes a zero matrix, then the lower right part will be 
equal to E= C,4-~B + D. When D=0, C~I (the identity 
matrix), and B=b (a column vector), E becomes the solu- 
tion A-~b of the linear system Ax~b. When D=0 and A=I, 
E is the product of C and B. When D=0 and B=C=I, E is 
the inversion of A. Finding linear combinations of upper 
rows to eliminate the lower left part can be carried out by 
Gaussian elimination. 

For the implementation of Faddeev's algorithm, Nash 
el. al 8. have suggested a hexagonally connected rectangular 
array. For solving ,4x=b, it requires (n+l) 2 array cells, 
while for the other operations 2n 2 cells are required. The 
array can only process matrices of fixed size, and the 
matrices cannot pipeline through it due to the necessary 
preloading. Furthermore this array can only process 
Faddeev's algorithm. 

Our implementation of Faddeev's algorithm is based 
on the matrix triangularization systolic array of Gentleman 
and Kung 5. We extend their triangular array into a tra- 
pezoidal array and slightly modify the array cells. Fig. la 
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shows the array and the input and output data flows which 
are skewed. Fig. lb gives the cell functions for both pivot- 
ing and non-pivoting. The pivoting function is used to pro- 
cess the first half of  the data flow (i.e., the part consisting 
of  matrices A and B), and the non-pivoting function is 
used to process the second half (i.e., the part consisting of  
matrices C and D), The X value in each cell is preset to 0 
before the operation begins. This array is decomposed into 
a triangular array T and a square array S. It can be shown 
that the T array can perform LU decomposit ion and tri- 
angularization, and the S array can compute matrix multi- 
plication, inner product, and convolution.  The combina- 
tion of  the T and the S arrays implements  the Faddeev 's  
algorithm by carrying out Gaussian elimination. Faddeev 's  
algorithm by itself does not compute LU decomposit ion,  
convolut ion,  or inner product. But, since the array can 

ln terne l  Ce l l :  
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perform Gaussian elimination and the component  arrays 
can perform other operations, more problems can be 
solved with it. 

Each boundary cell stores an input data e lement  and 
sends a modification factor rightwards to modify input data 
entering internal cells on the same row. Each internal cell 
also stores a data value arriving from the top and passes 
downwards all the following data after modification. Thus 
as a column of 2n input data flows downwards through the 
array, its length is shortened b y ,  to become a column of  n 
output data. It is easy to see that, when the array matches 
the I /O bandwidth, 5n steps are required to obtain 
• C A - ~ B  .t- D ,  4n+l  steps are needed to solve a linear system 
of  n equations, and 3n steps to do LU decomposition. 

3. The  I / O  Bandwidth  and The  S ize  Problems  

Since a VLSI processor array is typically attached to a 
host (CPU, memory,  and interface), the throughput attain- 
able in it is limited by the I /O bandwidth between the array 
and the host. A faster and larger array would not produce 
higher throughput,  in the case of  systolic arrays, a larger 
array might not be able to solve a larger problem either 
because of  the strict t iming a systolic array demands of its 
input data. The size and the processing speed of the array 
should,  therefore,  be chosen 1o match the I /O bandwidth. 
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When  the problem to be solved is larger than the 
array, it is generally decomposed into subproblems to be 
solved in the array one at a time. The result of each sub- 
computat ion is then stored in the host for fur ther  process- 
ing in the array or within the host. The decomposi t ion,  if 
possible, and the postprocessing nay be complex or time- 
consuming.  Passing in termediate  results between the host 
and the array reduces the  th roughput  the I /O bandwidth 
can support. The interrupted data flow due to problem 
decomposi t ion fur ther  reduces the throughput  because of 
the resulting pipeline flush. 

In order to more  fully utilize the high throughput  
potential of VLSI arrays and not to burden  users with the 
task of problem decomposi t ion and postprocessing, we 
solve the problems of ! /O bandwidth and problem size by 
s t ructur ing the array as a feedback array system. The feed- 
back array system simulates the operation of an arbitrarily 
large array by using the small arrays over  and over,  with 
the output  of the small arrays fed back to be processed 
with other  input data al proper  time. 

The  1/O path between the  host and the array deter-  
mines  the  width of  input data which can enter  the array 
and since this is generally smaller than the width of  the 
input data flow required by a large array, the input data 
flow has to be decomposed.  Suppose the width of  the I /O 
path is w. We cut the data flow into strips of  width w paral- 
lel to the direction of data flow, or bands  of width w verti- 
cal to data flow. The  strips and the bands  are fur ther  cut 
into blocks of  length w. Depending on the order  in which 
the blocks are fed into the array, we have parallel, vertical, 
or hybrid decomposit ion as shown in Fig. 2. 

4. Feedback Systolic Array Systems 

Different decomposi t ions  of  the input data flow result 
in different feedback array systems,  due mainly to the 
different buffer memory  requi rements  for the feedback 
data. in this connect ion,  we also want to point out  that 
there  are two types of internal data flow, one that  varies as 
it moves  across a cell and one  that does  not  vary. Since the  
invariant type once saved can be used over  and over,  the 
write access to the buffer storing such internal data is drast- 
ically reduced. This means  lower buffer access rate and pos- 
sibly less memory  ports. On the o ther  hand,  the variant 
type requires higher buffer memory  access rate. It is, there-  
fore, preferable to feed input data into the array in such a 
way that the requi rement  to save the variant type data in 
external  buffer memory  is lower. In the following, we shall 
discuss the feedback array systems for the three  types of 
input data decomposit ion.  

4.1 Feedback array for parallel data flow decomposition 

To compute  C A - ~ B  + D for matrices of  size n, the 
input data flow (the matrix in (1)) is 2n long and 2n  wide. 
Suppose the hos t ' s  I /O bus is w wide. We decompose  the 
input data flow along its direction into 2m w wide strips 
Vj . . . . .  V2,,,, where  n = m w .  Fig. 3 shows a full-size array 
(for m = 4 )  composed of  T and S componen t  arrays of  size 
w. Since only one input data strip can be fed into the array 
at a t ime, this full-size array will not work under  the given 
1/O constraint .  But the feedback array system of  Fig. 4, 
which receives the input strips one at a t ime cont inuously 

" 1 o2 

. . . . . . . . . . . . .  - 

~e'" ld t t . .  A A  

FJ9uve 2.0 Ftsure 2.b Vloure 2.c 

without  in terrupt ion,  can process correctly under  the  same 
input constraint .  The feedback array system simulates the 
large array by using the four S arrays and the single T array 
over  and over  with the output  of the T array (the horizon-  
tal data) fed to the S arrays to meet  the vertical data at the 
proper time. In order  to use the componen t  arrays over  and 
over,  a special value is appended to the  end of  each data 
strip to reset the arrays so that X - 0  in each array cell 
before the next strip comes in. in this feedback array, 
feedback corresponds to repetit ion of  S array in the hor- 
izontal direction, one feedback loop for each row in the  
array. The  buffer memor i e s  in the  feedback loops store the  
output  data of  the  T array which are broadcast to the S 
arrays. 

The total n u m b e r  of steps required to compute  
C A - ~ B  + D  in this feedback array system is 

(2m × 2row .t- w) .t- m w  = (4m + l)n .~- w ~ O ( m n ) *  

The first part on the lef t-hand side of this equat ion is the 
t ime required to input all the 2m input strips, and the 
second part is the additional t ime for I,'2,, , to pass through 
the array system. This system is not quite independent  of 
problem size because it requires m S arrays and rn buffers. 
But, it uses much  smaller n u m b e r  of  array cells to produce 
m a x i m u m  throughput  under  the given I /O constraint .  

Because all the S arrays in this system are identical, 
we can replace the co lumn of  S arrays with a single S array 
with feedback. This corresponds  to the repetit ion in the 
vertical direction. One more  buffer  memory  B, is needed to 
hold the  internal  data which flow down from one  S array to 
the next  in the array of  Fig. 4. The  resulting system shown 
in Fig. 5 consists of  one  T array and one S array only, and 
is completely independent  of  problem size except for the 
buffers which, however ,  can be implemented  in an external  
memory.  An input data strip no longer followed by another  
one  immediately.  Feedback data f rom the output  of the S 
array have to be inserted between adjacent input data 
strips. 

t O ( k )  denotes order of k. 
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The throughput of  this one-S  one -T  feedback array 
system is of course lower. The processing of the first strip 
needs 2 m w  steps. From the second to the m "  strip, pro- 

r -2  

cessing one strip, e.g. the r 'h strip, needs ~ ( 2 m - k ) w  
k--0 

steps. From the m + l "  strip to the 2m" strip, processing 
,,-u 

one strip needs ~ (2m-k )w  steps. The last strip needs w 
k-0 

more steps to enter the array and w more steps to pass 
through the array, because its last block can not overlay 
with other  strips. Therefore,  the total processing time is 

"' 7 2 5 2row -t- ~ ( 2 m - k ) ( 2 m - k + l ) w  + 2w - ~ r n  n + ~ n  -t- 2w = O(m2n)  

Using more than one S array in the feedback loop will 
reduce the processing t ime proportionally. 

two-dlmenelonel f e e d b a c k  

~ _ ~ V I  hfrt~ ttema~l eo 

Figure 5 

4.2 Feedback array for vertical data flow decomposition 

An array wider than the 1/O can solve a matching 
large problem only if the input data flow is skewed and it is 
decomposed vertically as shown in Fig. 2b. To see why this 
is so, again suppose the i /O  is • wide and the array is 
2 n = 2 m w  wide. We partition the array into subarrays of size 
w and interface the array with the host through a 2m-way 
demultiplexor in the input side and an m-way multiplexor 
in the output side as shown in Fig. 6. The 2n by 2n input 
data flow is decomposed into 2 m  bands, vertical to its 
direction. Each band is further divided into 2m blocks, and 
the blocks in a band enter the array through the demulti-  
plexor one by one. Because the input data flow is skewed, 
each block overlays with its left and right neighbors and the 
whole band enters the array continuously as if it were not 
decomposed. The last block of  a band also overlays with 
the first block of  the following band. So, the 2m×2m blocks 
enter the array continuously, and the total number  of  steps 
to complete the process is 

(2m × 2 m w  + w) + r o w =  (4m + 1)n + w 

which equals the processing time of the one-dimensional  
feedback array system of Fig. 4. Although the array of Fig. 
6 has many more subarrays, the processing speed is not 
higher. This is because the array has many more cells than 
that the I /O bandwidth can support causing many array 
cells to idle. 

We can remove the excess subarrays and at the same 
time achieve problem-size independence by using feed- 
backs. The feedback array system shown in Fig. 7 simulates 
the large array of  Fig. 6, and performs the computation 
with the same number  of  steps, As in the array of  Fig. 6, 
data enter the array system block by block without interr- 
uption. 

Since the blocks in a band are processed continuously, 
the data moving rightwards (the invariant type) need not 
be saved, and no buffer is needed in the feedback loop. On 
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the other hand, the X values in the cells of the S array 
need to be saved as shifting into neighboring block begins, 
because these X values will be used in processing the next 
band of data. These X values are stored in a recycling shift 
register in each cell of the S array. The S" array in the 
figure is the S array augmented with recycling shift regis- 
ters for storing the X values and feedback loops for pro- 
pagating the M values, as shown in Fig. 8. The B~ is for 
storing the Xo,, values when the problem is too big ( 
2n>4w for the array system of Fig. 7 ). In this case, the 
X,,,, values.stored in B~ are processed after the whole data 
flow (or the whole strip) has passed the array system, Stor- 
ing the 7( values in the recycling shift registers rather than 

in an external buffer simplifies control and reduces 
memory access and, through time sharing of memory, the 
number of memory ports. 

4.3 Feedback array for hybrid data flow decomposition 

The recycling shift registers of Fig. 8 have finite capa- 
city of p. To cope with this finite capacity problem, a hybrid 
data flow decomposition as shown in Fig. 2c is used. The 
data flow is divided irtto parallel strips of pw wide. Blocks in 
each strip are processed as in vertical decomposition, and 
processing moves from strip to strip as in parallel decompo- 
sition. 

During the processing of a block the X values stored 
in the output side of the shift registers (stored when pro- 
cessing the corresponding block in the previous band, i.e. 
the one p block ahead) will be consumed, and the new X 
values can be stored in the input side of the shift registers. 
When the processing shifts from one band to the next, 
however, the flow of the data moving rightward is inter- 
rupted. These data have to be saved until processing of the 
corresponding band in the next strip begins. The buffer B, 
in Fig. 7 is for storing these data. 

5. Sparsity in Matrix 

Our feedback array system has another important 
merit in that we can skip blocks of zeros in the input data 
flow, and thus greatly reduce the processing time. Con- 
sider the linear system 

A s -  B (2) 

where A is a lower blocked band matrix of order n, i.e., 
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i=1,2 . . . . .  ra.l~<j~<i, is a w by w submatrix.  

The data flow is decomposed parallelly into w wide 
strips and w by w blocks as shown in Fig. 9a. The -1 blocks 
are the diagonal submatr ices  of  the - 1  matrix. Without  
loss of generality, we have assumed the  B matr ix to be n 
by w. As shown in Fig. 3, V~ is processed by a T array 
which generates horizontal  data flow (the M's)  to modify 
data strips on  the right, i .e.I.~, i>/2. V 2 is processed by 
one  S array and then one T array which generates horizon-  
tal data flow to fur ther  modify data strips on the  right. 
W h e n  the  leading block of zeros in V+ passes th rough  the  S 
array S+, the X value in each cell of $2 will be zero, and so 
Xo,,, = Xi, in each cell. Namely,  all the following blocks A/2, 
i=2,3 . . . . .  m will pass th rough  $2 unchanged.  This means  
the S array is not required to process V2, and the  first block 
of  zeros can be skipped. Similarly, the  first two blocks of  
zeros in I" 3 result  in X=0 in each cell of S+ and S 3, and so 
we can skip these two blocks of zeros and use only a T 
array to process all o ther  blocks in this strip. For the same 
reason every block of  zeros above the main  diagonal of  
matrix A can be skipped, and the whole input data flow 
except for the  strip containing the  B matrix can be pro- 
cessed with just  one  T array. In processing the  input data 
strips with the  T array, the blocks of  zeros between the  
lower diagonal border  of  the band matr ix and the  main  
diagonal of  the - 1  matrix can also be skipped. This is 
because Mo,,=O when X,,,=0 in the  boundary  cell and 
Xo,, = X~,, when  M~,, = M,,, : 0 in the  internal  cell. These  
blocks of  zeros do not  cont r ibute  to the  modification of  
data strips on the right and, therefore ,  can be skipped. For 
the  same reason, the blocks of  zeros below the  main diago- 
nal of  the - 1  matrix can also be skipped. 

In Fig. 3 the data strip consisting of  B, i.e. 
Y,,,+~ = B~,B~ . . . . .  B,,,  passes through m S arrays 
S,,,+~,S, . . . . . . .  S+ in that  order. As the  data strip passes S,,,,.+, 
B~ is modified and stored in there• B2,B 3 . . . . .  Bp, where p 
is the  n u m b e r  of  non-zero  blocks in a co lumn of A, are 
modified and dr iven out. B~+~ to B,,, pass it without  
modification because the T array on the same row, in pro- 
cessing the  A matrix portion of V~, produces only p non-  
zero blocks of M values to modify this data strip• The only 
non-zero  block in the  - I  matrix portion of Vt produces a 
non-zero  block of  M values to turn the  first zero block 
below B,,, into a non-zero  block X~(1). In a similar way the 
second S array S,, processes the sequence of  data blocks 
enter ing it f rom the output  of S,,,++. 

Because we don ' t  need S arrays to process V] to F,,, 
we can supply the  M data required to modify V,,+~ f rom the  
output  of  T arrays directly• If we use only one T array to 
process P'~ to E,, and do not  s tore the  M data in the  
buffers, we cannot  use more  than one  S array to process 
E,,+~ concurrent ly  because the  T array can only supply the 
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M data to one  S array at a time. Therefore ,  we shall use a 
single S array with feedback to implement  the sequence of  
S arrays S,,++ to $2. Fig. 9.b shows a feedback array system 
for solving linear system with lower blocked band matrix. It 
is to be noted that  this system, consisting of  one  T array 
and one S array, is a degenera ted  version of the one in Fig. 
5 with output  of  the T array feeding the S array directly 
and with the  input data strips bypassing the S array• Fig. 9.c 
shows the  order in which the  data blocks are processed in 
the T array and the S array. B~(k) denotes  the  j,h block of  
B after being processed by the  S array k times• X/ ( j )  is the  
f : '  block of  the solution generated dur ing the  j : / ,  iteration. 
The empty arrows in the figure deno te  pipelining, while the 
solid arrows denote  feedback. 

Since in the array system of  Fig. 9.b the processing of  
the data strip B and the processing of  the rest of  the  data 
strips are concurrent ,  the  total processing t ime is the  t ime 
required to pipeline all the  non-zero  blocks in matrices A 
and - / w h i c h  is 

1 ( 2., k + m ) w = C p + t ) . -  ~p(p-1) 
k ~ m - p - I  
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When matrix A has non-zero blocks above the main 
diagonal, the sparsity cannot be effectively utilized in 
Faddeev's algorithm directly to increase the processing 
speed. A single non-zero block above the main diagonal 
will produce, in the Gaussian elimination, a column of 
non-zero blocks in the - 1  matrix above its main diagonal. 
Therefore, a large number of additional blocks have to be 
processed if the A matrix is not a lower blocked band 
matrix. A better way to solve a problem with such a 
matrix is to solve it in two phases, In the first phase the 
Gaussian elimination is applied to the part of input data 
flow consisting of only A and B resulting in an upper band 
matrix A u and a modified B denoted as B u. A U is then 
transposed horizontally and vertically to obtain a lower 
band matrix AL. Bu is turned upside down to become BL. 
In the second phase, Faddeev's algorithm is applied to the 
whole input data flow consisting of AL, BL and the -1  
matrix with the zero blocks skipped as mentioned above. 

Suppose matrix A has an upper band of width q and a 
lower band of width p. The array system of Fig. 10 can 
process the first phase with maximum speed when the 
parallel decomposition of input data flow is used. V~ to Vm 
are processed in the column of q S arrays (q-2 in the 
figure) and one T array on the left one by one. Con- 
currently Vm.~ is processed in the S array with feedback 
loop on the right. By the same reason as explained previ- 
ously, the blocks of zeros can also be skipped in this phase. 
In processing one data strip, the q non-zero blocks above 
the main diagonal are modified and stored in the q S 
arrays, the block on the main diagonal is modified and 
stored in the T array, and the remaining p-1 non-zero 
blocks in the lower band are modified and used to produce 
the M data to modify Vm.~l. Therefore, the capacity of each 
of the buffers is p-1 blocks. Since the blocks of zeros can 
be skipped and the processing of B is concurrent with the 
processing of A, the processing time for the first phase 
equals the time to enter all the blocks between the upper 
and lower boundaries of the band in A: 

p.-I ~_ 
( ~ m - - i ) w  -~- (~rn - - j )w  -- (p+q)n -- (p2+ q2_p+q) w 
i-0 ,j-I 

V2,V3 . . . .  _Vm÷ t 

output 
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Because p+q is the band width of matrix A, the processing 
time for the first phase is approximately the product of the 
order and the bandwidth of A. Comparing the array sys- 
tem in Fig. 9.b with the one in Fig. 10, we see that the sys- 
tem in Fig. 10 can also process the second phase. Since the 
processing time for phase 2 is approximately the product of 
the order and the lower bandwidth of matrix A, the total 
processing time is approximately (2p + q)n. 

The array system of Fig. 10 is not problem-size 
independent because it requires q S arrays. To make it size 
independent, we can replace the column of q S arrays with 
a S array with feedback as shown in Fig. 11. The process- 
ing time for the first phase is now about q times as much 
because all data strips, except for the first one, have to be 
processed by the single S array q times. The processing 
time for the second phase is not affected because the 
column of q S arrays are not used in the phase. The total 
processing time in this array system is, therefore, approxi- 
mately q(p .~- q)n + (p -t- 1)n. 
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