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ABSTRACT
Employing multiple sensing capabilities in a robotic platform offers
significant advantages in increasing the recognition abilities of robots.
Specifically, for vision-based object detection in a real-world
environment, acquiring information from different viewpoints might
be decisive for correct classifications in the presence of occlusions or
to disambiguate between similar objects. For this reason, an active
vision object detection system is proposed in this paper. It is
implemented on a robotic environment that uses a 3D camera
mounted on the robot head and an RGB camera on its hand. The
system tries to detect and recognize objects being seen from the head
camera, while computing a confidence score on the classification. In
the case of an unreliable classification, another stage of object
recognition is dynamically requested, but this time from the
viewpoint of the hand camera. The objects detected from the two
cameras are matched and their classification decisions are fused
through a novel fusion approach based on the Dempster-Shafer
evidence theory. Experimental results show sizable improvements in
object recognition performance compared to a traditional single-
camera configuration, as well as applicability to handling partial
occlusions.
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1. INTRODUCTION
In the context of robotic applications, active vision can be effectively
employed to address traditional limitations of static/single camera
configurations. We are interested in investigating novel computer
vision techniques that dynamically manipulate cameras (mounted on
autonomous robots) in order to better explore and understand the
environment, as compared to static camera solutions. In general, such
techniques are well suited for (1) detecting and avoiding occlusion by
direct camera manipulation, (2) achieving a dynamic, wide field of

view for tracking, and (3) recognizing objects of interest, human
postures and gestures at finer levels of camera resolution.

Current generations of robotic systems usually have a multitude of
sensory inputs, including RGB and depth cameras, thus offering the
prospect of utilizing more than a single viewpoint for vision-related
tasks. However, it is not practical to continuously process input from
all sensors, at all times. This would increase the computational
burden on the system, to the point where real-time functionality
becomes difficult to achieve. One approach to address this problem is
sensor management by dynamically selecting the most appropriate
information from the cameras. In the realm of computer vision, this
strategy belongs to the family of active vision methods, which we
employed in a robotic system that is able to detect and recognize
objects of interest in a scene.

In [12], an active vision system uses a few fixed cameras and
dynamically decides how it can make best use of information from
those cameras. An active camera location planning and pose
estimation method is presented in [11]. Through dynamically rotating
a pan-controlled camera, a leader-follower robotic arrangement with
active tracking capability of the leader is realized in [18]. A
reinforcement learning approach for selectively focusing on part of
the input image in a vision system is presented in [5]. Improvements
in learning rate and processing speed were observed as a result of the
active selective attention mechanism. Furthermore, the work in [6]
proposes an attention selection technique for event recognition. A
comprehensive survey of active vision literature can be found in [17].

In our work, we designed an active object recognition system and
implemented it on a PR2 robot. The proposed vision system has
access to a 3D Kinect v1 sensor (primary camera) mounted on the
robot’s head and an RGB sensor (secondary camera) mounted on the
left hand of the robot. In the proposed method, objects in the scene
viewed by the main camera are detected and classified first, and a
confidence measure for each object is computed. Based on the level
of confidence, the active vision system decides whether the
classification is reliable, and dynamically requests the input from the
secondary camera for unreliably detected objects. After a stage of
matching, the two decisions obtained from the two classifiers are
combined via a novel transferable belief model, a variant of the
Dempster-Shafer evidence theory. Once the final classifications are
determined, the system infers the 3D position of each object and
sends it along with the object label to other nodes in the robot that are
fed by the vision module.

The contributions of the proposed method are (1) an active object
detection system realized on the PR2 robot with dynamic confidence-
based switching capability between the head camera and the eye-in-
hand camera, (2) a distance-based object matching with efficient use
of available information in the robotic platform, and (3) fusing the
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classification decisions with a novel Dempster-Shafer fusion
technique.

In the remainder of this paper, we describe the proposed active vision
system in Section 2 with more details regarding the matching and
fusion techniques. Section 3 presents the experimental results. Finally,
concluding remarks are provided in Section 4.

2. THE PROPOSED ACTIVE OBJECT
DETETION SYSTEM
The flowchart of the proposed method is depicted in Figure 1, with
the left vertical bar showing the main phases. In the beginning, raw
images are captured, followed by a stage of denoising with a median
filter to eliminate impulsive noise and a Gaussian filter to remove
additive noise. Next, potential objects of interest in the scene are
detected by using a mixture of Gaussians [2] background modeling
and foreground segmentation. We used background-foreground
segmentation as a simple and yet effective method in our case. Works
like [12] and [10] may be mentioned as examples of detecting objects
with static vision sensor setups.

Since the mixture of Gaussians background-foreground segmentation
works at the pixel level, there can be some small noisy areas in the
foreground map; hence, the resultant binary foreground map is then
cleared from noise by morphological opening followed by
morphological closing. The former ensures removal of small noisy
foreground segments and the latter works for eliminating small
background patches. The potential objects of interest are determined
by applying a connected components technique and the subsequent
removal of very small objects. From this point, operations continue
for the main camera image only.

For each of the candidate objects we extract features based on a
histogram of oriented gradients (HOG) [13] and a color histogram.
The color histogram, which is the result of concatenating histograms
of the three RGB color planes, describes the overall color
information for the object, while the HOG is responsible for
capturing its edge-based appearance. These features are fed into a
non-linear multi-class Support Vector Machine (SVM) classifier with
a Radial Basis Function kernel and one-versus-rest strategy. In
coordination with the Dempster-Shafer decision fusion method
mentioned above, the classifier outputs mass values for each trained
object category. It will be explained later that mass values are
counterparts of probabilities in terms of the Dempster-Shafer theory,
and represent the belief of the classifier concerning the similarity to
object categories. From the mass values obtained for each trained
object category a confidence measure is calculated through dividing
the maximum mass value of all object categories by the second
highest mass value. In this way, the confidence metric checks for
large enough peaks in mass values. A low confidence typically
corresponds to two close competitor categories, which makes
selecting either of them unreliable for the object recognition system.
Accordingly, if the confidence is greater than a threshold value, it is
considered reliable and the category with the largest mass value is
selected as the recognition result. Otherwise, the active vision system
will dynamically request additional evidence from the secondary
camera in order to improve the reliability of the recognition process.

In order to keep a reasonable computation load, it is essential to only
classify the objects in the secondary view that correspond to objects
unreliably recognized in the main view. To this end, a matching stage
is performed between the objects found in the main view and the
secondary view. Matching is also indispensable for the fusion of the
classification decisions. The Euclidean distance-based matching
procedure is discussed in the next section, followed by a description

of the decision fusion technique, a novel variation of a transferable
belief model, which in turn is a type of Dempster-Shafer fusion
method. After fusing masses from the two classifiers, a single
probability vector is obtained. At this point, the category with the
highest probability is chosen as the winner class.

Figure 1. Overview of the proposed method.



Our active vision approach is employed in a larger robotic
application for multi-agent collaboration that involves the
manipulation of the recognized objects, for which the location of the
detected objects in 3D space is also required. Therefore, the 3D main
camera’s point cloud data is utilized to infer the 3D position of object
centroids. The object labels in conjunction with their 3D locations
with respect to the main camera are then published to other robotic
nodes over a Robot Operating System (ROS) network.

In the next two subsections, we detail the object matching and
decision fusion approaches in the proposed vision system.

2.1 The Object Matching Module
As stated before, a process of matching objects in the two camera
views is necessary for the later stage of decision fusion. This can be
achieved by using various techniques, such as shape, keypoint, and
appearance matching [16]. Nonetheless, their application in our case
can be limited. Due to the physical placement of the robot cameras
(on the head and on the hand, in our case), there is no guarantee that
the two viewpoints are close to each other and the object appearances
could be very different – in fact, it is actually desirable to have
widely different viewpoints in order to allow classifications that
complement each other. On the other hand, the proposed approach is
implemented on a robot with access to at least one 3D camera, the
transformation between the two camera coordinates, and intrinsic
calibrations of both cameras. Thereby, it is feasible to transform an
object’s position in the pixel coordinates of the 3D main camera to
the pixel coordinates of the secondary camera, making it possible to
perform matching based on distances. This also provides for a fast
matching procedure, because no feature extraction and correlation are
required for it to operate.

Figure 2. illustrates the flowchart of the matching module. For any
object in the main view being queried for a match in the secondary
view, we first compute its centroid. By using the point cloud
information from the 3D camera, we convert the centroid from the
pixel coordinate to the camera coordinate of the main camera. The
3D position of the object with respect to the main camera is
transformed to the camera coordinate of the secondary camera by
using the extrinsic transformation available between the two robot
frames. The intrinsic calibration of the secondary camera is then
utilized for obtaining the pixel coordinates in that camera view. By
transforming just the centroid point, we keep computations low. In
addition, the centroid of a window around an object has a better
chance for belonging to the actual object, thus avoiding the use of a
point in 3D space that does not lie upon the object surface.

After transforming object centroids to the secondary camera view, we
have two groups of components to match: centroids of the main view
objects and bounding boxes of the objects in the secondary view. The
group with a higher number of components is selected as the queried
component group, while the other one will be the searching
component group. The next step is calculating the L2 distance
between any centroid and eight surrounding points of all bounding
boxes of the secondary view objects. Four corners of a bounding box
plus four middle points of its edges constitute the eight points of an
object’s surrounding window. The minimum of the eight distances
between the centroid and the eight points is regarded as the distance
of that centroid from the bounding box for every centroid-bounding
box pair. By considering eight points of a window instead of its
centroid to match, we prevent problems that may arise with objects
that appear elongated in the secondary view. From the secondary
camera viewpoint, the centroid of an elongated object may be too far
from the viewable surface from the main viewpoint, thus the centroid

from the secondary viewpoint will be far from the centroid of the
viewable surface from the main camera.

Figure 2. Flowchart of the object matching module.

Matches are determined by associating a queried component with the
smallest distance to any searching component. However, it is
possible for a queried component to get associated with more than
one searching component. This issue is resolved by keeping only the
association with a smaller distance. Later, we remove matches with
Mahalanobis distances more than a threshold in order to prune
associations with irregular distances compared to all the others.
Additionally, associations with Euclidean distances more than a
specified threshold are cancelled to avoid matches with very large
absolute distances.



2.2 The Dempster-Shafer Decision Fusion
Module
The Dempster-Shafer evidence theory [9] is an information fusion
approach that takes into consideration uncertainty and inaccuracy [1].
It is in contrast to Bayesian fusion, as it does not deal with singleton
probabilities only. As a substitute, there can be alternative units of
belief with non-empty intersections [4]. The works in [3,7,8] are a
few examples of the application of the Dempster-Shafer fusion, used
in airborne object identification, human activity recognition, and
vehicle location verification, respectively.

Assume there exists a set of singleton probabilities Ω, which is called
frame of discernment. Here, singleton means that any two
probabilities in Ω are mutually exclusive. In a classification task, Ω
characterizes the set of probabilities for every object category.
Instead of merely using singleton probabilities, the Dempster-Shafer
fusion allows for the power set of Ω, which is a broader set of
probabilities. All combinations of singleton probabilities from an
empty set to the set universe of Ω are included in the power set of Ω.
In the context of the Dempster-Shafer fusion, a value called mass, in
the range of [0, 1], is attributed to any subset element in the power set.
Any subset of Ω with a mass value greater than zero is termed a focal
element. By the above definition, we may consider masses in
Dempster-Shafer fusion as a replacement for probabilities in
Bayesian fusion. As shown in (1), the sum of all masses must be
equal to 1. Here Ψ represents an input subset of Ω, while m(.) is a
mass value for it.

Ψ�Ω

� Ψ � t �th�

In the proposed method, a probability vector coming from one of the
classifiers stands for the frame of discernment. Therefore, we have
two frames of discernment for our two classifiers. Given n object
categories, there will be n elements in every probability vector, thus
in each frame of discernment. The n elements of the frame of
discernment plus an additional “universal” element constitute the
focal elements of the power set for each classifier output. The
universal element is actually the universe of the probability vector
elements. By defining the power set this way, there is a mass value
for every object class. Additionally, the extra universal mass value
determines how similar the object of interest is to the whole training
set. Because the universal element does not point to any specific
category, its mass is analogous to the probability of an “unknown”
object.

In order to obtain (n + 1) masses in the case of the proposed
Dempster-Shafer fusion, we shall have (n + 1) output classes in each
classifier. Out of them, n classes (related to each object category), are
trained similar to a normal training routine. The last one, the class
“unknown”, is trained with a training set created by merging half of
each object categories training images. Only half of the training set is
used in order to reduce the training time considerably. To
counterbalance the effect of a class with much larger training data
than others, categories are balanced during training by using weights
relative to the training set size in the optimization formulae of the
SVM classifier.

As stated before, a variant of the Dempster-Shafer fusion, the
transferable belief model [15], is adopted in our work. The
transferable belief model accomplishes fusion via an un-normalized
rule of combination. For our dual-classifier fusion case, it is shown in
(2):

� Ψ �
�th�Ψ

�� � � �� h � � Ψ � Ω ��h�

where sets A and B are mass vectors of the main view and the
secondary view, respectively and m Ψ is the mass of category Ψ. α
and β are each a category from the mass vector of the main view and
the secondary view classifiers, respectively. Considering the above
explanations, except for the class “unknown”, a category α in the
mass vector of the main view (A) has intersection with two βs in the
mass vector B. The first one is the “unknown” category, and the
second one is the same category as α in B. The same thing is true in
the opposite way for a β.

To convert the mass values back to the probability domain, we utilize
the pignistic transformation described in [14], as illustrated in (3):

� � �
�tΨ

��Ψh
Ψ� � �� t Ω and � Ψ � Ω �3h

where Ψ is any non-empty element (focal element) of the set of
object categories and Ψ designates the number of object classes in
the subset Ψ . Moreover, P ω is the probability of an object
category ω , excluding the “unknown” class. Equation (3) expresses
that any mass belief is distributed among its comprising class
probabilities. After fusing mass beliefs to form probabilities of each
object class, probabilities are normalized to sum to one.

As mentioned before, besides the actual classes of objects present in
the training, the two classifiers provide a mass value for an
“unknown” category. The “unknown” category can be considered as
a way to indicate to the fusion module the opinion of the classifier
about its uncertainty in detecting an object. Due to the fact that the
sum of all masses in a mass vector is equal to 1, an increase in the
mass of the unknown category causes the other categories in the
same vector to receive lower mass values. From equation (2) we
observe that an increase in the mass of the unknown category of a
classifier not only decreases other masses of that classifier, but also
through multiplying it weighs more toward the masses of the other
classifier, with which it has a non-empty intersection. In the opposite
way, when the unknown mass of a classifier is low it means a more
resolute classifier which has a higher contribution to the final fused
decision.

3. EXPERINMENTAL RESULTS
In this section we present the results obtained in nine real-world
benchmarks. We implemented the proposed active vision system on a
PR2 robot and tested it in different object and camera placements. All
the tests were performed in table-top settings, i.e. objects were placed
on a table in different positions in front of the robot. Figure 3. shows
an example robot gesture in one of the tests. In addition, a sample
visual output of the system is illustrated in Figure 4. We observe that
there are two errors in classification in the main view (bottom left
window): Tea Pot is incorrectly classified as Tea Can and Sugar is
erroneously labelled as Tape Measure. Also, we see those two objects
along with another one having red bounding boxes, which signals
unreliable recognitions. All the three objects with unreliable
classifications in the main view are then selected for reclassification
in the secondary view (bottom right window). After the matching and
fusion stages, the final detection results are all correct and reliable, as
illustrated in the top left window of Figure 4.

The confusion matrices resulted from our tests with eight objects for
the main view detections, as well as the actively fused detections, are
shown in order in Figure 5 and Figure 6. In the confusion matrices,
the Background column indicates target objects not detected at all,
and the Background row counts any undefined entity being falsely



detected as a target object. The intersection of the Background row
and column is also intuitively void.

Figure 3. An example robot gesture in the table-top benchmarks.

Figure 4. A sample visual output of the proposed active vision
system. (Top left) The actively detected objects, (Bottom left)
Main view, (Bottom right) Secondary view. Note: The red
bounding boxes in the main view denote unreliable classifications.

Figure 5. Confusion matrix of the detections made by the main
view only classifier.

Figure 6. Confusion matrix of the detections made by the
complete active vision system.
By using the confusion matrices, four performance metrics for object
detection are calculated, namely, precision, recall, F1 score, and
accuracy. Precision, defined as the number of true positives over the
total number of positives, is a measure of how well the classifier
differentiates true objects of interest from false positives. In contrast,
recall (the ratio of true positives over ground truth positives) assesses
the ability of the classifier in finding objects of interest. The F1 score
balances the two metrics mentioned above by taking their harmonic
mean. Accuracy, on the other hand, evaluates the ability of the
classifier in correctly performing the classification task by means of
dividing the total number of true detections to all the existing objects
in the experiment. Table 1 shows the computed performance
measures. Macro-averaging in Table 1 means the measure is
calculated separately and is averaged over the results. In contrary,
micro-averaging is the process of computing the measures for all the
object categories collectively. We did not include the micro-
averaging results in Table 1, because micro-averaging precision and
recall are equal to accuracy in the case of multi-class classifiers.

Table 1 shows large improvements in all the four measures compared
to the traditional single camera setup. The proposed active vision
system achieved 19.5%, 19.8%, 14.1%, and 17.1% increase in
accuracy, recall, precision, and F1 score, respectively. This
enhancement in performance brings up the accuracy of the
experiments to 97.2%. Other metrics are also over 97%.

Table 1. Performance measures of the proposed vision system.

Performance Measure Main Camera Actively Fused View
Macro-Averaging Precision 0.834 0.975

Macro-Averaging Recall 0.777 0.975

Accuracy 0.777 0.972

F1 Score 0.804 0.975

We also performed another set of experiments in order to assess the
applicability of the proposed system to dealing with object detection
uncertainties, this time by intentionally adding partial occlusions.
Figure 7. shows a sample situation with three objects being partially
occluded by obstacles not defined as objects in our training set. Due
to the significant occlusions in the main camera viewpoint, all three
object detections are deemed unreliable. By dynamically employing
the secondary camera, better views of the objects in the scene are



obtained, leading to correct fused classifications for all objects in the
scene. Table 2 illustrates the computed metrics for this test
benchmark, showing the advantage of the proposed method in
dealing with partial occlusions from the viewpoint of the main
camera. Precision, recall, F1 score, and accuracy are enhanced by
37.8%, 38.3%, 38.1%, and 36.1%, respectively. Since the secondary
camera had a better view of the objects in the test, its recognitions
were both more accurate and more confident, hence the fusion results
frequently leaned toward the correct secondary camera recognitions.

Figure 7. A sample situation with added partial occlusions. (Top
left) The actively detected objects, (Bottom left) Main view,
(Bottom right) Secondary view. Note: The red bounding boxes in
the main view denote unreliable classifications.

Table 2. Performance measures of the proposed vision system in
benchmarks with partial occlusions.

Performance Measure Main Camera Actively Fused View
Macro-Averaging Precision 0.555 0.933

Macro-Averaging Recall 0.533 0.916

Accuracy 0.555 0. 916

F1 Score 0.543 0.924

4. CONCLUSION
In this paper we presented an active object detection system for
robotic environments, implemented on a PR2 robot. The vision
system uses an RGB-D (RGB-depth) camera on the robot head and
an RGB camera mounted on the robot’s hand. The contributions of
the presented work are the design of an active visual sensor
management approach in a robotic platform with dynamic confidence
assessment, a fast distance-based object matching algorithm that
utilizes the internal information available in the robotic system, and a
novel variation of the Dempster-Shafer decision fusion to weight
classification decisions.

Real-world experimental results indicate the high performance of the
presented approach with average accuracy of 97.2% and F1 score of
97.5%, while providing considerable improvements over the static
camera case.

We plan to extend our active vision approach to the domain of scene
understanding with redundant or missing visual data, by providing
new capabilities for automated, vision-based scene understanding,
which allow both the fusion of redundant information and the

selection of the most appropriate input from multiple sensors. This
includes the dynamic selection of the best source of sensor data for a
specific recognition task, reasoning with missing data due to
partial/temporary occlusions, and the seamless integration of data
from multiple sensors for tracking multiple targets in a potentially
wide field of view.
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