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In this paper  I try to look carefully at a few examples 
and to find suggestions toward a theory of computa-  
tion that  would be rich enough to represent distinct 
processes in distinct ways. As nmch as anything, it is 
a question of finding a terminology tha t  can describe 
computat ionM processes and that  has content by be- 
ing located within a formal  mathemat ica l  structure. In 
particular,  I look at processes in comput ing machines 
front the point of view tha t  they must  be interpreted as 
representing real-world processes. 

1. I n t r o d u c t i o n .  

Matthew Hennessy concludes his book [1] on the Alge- 
braic Theory of Processes with the following: 

As this avenue of research is developed to in- 
clude languages with more sophisticated fea- 
tures we will require a more sophisticated 
mathemat ica l  framework,  and it is unlikely 
to be found in the existing li terature . . . .  As a 
second example,  we could take the language 
in Hoare 1978 or the full version of C C S  in 
Milner 1980. Here values are passed along 
the channels so that  the actions are no longer 
uninterpreted. Rather,  the por t  names now 
act as variable binders in the same way as A- 
abstract ion in the A-calculus . . . .  

Computa t ionM and natural  processes are very confus- 
ing: processes that  appear  similar, and even require 
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abstract ly similar mathemat ics ,  are "really" different. 
Worse, most useful processes are convoluted combina- 
tions of such easily mistakable processes. Thus, obscu- 
rities, such as the one Hennessy complains of, arise. 

I shall t ry to contr ibute to clarification by considering 
a number  of examples and analyzing them with some 
care. My analyses may seem almost metaphysical  - -  in 
a way, they are. I shall suggest the rudiments  of a com- 
prehensive mathemat ica l  theory but shall not a t t empt  
the fall-blown t rea tment  tha t  Hennessy calls for. 

My point of view in this paper  can be captured by the 
slogan: T h e  f i r s t ,  a l t h o u g h  n o t  t h e  l a s t ,  r e q u i s i t e  
o f  a m a t h e m a t i c a l  t h e o r y  o f  c o m p u t a t i o n  is t h e  
a b i l i t y  t o  r e p r e s e n t  d i s t i n c t  b e h a v i o r  in d i s t i n c t  
w a y s ,  a n d  t h e r e f o r e  t h e  f i r s t  j o b  o f  t h e  t h e o r i s t  is 
t o  b u i l d  a f o r m a l  l a n g u a g e  r i ch  e n o u g h  t o  d o  so .  
Our immediate  need is not pars imony but catholicity: 
Can we build a logic that  can integrate and explain the 
valid insights of the various theories? 

"Reductivists need not apply." 

2. S o m e  M o t i v a t i o n .  

2 .1 .  T h r e e  E x a m p l e s .  

E x a m p l e  A A biochemist [2] wishes to s tudy the 
metabol ism of tile amino acid leucine in tile body. Tile 
plan is to infuse labeled leucine (molecules one of whose 
carbon a toms is a stable isotope that  call be detected 
by mass spectrometry)  into a subject at a constant rate, 
and then collect expired air at intervals to measure the 
"enrichment," the proport ion of c02 molecules that  are 
labeled. A simplified picture of the possible reactions 
is 

p r o t e i n  ~ l e u c i n e  ~ C O 2 .  (2.1) 

The biochemist would like to know the rate of incorpo- 
rat ion of leucine into protein compared to the rate of 
catabol ism of leucine into CO2. [] 

E x a m p l e  B An electrical engineering laboratory  has 
a system of independent software modules tha t  it uses 
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to keep track of results. The module ohm takes input in 
the form, 

/er/ e, r ,  

and uses Ohm ' s  Law i = e/r to compute  the output ,  

I~1 i .  

A second module watt computes 

/w/ w 

according to w = e × i. Thus, for an experiment  in 
which a succession of circuits are each measured once, 
one might use a shell script that follows ohm by watt. 

Another way to think of this example is to imagine 
it, not implemented as software in a general-purpose 
computer, but hardwired in a pair of special devices. 
Ohm has a bank of two registers with LED readouts cor- 
responding to/er/, and a single register corresponding 
to/i/. The operator sets/er/, presses a button, and i 
appears. There is a second device intplementing watt, 
and its inputs are direct connections from ohm. [] 

E x a m p l e  C The protocol of a simple message- 
forwarding device is to accept a message, wait until the 
line is clear, and then forward it. Any other messages 
arriving while it is waiting are rejected. One models 
the history of the message as 

not f o r w a r d e d  ~ f o r w a r d e d ,  (2.2) 

and the history of the device as 

17 
r e a d y  ~_ ~ busy 

S (2.3) 

It changes state in response to the rest of the system: 
it receives (r) ,  or is enabled to send (s), a message. [] 

2.2. Instances. 

The pictures, including the da ta  structures, shown in 
these examples nmst  be distinguished from the in- 
stances tha t  can populate them. 

There are two processes involved in example A. (1) 
A labeled carbon a tom travels in t ime among the states 
in the set, {protein, leucine, cO2}. It follows the parti- 
cle process, which closely reflects picture 2.1 and whose 
probabili t ies are determined by lmmbers assigned to the 
arrows. (2) A measurement  made by the biochemist has 
a state that  is a number,  the total  number  of particles 
that  at one t ime are in a given state of the particle 
process. This measurement  travels in t ime within a set 
of possible numbers.  It  follows the population process, 
whose probabilit ies are determined (i) by the particle 
process, (ii) by the process according to which particles 
arrive, and (iii) by the assumption tha t  the particles 
have independent histories. 

The crux of example A, as a stochastic process prob- 
lem, is to show how measurements  of the populat ion 
process (which the biochemist  is able to observe) allow 
one to infer properties of the particle process (which 
the biochemist wants to know). However, we shall not 
be concerned with the probabilistic aspects. 

2.3. Programs and Devices: Processes and State 
Machines. 

This background makes clearer tile way in which exam- 
pies A and B differ from C. The instances of B, like 
those of A, have independent histories: as each circuit 
is measured, its • and r are entered, and its i and then 
its w are computed  without  interference from those of 
any other circuit. However, in example  C the histories 
of the messages are highly dependent.  

Pictures 2.1 and 2.3 seem similar, but  they are not: 
2.1, like 2.2, is a process, whereas 2.3 is a state machine. 
Their  pictorial conventions are different: in 2.1 the 
nodes are inputs and the arrows are programs (chemi- 
cal reactions), whereas in 2.3 the nodes are states and 
the arrows are inputs. 

An instance of a s tate  machine is a device, an object: 
a computer ,  perhaps,  or even a person. A process is 
implemented by a computer  program,  and its instances 
are runs or executions of the program on a device. 

These two representat ions - -  process and s ta te  ma- 
chine - -  are complementary.  A computa t ion  can be 
viewed as a process, in which case we prescind from the 
question of how its runs interact with those of other pro- 
cesses, or with other runs of the same process. Equally 
well, it can be viewed as a behavior of a state machine, 
in which case our model  of the machine should show 
us how several runs can interact. The interest in the 
analysis of example  B is in following how a single input 
/ e r / p r o p a g a t e s  from device to device across the sys- 
tent; thus it is more useful to depict it as a process. In 
example C, the interest is in seeing how a single device 
responds to a succession of inputs.  

2.4. Levels of  G r a n u l a r i t y .  

Think of picture 2.3 as showing the second of a pair 
of devices, .M i and .M 2, the first of which sends the 
message, They collectively form the system .M : 

(send, busy) (~,s) (send, ready) 

;(p,r) 
(g,i) (clear, busy) 

l(i,s) 
(c lear ,  r e a d y }  

(2.4) 

When all messages have been cleared front .M I and 
.M 2, then tile system .M is in the s tate  (c lear ,  r e a d y ) .  
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Generat ion of a new message by .M 1 moves .M to 
(send, ready), and then to (clear, busy), once the 
message is picked up by ~ 2. Then there are two pos- 
sibilities. If the next event is that .M 2 forwards the 
message, then .M moves to back to (clear, ready}. 
If A{ i generates another message first, then .M moves 
to (send, busy), from which it moves back to (send, 
ready) after the first message is forwarded. 

Several features of this example need clarification. 
[ raise them here and hope that the mathematics of 
section 3 partly provides some explanation. .M I and 
.M ~ are components of .M. Very roughly, one maps 
picture 2.4 to picture 2.3 by sending (send, ready) and 
(clear, ready) to ready, and sending (clear, busy) 
and (send, busy) to busy. On the other hand, the 
process shown in picture 2.2 is also related to certain 
fragments of the state machine in picture 2.4: to 

or to 

( send ,  r e a d y )  

(c lear ,  busy}  

(clear, ready) (2.s) 

or to 

( send ,  busy}  ~ ( send ,  r e a d y }  

(c lear ,  busy}  (2.6) 

(send, busy) ~ (send, ready) 
(2.7) 

Simplifying a process must imply a corresponding sim- 
plification in the machinery it runs on. 

2.5.  T y p e s  a n d  S t a t e s .  

In example B, tile module ohm computes a certain func- 
tion from the set of states of e and r to the set of states 
of i: 

ohm: E × S, ohm: (e , , )  i = e / , .  (2.8) 

Note that  ohm is a mathemat ica l  function, while ohm 
is a computer  program,  hard or soft. Also e, r, and 
i are (variable, or unspecified) numbers,  ranging over 
the sets E, R, and I,  while e, r ,  and i denote certain 
storage locations in a computer .  

One usually identifies the sets E,  R, and I with R+ ,  
the set of nonnegative real numbers,  with which they 
are abstract ly isomorphic. This is especially tempt ing 
in view of our moral  desire to emphasize to the pro- 
g rammer  the need to check his values. However, it is 

perhaps bet ter  to lecture the p rogrammer  at some other 
time, and to remember  tha t  the object of using a pro- 
cess to analyze example B is to be able to follow the se- 
quence of p rogram modules tha t  are activated, and the 
sequence of outputs  tha t  they compute  after the input 
of v a l u e s / e r / t o  the system. This is impossible unless 
we regard I as the set of values of a specific output  of 
ohm and of a specific input to wa t t ,  a , d  distinguish it 
from E, from R, and from R + .  

I therefore, in 'defiance of tradition, define a type as 
the set of values of a specific input to, or output  from, 
a computer  program. The values themselves are states. 
The usual types, those of the p rogramming  languages, 
ahnost  never meet this definition: i n t e g e r  is the in- 
put  to some general-purpose device tha t  implements a 
computer  program, not to the program itself. (A the- 
ory that  hopes eventually to describe parallel and dis- 
t r ibuted processing will have to distinguish programs 
from the devices they run on.) 

2.6. Realization.  

E x a m p l e  D A real- t ime monitor ing device measures 
atmospheric pressure and collects da ta  once per sec- 
ond, using a program module, acq, to acquire each da ta  
point. The output  of acq  is in the form, 

/raw/ seq#, press. (2.9) 

This is too dense a rate,  so there is a second module, 
avg, tha t  is enabled to run after n da ta  points have 
been collected, and that  averages them: 

/averaged/  seq#, pressbar. (2.10) 

The averaging interval, 

/ i n t /  n, (2.11) 

can be set by the user. 
There is a shell script that  allows an execution of 

avg each t ime tha t  aeq has collected n points. Each 
execution of a module is an instance and has its own 
data,  and these instances would be collected in a file. 

r a w - -  ] 
seq# press l averaged 1 
acql 181. . ,~q#- " " pressb..r~ 
a q2 139. [avgl I 135.0 ! 
a q3 135. l. avg2 I 134.5 | 
acq4 134. 
acq5 138. 

These da ta  items might be created ill tile order: acq l ,  
acq2, avg l ,  acq3, acq4, avg2, acqS. 

Note that  press and pressbar describe the outside 
world, whereas n describes tile operat ion of tile de- 
vice. (More precisely, n contains control information 
that  prescribes tile operat ion of tile device; it only de- 
scribes it after a successful run.} 

The value of p r e s s b a r  does not have all independent 
meaning: it needs the value of n to complete it. [] 
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In the computer ,  the da ta  record / r a w /  can have 
many  instances, and unlike its counterpart  in the out- 
side world, several can exist in the computer  simulta- 
neously. Think of the computer  as a complex, general- 
purpose, device made up of simpler devices, including 
logical units, floating-point units, and storage locations. 
As a device, the computer  follows a certain state ma- 
chine. TILe shell runs avg repeatedly to access different 
instances o f / r a w / i n  different locations. 

We can use the computer  to realize" such a shell script 
by associating its storage locations with instances of 
/raw/and/averaged/and associating appropriate se- 
quences of luachine states with acq and avg. Within an 
execution, avg is realized repeatedly, and differently: it 
runs on a different, but overlapping, set of locations. 

2.7.  I n t e r p r e t a t i o n .  

A theory of computa t ion  must  provide for the fact that  
most  computer  processes deal with data that  are to be 
interpreted as meaning something in the outside world. 

In example D, da ta  records are generated in the com- 
puter  by instances of the shell script. Meanwhile, states 
- -  nalnely, a tmospheric  pressures - -  are generated in 
the outside world by instances of a meteorologic pro- 
cess, whose other details we ignore. The computer  pro- 
cess is not homologous to the meteorologic one, but still 
the states of the storage l o c a t i o n s / l e u c i n e / a r e  to be 
interpreted as describing the meteorologic states. 

One has to luap state to s tate  and instance to in- 
stance. The structure o f / r a w / i s  shown in picture 2.9. 
Different pieces contr ibute towards the interpretat ion in 
different ways. The name of the p r e s s  field tells tha t  
the values found in any instance are of type PRESS.  In 
fact, one might  regard p r e s s  as a function that  maps 
the set of s tates of t h e / r a w / d a t a  records into the set 
PRESS .  The convention of using the same name in a 
different typeface is meant  to implement  par t  of tile in- 
terpretat ion by associating P R E S S  with a correspond- 
ing procedure for measuring the pressure, and thus with 
a state of the lneteorologic process. The seq# field im- 
plements the rest of the interpretat ion:  it maps  an in- 
stance of / r a w /  to an instance in which the pressure 
is lneasured. Altogether,  these conventions make the 
da ta  record assert that  the value of p r e s s  denotes the 
value measured on tha t  occasion. 

2.8.  S i m p l i f i c a t i o n .  

E x a m p l e  E A nurse at an intensive care unit worksta- 
tion [2] [3] requests a pair of plots for each of two pa- 
tients. They are provided by a system of independent 
software modules whose operat ion is highly nested. The 
subprocess p l o t p t s ,  shared by several processes, plots 
a da ta  pair xva l ,  y v a l .  It first computes  the screen co- 
ordinates x p l o t ,  y p l o t  actually to be plotted. These 
are given in terms of the previously established milfi- 
l n u l n  a u d  nlaximuln x and y values xmin, xmax, ymin, 

ymax and the physical resolution xpnts, ypnts of the 
screen by the formulae, 

x v a l -  xmin 
xplot = z m a x -  xmin × xpts, 

y v a l -  ymin 
yplot = × ypts. 

y m a x -  ymin 

Another module can then plot the point (xplot, yplot). 
The structure of the da ta  is 

/minmax/ patient#, plot#, xrain, xmax, 
ymin, ymax, 

/screen/ patient#, plot#, xpnts, 
ypn t s, 

/vals/ p a t i e n t # ,  p l o t # ,  x v a l ,  y v a l ,  
/ p l o t /  p a t i e n t # ,  p l o t # ,  x p l o t ,  y p l o t .  

[] 

Abstractly, plotpts is a function -- a black box -- 
for computing /plot/ front /screen/, /rainmax/ and 
/vals/. Note that these three inputs are bound at 
very different time scales within the total computation: 
/screen/is a constant for that workstation,/minmax/ 
is a constant for each pair  of plots, a n d / v a l s / c h a n g e s  
with each call to p l o t p t s .  

Some less ambit ious group of programmers  might 
have restricted their software to run only on screens 
of a fixed resolution, say 1024 x 1024. They would have 
writ ten a module p l o t p t s l o 2 4  with inputs /minraax/ 
a n d / v a l s / a n d  o u t p u t / p l o t / ;  everything is the same, 
except tha t  / s c x e e n / i s  a fixed constant.  In fact, for 
each such group of p rogrammers  and each fixed value 

s e S C R E E N  = X P N T S  × YPNTS ,  

we have a different program p l o t p t s  s. This suggests 
another  way of looking at the original p l o t p t s .  We 
might  look at a state s of / s c r e e n / ,  not as denot- 
ing a pair of numbers,  but as denoting the program 
p l o t p t s s ,  or the process corresponding to it. 

A user who confines himself to a 1024 × 1024 screen 
will notice no difference between the original set of 
modules and the same set with p l o t p t s  replaced by 
p l o t p t s  s. We need a formal  notion to capture the 
way in which a complicated process with many  states 
compares to a simplification: a program that ,  within a 
restricted domain,  performs the "same" computat ions.  

2.9.  L a n g u a g e .  

We are now in a position to clarify the different senses 
ill which da ta  records are "generated." 

History. Records like those in example D are gener- 
ated in the computer  in a historical sequence involving 
the execution of computer  progralns. 

Syntax. The syntax of the a v e r a g e d  records in exalu- 
pie D, is defined by the expression 2.10, and any record 
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must meet this specification in order to be correct. If 
this example were not so fragmentary, we might see 
rule 2.10 as part  of a generative grammar of which the 
records are productions. There is no relation between 
the sense in which this grammar generates the records 
and the sense in which avg generates them, beyond the 
requirement that avg generate correct instances. 

Selnantics. The interpretation described in sec- 
tion 2.7 gives a meaning to the records/raw/. 

2.10. Synchronizat ion.  

E x a m p l e  FF There is a small computer  that  represents 
only natural  numbers and has no hardware for addi- 
tion, but it does have sophisticated control structures 
and can be programmed to add using the recursive def- 
inition, 

n + 0 = n ,  n + ( m + l ) = ( n + m ) + l .  (2.12) 

The shell script p l u s  has modules implementing 

succ: R - ,  R, s u c c : r  ~ (r + 1); (2.13) 

prod: M ~ M, p ~ d :  m ~ (m - 1). (2.14) 

It can also copy a number from one location to another. 
Its da ta  structures are 

/ a r g l /  n, 
/ ar g2 /  m, 
/result/ r. 

Plus says to run pred until m is in state 0, do copy 
once, and then run succ until reaching rl. 

In the following illustration, the input data are n = 3 
and m = 2, and the result is r = 5. 

seq#- n seq# T 
nl 3 ml 
n2 3 "m2 
n3 3 m3 

2 r l  5 
1 r2 4 
0 r3  3 

It runs as follows: load nl and ml; and then pred, m2; 
pred, m3; copy, r3; succ,  r2; succ,  rl; stop. [] 

In the introduction to his book [1], Hennessy presents 
a set of progressively more subtle and puzzling exam- 
pies. In comparing two of them he says [p. 12], "How- 
ever, to justify distinguishing them one needs a coher- 
ent view or understanding of nondeterminism." After 
considering other such pairs, he observes, 

Of course any particular model [of computa- 
tional processes[ decides between identifying 
and distinguishing such pairs. However, the 
justification lies hidden in the definition of the 
model or in the mind of the designer of the 
model. We argue that  this justification which 
underlies the model is its most important  fea- 
ture and should always be elucidated. 

The plea that one job of the model should be to make 
the features of tile process explicit is very much in the 
spirit of the present paper. However, I would oppose 
the idea that there is a global theory of nondeterminism 
that justifies such choices. 

Hennessy's examples, and mine as well, are designed 
to show that the interaction of subprocesses within a 
process may by very idiosyncratic. In example D, the 
shell alternates n runs of acq with a single run of avg, 
where n is a parameter set by the user. In example F, 
the shell runs pred a variable number of times, but here 
the condition for termination is that a location m reach 
a specified value, zero. (The shell has no way of de- 
termining, from general principles, that the number of 
runs equals the value of ml.) Then, after running copy, 
it runs succ a variable number of times, terminating 
when it has bound a value, any value, in the location 
1:1. I think that this suggests that subprocesses can 
be combined by a very large nmnber of possible com- 
binators. The point of modeling is to illustrate these 
explicitly, and not to implement an abstract theory. 

The question whether two processes are distinguish- 
able is local, not global: tell me what windows you are 
planning to view them through (in the near future), 
and I shall tell you whether you can distinguish them 
by looking through those windows. A test of the good- 
ness of a model is whether it has the means to make 
this promise good. 

3 .  S o m e  M a t h e m a t i c s .  

3.1. Connect ions  to the Literature.  

The theory presented in the following sections is devel- 
oped from that  in [2] and [4]. It is, in different ways, 
modeled on category theory (especially topos theory}, 
universal algebra, and symbolic logic. It parallels, in 
different places, the s tandard theories of computation 
found in [11, [51 and 161, and might be viewed as an at- 
tempt to integrate their insights into a single structure. 
The books [7] [81 are constantly in the background. 

The standard reference for category theory is [9]. The 
books [10] and [11] are helpful introductions oriented 
towards computer scientists, while [12] is oriented to- 
wards logicians. Similarly, [13] is a helpful introduction 
to order theory and lattices, with examples from com- 
puter science. It would prepare one for 114]. 

3.2. C a t e g o r i e s .  

Picture 2.4 is an example of what category theorists call 
a graph. Such a graph G call be made into a category 
C by adding in all identity arrow from each node, or 
object, to itself; and for each consecutive pair f,  g of 
arrows all arrow go f ,  their composition. In this context, 
composition would mean consecutive operation of f and 
then g, and identity would be a null process. 
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Thus a category C consists of a set C o  of objects and 
a set C A of arrows. (For legibility, one suppresses tile 
A and the O, where possible.) It is required that  the 
identities behave like identities and that  the operation 
o be associative. It is not required that  each g o f be 
distinct from the ones previously included, but if this 
is always so then C is F G ,  the free category on G. 

A different example of a category is Se t ,  whose ob- 
jects are small sets and whose arrows are functions be- 
tween the sets. 

3.3. A c t i o n s .  

P r o c e s s e s .  For example B, we could start  with the 
graph G:  

/ e r / o h n ~ / i / .  (3.1) 

To get a category C based on (g, we would add in the 
identity arrows 1 / e r / a n d  1/£/.  Then, since, in this ex- 
ample, tile only possib|e compositions are ohmo 1 / e r / =  
ohm and 1 / e r / o  ohm = ohm, we would be done. 

This would give a good idea of the possible sequences 
of program activation, but it fails to capture the mean- 
ing given by picture 2.8. The point is that  ohm not only 
executes 9 but  as it executes it computes an output  de- 
pendent on the value of the input. Picture 2.8 is really 
a fragment of Se t :  

Set (3.2) 

The way to pick out the particular fragment of S e t  
that  we need is to define a functor 

C : C ~ S e t .  

A functor is a mapping between categories; it has to 
send objects to obje.cts, and arrows to arrows, in such 
a way that  identities and composition are preserved. It 
has an object function Co : Co --~ Seto, and an arrow 
function CA : CA ~ SetA. Let C ( / e r / )  = ER, let 
C ( / i / )  = I,  and let C(ohm) = ohm. 

Such a functor expresses the action of C on Se t .  

S t a t e  M a c h i n e s .  State machines can also be ex- 
pressed as such actions. 

For example C, let (g2 be the picture 2.3 of device 
.M 2. Form C2 by adding in two identity arrows, and 
letting r o s = l b u s y  and s o r = l r e a d y .  The action 
of C2 is given by a functor C2 : C2 ~ Set ,  defined as 
follows. Let (~2 be tile set, 

Q2 = { r eady ,  busy} .  

Q2 is the image of both states: C2( ready)  = 
C2(busy)  = Q2. Next, C2(r) and C2(s) are functions 
Q2 --~ Q2: 

q E Q 2  
ready 

[ (C2(r))(q) (C2(s))(q) 
busy ready 
busy ready b u s y  

3 . 4 .  S i m p l i f i c a t i o n .  

Let 

and 

C : C ~ S e t  

D : D ~ Set 

be two such actions. We capture the ideas of section 2.8 
by saying that  D is a simplification of C, and writing 
D < C, if we have the following. There is a functor F : 
D -~ C. {It is not to be confused with the free functor 
F of section 3.2.} There is also a natural transformation 
a : D " ~ CF. This a is a collection of functions Old, 
o n e  for each object d of D, that  go from the set D(d)  
to the set C F ( d ) .  These functions nmst consistently 
transform D into CF .  Tha t  is, if f : d i  ~ d2 is all 
arrow of I)~ we must always have 

ad2 o D(f) = F C ( f )  o a d .  

T h u s  a simplification looks like the diagram, 

C 
C - - - -  * S e t  

F 

D ~ Set 
D 

T h e  notat ion < is justified by the fact that  simplifica- 
tion is reflexive and transitive. 

For example, let C be a category based on picture 2.4, 
and let C express its action on Se t .  Let C2 and 
C2 be as in section 3.3. Then (7 2 < C. The func- 
tor F2 : C2 ~ C has F~{ready)  = (clear ,  r e a d y ) ;  
F2(busy)  = (clear ,  b u sy ) ;  F2(r) = (p, r)  o (g, i ) ;  and 
F2(s) = ( i ,  s). The natural  transformation oL is then 
the corresponding function Q2 --~ Q. 

We also, in this example, have C < Cu. Let 
r ( . , r e a d y )  = ( r ead y ) ;  F ( . , b u s y )  = (busy) ;  
F ( . , r )  = (r); r ( . , s )  = (s); and F( . ,±)  = (£). What  
makes ~ ~ be a component of .M is the fact that 
F o F2 : C2 ~ C2 is the identity functor. 

3.5. Language and Interpretation. 

In section 2.9, I pointed out that data records are gem 
erated, in different ways, historically and syntactically. 
Tile semantic meaning is also generative, ill sense that  
is hidden inside the requirement that  the interpreta- 
tion map the set of states of the data  records to a set 
of states of the external process that  they denote. 
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In section 2.8, we saw that  it is natural  to think of 
processes whose states are themselves processes. Con- 
versely, states, and even types, can be thought of as 
very restricted processes: they are simplifications, in 
the sense of section 3.4, of the process in which they 
occur. Thus, we tend to blur the distinctions between 
processes, types, and states. 

An object outside the computer  might be capable of 
supporting a set a of processes. Let .~ a be the system 
consisting of the processes in a and of all their simpli- 
fications. There will usually be a mutual  dependency 
among the members of ~ a: for any two elements, one 
might be a simplification of the other; or they might 
both be simplifications of some third process; or some 
third process might be a simplification of both. Thus 

a is structured. Now look at a set A of da ta  records 
in the computer  whose members are mapped by an in- 
terpretat ion into members of ~ a. The members of A 
acquire thereby a semantic interdependency [3]. 

As in section 2.7, let a be a set of processes in the 
outside world, and let S be a set of objects. Let A be 
a set of processes in the computer.  We want to view a 
da ta  record of A as a declarative sentence constructed 
from the vocabulary a and S. For example, an instance 
o f / r a w / m i g h t  be 

(6144, 29.87). (3.3) 

It means that  on the ~ ] t h  measurement,  the 

geographic [iocation] measured had art atmospheric 

[prdssuie] of [-29187]. As discussed ia sections 2.6 
and 2.7, these four pieces - -  6144, the location, pres- 
sure, and 29.87 - -  are instrumental  in giving record 3.3 
its interpretation. 

_Secfign+2._6: In a realization, the state of a data  
record corresponds to a state of a type of a process 
in A. Section 2.7: We require a set of functions, each 
of which maps a type of A to an element of J~ a. (This 
takes care of 29.87.)  By composing with the realiza- 
tion, we also have, for each kind of data  record a func- 
tion mapping each field of the record to an element of 

a. (This takes care of p r e sau re . }  Then, we require 
a function mapping each da ta  record to an element of 
S. (This takes care of l o c a t i o n ,  which is not explic- 
itly indicated in the program, since only one location 
is in question.) Finally we require a function mapping 
each data  record to an instance in which the process in 

a that  corresponds to that  record type runs on that  
individual in S. (This maps 6144  to a measurement.)  
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