
A S P E C T S OF C O M P U T A T I O N

William P. Coleman
MIEMSS, UMAB; B a l t i m o r e , MD 2 1 2 0 1 , and

D e p a r t m e n t o f M a t h e m a t i c s , UMBC; B a l t i m o r e , MD 2 1 2 2 8

c o l e m a n @ u m b c 2 . u m b c . e d u

A b s t r a c t

In this paper I try to look carefully at a few examples
and to find suggestions toward a theory of computa-
tion that would be rich enough to represent distinct
processes in distinct ways. As nmch as anything, it is
a question of finding a terminology tha t can describe
computat ionM processes and that has content by be-
ing located within a formal mathemat ica l structure. In
particular, I look at processes in comput ing machines
front the point of view tha t they must be interpreted as
representing real-world processes.

1. I n t r o d u c t i o n .

Matthew Hennessy concludes his book [1] on the Alge-
braic Theory of Processes with the following:

As this avenue of research is developed to in-
clude languages with more sophisticated fea-
tures we will require a more sophisticated
mathemat ica l framework, and it is unlikely
to be found in the existing li terature As a
second example, we could take the language
in Hoare 1978 or the full version of C C S in
Milner 1980. Here values are passed along
the channels so that the actions are no longer
uninterpreted. Rather, the por t names now
act as variable binders in the same way as A-
abstract ion in the A-calculus

Computa t ionM and natural processes are very confus-
ing: processes that appear similar, and even require

Thi s resea rch was pa r t i a l ly s u p p o r t e d by a g r a n t f rom the
Life Sciences Divis ion of t he U n i t e d S ta t e s Na t iona l A e r o n a u t i c s
and Space A d m i n i s t r a t i o n (NASA).

Permission to copy without fee all or part of this matertial is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

© 1991 ACM 089791-382-5/91/0003/0071 $1.50

abstract ly similar mathemat ics , are "really" different.
Worse, most useful processes are convoluted combina-
tions of such easily mistakable processes. Thus, obscu-
rities, such as the one Hennessy complains of, arise.

I shall t ry to contr ibute to clarification by considering
a number of examples and analyzing them with some
care. My analyses may seem almost metaphysical - - in
a way, they are. I shall suggest the rudiments of a com-
prehensive mathemat ica l theory but shall not a t t empt
the fall-blown t rea tment tha t Hennessy calls for.

My point of view in this paper can be captured by the
slogan: T h e f i r s t , a l t h o u g h n o t t h e l a s t , r e q u i s i t e
o f a m a t h e m a t i c a l t h e o r y o f c o m p u t a t i o n is t h e
a b i l i t y t o r e p r e s e n t d i s t i n c t b e h a v i o r in d i s t i n c t
w a y s , a n d t h e r e f o r e t h e f i r s t j o b o f t h e t h e o r i s t is
t o b u i l d a f o r m a l l a n g u a g e r i ch e n o u g h t o d o so .
Our immediate need is not pars imony but catholicity:
Can we build a logic that can integrate and explain the
valid insights of the various theories?

"Reductivists need not apply."

2. S o m e M o t i v a t i o n .

2 .1 . T h r e e E x a m p l e s .

E x a m p l e A A biochemist [2] wishes to s tudy the
metabol ism of tile amino acid leucine in tile body. Tile
plan is to infuse labeled leucine (molecules one of whose
carbon a toms is a stable isotope that call be detected
by mass spectrometry) into a subject at a constant rate,
and then collect expired air at intervals to measure the
"enrichment," the proport ion of c02 molecules that are
labeled. A simplified picture of the possible reactions
is

p r o t e i n ~ l e u c i n e ~ C O 2 . (2.1)

The biochemist would like to know the rate of incorpo-
rat ion of leucine into protein compared to the rate of
catabol ism of leucine into CO2. []

E x a m p l e B An electrical engineering laboratory has
a system of independent software modules tha t it uses

71

http://crossmark.crossref.org/dialog/?doi=10.1145%2F327164.327210&domain=pdf&date_stamp=1991-04-01

to keep track of results. The module ohm takes input in
the form,

/er/ e, r ,

and uses Ohm ' s Law i = e/r to compute the output ,

I~1 i .

A second module watt computes

/w/ w

according to w = e × i. Thus, for an experiment in
which a succession of circuits are each measured once,
one might use a shell script that follows ohm by watt.

Another way to think of this example is to imagine
it, not implemented as software in a general-purpose
computer, but hardwired in a pair of special devices.
Ohm has a bank of two registers with LED readouts cor-
responding to/er/, and a single register corresponding
to/i/. The operator sets/er/, presses a button, and i
appears. There is a second device intplementing watt,
and its inputs are direct connections from ohm. []

E x a m p l e C The protocol of a simple message-
forwarding device is to accept a message, wait until the
line is clear, and then forward it. Any other messages
arriving while it is waiting are rejected. One models
the history of the message as

not f o r w a r d e d ~ f o r w a r d e d , (2.2)

and the history of the device as

17
r e a d y ~_ ~ busy

S (2.3)

It changes state in response to the rest of the system:
it receives (r) , or is enabled to send (s), a message. []

2.2. Instances.

The pictures, including the da ta structures, shown in
these examples nmst be distinguished from the in-
stances tha t can populate them.

There are two processes involved in example A. (1)
A labeled carbon a tom travels in t ime among the states
in the set, {protein, leucine, cO2}. It follows the parti-
cle process, which closely reflects picture 2.1 and whose
probabili t ies are determined by lmmbers assigned to the
arrows. (2) A measurement made by the biochemist has
a state that is a number, the total number of particles
that at one t ime are in a given state of the particle
process. This measurement travels in t ime within a set
of possible numbers. It follows the population process,
whose probabilit ies are determined (i) by the particle
process, (ii) by the process according to which particles
arrive, and (iii) by the assumption tha t the particles
have independent histories.

The crux of example A, as a stochastic process prob-
lem, is to show how measurements of the populat ion
process (which the biochemist is able to observe) allow
one to infer properties of the particle process (which
the biochemist wants to know). However, we shall not
be concerned with the probabilistic aspects.

2.3. Programs and Devices: Processes and State
Machines.

This background makes clearer tile way in which exam-
pies A and B differ from C. The instances of B, like
those of A, have independent histories: as each circuit
is measured, its • and r are entered, and its i and then
its w are computed without interference from those of
any other circuit. However, in example C the histories
of the messages are highly dependent.

Pictures 2.1 and 2.3 seem similar, but they are not:
2.1, like 2.2, is a process, whereas 2.3 is a state machine.
Their pictorial conventions are different: in 2.1 the
nodes are inputs and the arrows are programs (chemi-
cal reactions), whereas in 2.3 the nodes are states and
the arrows are inputs.

An instance of a s tate machine is a device, an object:
a computer , perhaps, or even a person. A process is
implemented by a computer program, and its instances
are runs or executions of the program on a device.

These two representat ions - - process and s ta te ma-
chine - - are complementary. A computa t ion can be
viewed as a process, in which case we prescind from the
question of how its runs interact with those of other pro-
cesses, or with other runs of the same process. Equally
well, it can be viewed as a behavior of a state machine,
in which case our model of the machine should show
us how several runs can interact. The interest in the
analysis of example B is in following how a single input
/ e r / p r o p a g a t e s from device to device across the sys-
tent; thus it is more useful to depict it as a process. In
example C, the interest is in seeing how a single device
responds to a succession of inputs.

2.4. Levels of G r a n u l a r i t y .

Think of picture 2.3 as showing the second of a pair
of devices, .M i and .M 2, the first of which sends the
message, They collectively form the system .M :

(send, busy) (~,s) (send, ready)

;(p,r)
(g,i) (clear, busy)

l(i,s)
(c lear , r e a d y }

(2.4)

When all messages have been cleared front .M I and
.M 2, then tile system .M is in the s tate (c lear , r e a d y) .

72

Generat ion of a new message by .M 1 moves .M to
(send, ready), and then to (clear, busy), once the
message is picked up by ~ 2. Then there are two pos-
sibilities. If the next event is that .M 2 forwards the
message, then .M moves to back to (clear, ready}.
If A{ i generates another message first, then .M moves
to (send, busy), from which it moves back to (send,
ready) after the first message is forwarded.

Several features of this example need clarification.
[raise them here and hope that the mathematics of
section 3 partly provides some explanation. .M I and
.M ~ are components of .M. Very roughly, one maps
picture 2.4 to picture 2.3 by sending (send, ready) and
(clear, ready) to ready, and sending (clear, busy)
and (send, busy) to busy. On the other hand, the
process shown in picture 2.2 is also related to certain
fragments of the state machine in picture 2.4: to

or to

(send , r e a d y)

(c lear , busy}

(clear, ready) (2.s)

or to

(send , busy} ~ (send , r e a d y }

(c lear , busy} (2.6)

(send, busy) ~ (send, ready)
(2.7)

Simplifying a process must imply a corresponding sim-
plification in the machinery it runs on.

2.5. T y p e s a n d S t a t e s .

In example B, tile module ohm computes a certain func-
tion from the set of states of e and r to the set of states
of i:

ohm: E × S, ohm: (e , ,) i = e / , . (2.8)

Note that ohm is a mathemat ica l function, while ohm
is a computer program, hard or soft. Also e, r, and
i are (variable, or unspecified) numbers, ranging over
the sets E, R, and I, while e, r , and i denote certain
storage locations in a computer .

One usually identifies the sets E, R, and I with R+ ,
the set of nonnegative real numbers, with which they
are abstract ly isomorphic. This is especially tempt ing
in view of our moral desire to emphasize to the pro-
g rammer the need to check his values. However, it is

perhaps bet ter to lecture the p rogrammer at some other
time, and to remember tha t the object of using a pro-
cess to analyze example B is to be able to follow the se-
quence of p rogram modules tha t are activated, and the
sequence of outputs tha t they compute after the input
of v a l u e s / e r / t o the system. This is impossible unless
we regard I as the set of values of a specific output of
ohm and of a specific input to wa t t , a , d distinguish it
from E, from R, and from R + .

I therefore, in 'defiance of tradition, define a type as
the set of values of a specific input to, or output from,
a computer program. The values themselves are states.
The usual types, those of the p rogramming languages,
ahnost never meet this definition: i n t e g e r is the in-
put to some general-purpose device tha t implements a
computer program, not to the program itself. (A the-
ory that hopes eventually to describe parallel and dis-
t r ibuted processing will have to distinguish programs
from the devices they run on.)

2.6. Realization.

E x a m p l e D A real- t ime monitor ing device measures
atmospheric pressure and collects da ta once per sec-
ond, using a program module, acq, to acquire each da ta
point. The output of acq is in the form,

/raw/ seq#, press. (2.9)

This is too dense a rate, so there is a second module,
avg, tha t is enabled to run after n da ta points have
been collected, and that averages them:

/averaged/ seq#, pressbar. (2.10)

The averaging interval,

/ i n t / n, (2.11)

can be set by the user.
There is a shell script that allows an execution of

avg each t ime tha t aeq has collected n points. Each
execution of a module is an instance and has its own
data, and these instances would be collected in a file.

r a w - -]
seq# press l averaged 1
acql 181. . ,~q#- " " pressb..r~
a q2 139. [avgl I 135.0 !
a q3 135. l. avg2 I 134.5 |
acq4 134.
acq5 138.

These da ta items might be created ill tile order: acq l ,
acq2, avg l , acq3, acq4, avg2, acqS.

Note that press and pressbar describe the outside
world, whereas n describes tile operat ion of tile de-
vice. (More precisely, n contains control information
that prescribes tile operat ion of tile device; it only de-
scribes it after a successful run.}

The value of p r e s s b a r does not have all independent
meaning: it needs the value of n to complete it. []

73

In the computer , the da ta record / r a w / can have
many instances, and unlike its counterpart in the out-
side world, several can exist in the computer simulta-
neously. Think of the computer as a complex, general-
purpose, device made up of simpler devices, including
logical units, floating-point units, and storage locations.
As a device, the computer follows a certain state ma-
chine. TILe shell runs avg repeatedly to access different
instances o f / r a w / i n different locations.

We can use the computer to realize" such a shell script
by associating its storage locations with instances of
/raw/and/averaged/and associating appropriate se-
quences of luachine states with acq and avg. Within an
execution, avg is realized repeatedly, and differently: it
runs on a different, but overlapping, set of locations.

2.7. I n t e r p r e t a t i o n .

A theory of computa t ion must provide for the fact that
most computer processes deal with data that are to be
interpreted as meaning something in the outside world.

In example D, da ta records are generated in the com-
puter by instances of the shell script. Meanwhile, states
- - nalnely, a tmospheric pressures - - are generated in
the outside world by instances of a meteorologic pro-
cess, whose other details we ignore. The computer pro-
cess is not homologous to the meteorologic one, but still
the states of the storage l o c a t i o n s / l e u c i n e / a r e to be
interpreted as describing the meteorologic states.

One has to luap state to s tate and instance to in-
stance. The structure o f / r a w / i s shown in picture 2.9.
Different pieces contr ibute towards the interpretat ion in
different ways. The name of the p r e s s field tells tha t
the values found in any instance are of type PRESS. In
fact, one might regard p r e s s as a function that maps
the set of s tates of t h e / r a w / d a t a records into the set
PRESS . The convention of using the same name in a
different typeface is meant to implement par t of tile in-
terpretat ion by associating P R E S S with a correspond-
ing procedure for measuring the pressure, and thus with
a state of the lneteorologic process. The seq# field im-
plements the rest of the interpretat ion: it maps an in-
stance of / r a w / to an instance in which the pressure
is lneasured. Altogether, these conventions make the
da ta record assert that the value of p r e s s denotes the
value measured on tha t occasion.

2.8. S i m p l i f i c a t i o n .

E x a m p l e E A nurse at an intensive care unit worksta-
tion [2] [3] requests a pair of plots for each of two pa-
tients. They are provided by a system of independent
software modules whose operat ion is highly nested. The
subprocess p l o t p t s , shared by several processes, plots
a da ta pair xva l , y v a l . It first computes the screen co-
ordinates x p l o t , y p l o t actually to be plotted. These
are given in terms of the previously established milfi-
l n u l n a u d nlaximuln x and y values xmin, xmax, ymin,

ymax and the physical resolution xpnts, ypnts of the
screen by the formulae,

x v a l - xmin
xplot = z m a x - xmin × xpts,

y v a l - ymin
yplot = × ypts.

y m a x - ymin

Another module can then plot the point (xplot, yplot).
The structure of the da ta is

/minmax/ patient#, plot#, xrain, xmax,
ymin, ymax,

/screen/ patient#, plot#, xpnts,
ypn t s,

/vals/ p a t i e n t # , p l o t # , x v a l , y v a l ,
/ p l o t / p a t i e n t # , p l o t # , x p l o t , y p l o t .

[]

Abstractly, plotpts is a function -- a black box --
for computing /plot/ front /screen/, /rainmax/ and
/vals/. Note that these three inputs are bound at
very different time scales within the total computation:
/screen/is a constant for that workstation,/minmax/
is a constant for each pair of plots, a n d / v a l s / c h a n g e s
with each call to p l o t p t s .

Some less ambit ious group of programmers might
have restricted their software to run only on screens
of a fixed resolution, say 1024 x 1024. They would have
writ ten a module p l o t p t s l o 2 4 with inputs /minraax/
a n d / v a l s / a n d o u t p u t / p l o t / ; everything is the same,
except tha t / s c x e e n / i s a fixed constant. In fact, for
each such group of p rogrammers and each fixed value

s e S C R E E N = X P N T S × YPNTS ,

we have a different program p l o t p t s s. This suggests
another way of looking at the original p l o t p t s . We
might look at a state s of / s c r e e n / , not as denot-
ing a pair of numbers, but as denoting the program
p l o t p t s s , or the process corresponding to it.

A user who confines himself to a 1024 × 1024 screen
will notice no difference between the original set of
modules and the same set with p l o t p t s replaced by
p l o t p t s s. We need a formal notion to capture the
way in which a complicated process with many states
compares to a simplification: a program that , within a
restricted domain, performs the "same" computat ions.

2.9. L a n g u a g e .

We are now in a position to clarify the different senses
ill which da ta records are "generated."

History. Records like those in example D are gener-
ated in the computer in a historical sequence involving
the execution of computer progralns.

Syntax. The syntax of the a v e r a g e d records in exalu-
pie D, is defined by the expression 2.10, and any record

74

must meet this specification in order to be correct. If
this example were not so fragmentary, we might see
rule 2.10 as part of a generative grammar of which the
records are productions. There is no relation between
the sense in which this grammar generates the records
and the sense in which avg generates them, beyond the
requirement that avg generate correct instances.

Selnantics. The interpretation described in sec-
tion 2.7 gives a meaning to the records/raw/.

2.10. Synchronizat ion.

E x a m p l e FF There is a small computer that represents
only natural numbers and has no hardware for addi-
tion, but it does have sophisticated control structures
and can be programmed to add using the recursive def-
inition,

n + 0 = n , n + (m + l) = (n + m) + l . (2.12)

The shell script p l u s has modules implementing

succ: R - , R, s u c c : r ~ (r + 1); (2.13)

prod: M ~ M, p ~ d : m ~ (m - 1). (2.14)

It can also copy a number from one location to another.
Its da ta structures are

/ a r g l / n,
/ ar g2 / m,
/result/ r.

Plus says to run pred until m is in state 0, do copy
once, and then run succ until reaching rl.

In the following illustration, the input data are n = 3
and m = 2, and the result is r = 5.

seq#- n seq# T
nl 3 ml
n2 3 "m2
n3 3 m3

2 r l 5
1 r2 4
0 r3 3

It runs as follows: load nl and ml; and then pred, m2;
pred, m3; copy, r3; succ, r2; succ, rl; stop. []

In the introduction to his book [1], Hennessy presents
a set of progressively more subtle and puzzling exam-
pies. In comparing two of them he says [p. 12], "How-
ever, to justify distinguishing them one needs a coher-
ent view or understanding of nondeterminism." After
considering other such pairs, he observes,

Of course any particular model [of computa-
tional processes[decides between identifying
and distinguishing such pairs. However, the
justification lies hidden in the definition of the
model or in the mind of the designer of the
model. We argue that this justification which
underlies the model is its most important fea-
ture and should always be elucidated.

The plea that one job of the model should be to make
the features of tile process explicit is very much in the
spirit of the present paper. However, I would oppose
the idea that there is a global theory of nondeterminism
that justifies such choices.

Hennessy's examples, and mine as well, are designed
to show that the interaction of subprocesses within a
process may by very idiosyncratic. In example D, the
shell alternates n runs of acq with a single run of avg,
where n is a parameter set by the user. In example F,
the shell runs pred a variable number of times, but here
the condition for termination is that a location m reach
a specified value, zero. (The shell has no way of de-
termining, from general principles, that the number of
runs equals the value of ml.) Then, after running copy,
it runs succ a variable number of times, terminating
when it has bound a value, any value, in the location
1:1. I think that this suggests that subprocesses can
be combined by a very large nmnber of possible com-
binators. The point of modeling is to illustrate these
explicitly, and not to implement an abstract theory.

The question whether two processes are distinguish-
able is local, not global: tell me what windows you are
planning to view them through (in the near future),
and I shall tell you whether you can distinguish them
by looking through those windows. A test of the good-
ness of a model is whether it has the means to make
this promise good.

3 . S o m e M a t h e m a t i c s .

3.1. Connect ions to the Literature.

The theory presented in the following sections is devel-
oped from that in [2] and [4]. It is, in different ways,
modeled on category theory (especially topos theory},
universal algebra, and symbolic logic. It parallels, in
different places, the s tandard theories of computation
found in [11, [51 and 161, and might be viewed as an at-
tempt to integrate their insights into a single structure.
The books [7] [81 are constantly in the background.

The standard reference for category theory is [9]. The
books [10] and [11] are helpful introductions oriented
towards computer scientists, while [12] is oriented to-
wards logicians. Similarly, [13] is a helpful introduction
to order theory and lattices, with examples from com-
puter science. It would prepare one for 114].

3.2. C a t e g o r i e s .

Picture 2.4 is an example of what category theorists call
a graph. Such a graph G call be made into a category
C by adding in all identity arrow from each node, or
object, to itself; and for each consecutive pair f, g of
arrows all arrow go f , their composition. In this context,
composition would mean consecutive operation of f and
then g, and identity would be a null process.

75

Thus a category C consists of a set C o of objects and
a set C A of arrows. (For legibility, one suppresses tile
A and the O, where possible.) It is required that the
identities behave like identities and that the operation
o be associative. It is not required that each g o f be
distinct from the ones previously included, but if this
is always so then C is F G , the free category on G.

A different example of a category is Se t , whose ob-
jects are small sets and whose arrows are functions be-
tween the sets.

3.3. A c t i o n s .

P r o c e s s e s . For example B, we could start with the
graph G:

/ e r / o h n ~ / i / . (3.1)

To get a category C based on (g, we would add in the
identity arrows 1 / e r / a n d 1/£/. Then, since, in this ex-
ample, tile only possib|e compositions are ohmo 1 / e r / =
ohm and 1 / e r / o ohm = ohm, we would be done.

This would give a good idea of the possible sequences
of program activation, but it fails to capture the mean-
ing given by picture 2.8. The point is that ohm not only
executes 9 but as it executes it computes an output de-
pendent on the value of the input. Picture 2.8 is really
a fragment of Se t :

Set (3.2)

The way to pick out the particular fragment of S e t
that we need is to define a functor

C : C ~ S e t .

A functor is a mapping between categories; it has to
send objects to obje.cts, and arrows to arrows, in such
a way that identities and composition are preserved. It
has an object function Co : Co --~ Seto, and an arrow
function CA : CA ~ SetA. Let C (/ e r /) = ER, let
C (/ i /) = I, and let C(ohm) = ohm.

Such a functor expresses the action of C on Se t .

S t a t e M a c h i n e s . State machines can also be ex-
pressed as such actions.

For example C, let (g2 be the picture 2.3 of device
.M 2. Form C2 by adding in two identity arrows, and
letting r o s = l b u s y and s o r = l r e a d y . The action
of C2 is given by a functor C2 : C2 ~ Set , defined as
follows. Let (~2 be tile set,

Q2 = { r eady , busy} .

Q2 is the image of both states: C2(ready) =
C2(busy) = Q2. Next, C2(r) and C2(s) are functions
Q2 --~ Q2:

q E Q 2
ready

[(C2(r))(q) (C2(s))(q)
busy ready
busy ready b u s y

3 . 4 . S i m p l i f i c a t i o n .

Let

and

C : C ~ S e t

D : D ~ Set

be two such actions. We capture the ideas of section 2.8
by saying that D is a simplification of C, and writing
D < C, if we have the following. There is a functor F :
D -~ C. {It is not to be confused with the free functor
F of section 3.2.} There is also a natural transformation
a : D " ~ CF. This a is a collection of functions Old,
o n e for each object d of D, that go from the set D(d)
to the set C F (d) . These functions nmst consistently
transform D into CF . Tha t is, if f : d i ~ d2 is all
arrow of I)~ we must always have

ad2 o D(f) = F C (f) o a d .

T h u s a simplification looks like the diagram,

C
C - - - - * S e t

F

D ~ Set
D

T h e notat ion < is justified by the fact that simplifica-
tion is reflexive and transitive.

For example, let C be a category based on picture 2.4,
and let C express its action on Se t . Let C2 and
C2 be as in section 3.3. Then (7 2 < C. The func-
tor F2 : C2 ~ C has F~{ready) = (clear , r e a d y) ;
F2(busy) = (clear , b u sy) ; F2(r) = (p, r) o (g, i) ; and
F2(s) = (i , s). The natural transformation oL is then
the corresponding function Q2 --~ Q.

We also, in this example, have C < Cu. Let
r (. , r e a d y) = (r ead y) ; F (. , b u s y) = (busy) ;
F (. , r) = (r); r (. , s) = (s); and F(. ,±) = (£). What
makes ~ ~ be a component of .M is the fact that
F o F2 : C2 ~ C2 is the identity functor.

3.5. Language and Interpretation.

In section 2.9, I pointed out that data records are gem
erated, in different ways, historically and syntactically.
Tile semantic meaning is also generative, ill sense that
is hidden inside the requirement that the interpreta-
tion map the set of states of the data records to a set
of states of the external process that they denote.

76

In section 2.8, we saw that it is natural to think of
processes whose states are themselves processes. Con-
versely, states, and even types, can be thought of as
very restricted processes: they are simplifications, in
the sense of section 3.4, of the process in which they
occur. Thus, we tend to blur the distinctions between
processes, types, and states.

An object outside the computer might be capable of
supporting a set a of processes. Let .~ a be the system
consisting of the processes in a and of all their simpli-
fications. There will usually be a mutual dependency
among the members of ~ a: for any two elements, one
might be a simplification of the other; or they might
both be simplifications of some third process; or some
third process might be a simplification of both. Thus

a is structured. Now look at a set A of da ta records
in the computer whose members are mapped by an in-
terpretat ion into members of ~ a. The members of A
acquire thereby a semantic interdependency [3].

As in section 2.7, let a be a set of processes in the
outside world, and let S be a set of objects. Let A be
a set of processes in the computer. We want to view a
da ta record of A as a declarative sentence constructed
from the vocabulary a and S. For example, an instance
o f / r a w / m i g h t be

(6144, 29.87). (3.3)

It means that on the ~] t h measurement, the

geographic [iocation] measured had art atmospheric

[prdssuie] of [-29187]. As discussed ia sections 2.6
and 2.7, these four pieces - - 6144, the location, pres-
sure, and 29.87 - - are instrumental in giving record 3.3
its interpretation.

_Secfign+2._6: In a realization, the state of a data
record corresponds to a state of a type of a process
in A. Section 2.7: We require a set of functions, each
of which maps a type of A to an element of J~ a. (This
takes care of 29.87.) By composing with the realiza-
tion, we also have, for each kind of data record a func-
tion mapping each field of the record to an element of

a. (This takes care of p r e sau re . } Then, we require
a function mapping each da ta record to an element of
S. (This takes care of l o c a t i o n , which is not explic-
itly indicated in the program, since only one location
is in question.) Finally we require a function mapping
each data record to an instance in which the process in

a that corresponds to that record type runs on that
individual in S. (This maps 6144 to a measurement.)

R e f e r e n c e s

[1] Matthew Hennessy. Algebraic Theory of Processes.
MIT Press, Cambridge, MA, 1988.

[21 William P. Coleman. Computat ional logic of net-
work processes. In Martin D. Fraser, editor, Ad-

[3]

{4]

[5]

vances in Control Networks and Large Scale Paral-
lel Distributed Processing Models, Ablex Publish-
ing Company, 1990. In press.

William P. Coleman, David P. Sanford, and An-
drea De Gaetano. Syntax and semantics of lan-
guages for medical information processing. In
SCren Buus, editor, 151h Annual Northeast Bio-
engineering Conference, pages 189-190, IEEE,
1989.

William P. Coleman. Models of computat ional
processes. Journal of Symbolic Loqic, 55(1):437,
March 1990. (Abstract of talk presented at Spring
Meeting of the Association for Symbolic Logic,
1989. Full paper in progress.).

C. Hoare. Communicating Sequential Processes.
Prentice-Hall, Englewood Cliffs, N J, 1985.

[6] Wolfgang Reisig. Petri Nets. Springer-Verlag,
Berlin, 1985.

[7]

[8]

[9]

[10]

[111

[lZl

[131

{141

Samuel Eilenberg. Automata, Languages, and Ma-
chines. Volume A, Academic Press, New York and
London, 1974.

Samuel Eilenberg. Automata, Languages, and Ma-
chines. Volume B, Academic Press, New York and
London, 1976.

Saunders Mac Lane. Categories for the Working
Mathematician. Springer-Verlag, New York, 1971.

Michael Barr and Charles Wells. Category Theory
for Computing Science. Prentice Hall, New York,
1990.

Peter Freyd and Andre ~ e d r o v . Categories, Alle-
gories. North Holland, Amsterdam, 1990.

Robert Goldblatt . Topoi: The Categorial Analy-
sis off Logic. North-Holland Publishing Company,
Amsterdam, revised edition, 1984.

B.A. Davey and H.A. Priesthy. Introduction to
Lattices and Order. Cambridge University Press,
Cambridge, UK, 1990.

Ralph N. McKenzie, George F. McNulty, and Wab
ter F. Taylor. Algebras, Lattices, and Varieties.
Volume I, Wadsworth and Brooks Cole, Monterey,
CA, 1987.

77

