
A New Abstraction for the Study of Module 
Interconnection 

Narayan C. Debnath 
Computer Science Department 

Winona State University 
Winona, MN 55987 

Abstract 

Graph models have been useful abstractions for 
examining the programmer's perspective of the 
static structure of imperative programs. A 
number of graph models referring to control flow 
and data dependencies have appeared in the 
literature. In this paper, a more general 
abstraction for describing imperative programs is 
developed. The proposed abstract model, called 
Generalized Program Graph (GPG), is defined 
to be a digraph where nodes denote variable 
definitions and predicates, and edges represent 
either control flow or data dependencies. 
Aspects of GPG construction are discussed and 
an algorithm for building a GPG is outlined. As 
a major application, GPG is directly useful to 
represent and analyze software module 
interconnection structure. A formal model of 
software module interconnection structure is 
defined. Because the GPG includes both the 
control flow and data dependency information in 
one abstractions, it can be used as an 
implementation model for the development of 
measurement and analysis tools for empirical 
research. 

1.  INTRODUCTION 

Graph models have been useful abstractions 
for examining the programmer's perspective of 
the static structure and complexity of imperative 
programs. The familiar control flow graph has 
been used to study structured programming, 
testing methodologies, and develop complexity 

Permission to copy without fee all or part of this material is granted pro- 
vided that the copies are not made or distributed for direct commercial 
advantage, the ACM copyright notice and the title of the publication and 
its date appear, and notice is given that copying is by permission of the 
Association for Computing Machinery. To copy otherwise, or to republish, 
requires a fee and/or specific permission. 

© 1991 A C M  0 8 9 7 9 1 - 3 8 2 - 5 / 9 1 / 0 0 0 3 / 0 1 8 1  $ 1 . 5 0  
181 

measures [1-5]. The data dependency graph has 
been proposed as an abstraction useful for 
studying the interconnection between data objects 
in a program and for developing measures of 
data dependency complexity [6]. Such graph 
models show promise as a basis for developing a 
range of useful software design and development 
tools. 

The work described in this paper was 
motivated by the desire to study the interface 
between the structure of control flow and data 
dependencies. The complexity of the control 
flow and the complexity of the data dependencies 
are necessarily intertwined. An increase in the 
complexity of the data dependencies will result 
from an increase in control flow complexity. A 
control flow alternation construct can result in an 
increase in the number of variable definitions that 
may be referenced. This increase in the number 
of referable definitions may extend far beyond 
the range of the alternation construct and this 
increase cannot be viewed by examining the 
control flow graph alone [7]. 

In order to study the interface between 
control structure and data dependencies, it 
becomes imperative that a more general 
abstraction of computer programs must be 
developed. This paper is primarily devoted to 
the development of such an abstract model for 
representing imperative language programs. The 
abstraction proposed in this paper is called 
Generalized Program Graph (GPG), and is 
essentially a synthesis of the control flow graph 
[1] and the data dependency graph [6]. The 
GPG representation is structurally equivalent to 
the string form of a program. However, because 
of its graph structure, a GPG is better suited for 
structural analysis of a program than the original 
string form. 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F327164.327234&domain=pdf&date_stamp=1991-04-01


The GPG is defined to be a directed graph 
with nodes representing variable definitions and 
predicates, and edges denoting control flow and 
data dependencies. In order to construct a GPG 
corresponding to a given program, one must 
determine live definitions of variables at various 
program statements. A variable definition is 
considered "live" at a specified statement if it is 
possible for the value assigned to the variable at 
the definition to be referenced at the statement. 
While drawing data dependency edges in a GPG, 
live definitions are collected from alternate 
pathways in the program to determine possible 
dependencies of a given variable definition or a 
predicate at a particular statement. Discussions 
concerning various sources of data dependencies 
in a program and live definitions of variables are 
explici t ly presented. An alg.orithm for 
constructing a GPG from a given source 
program together with some examples of GPG 
construction are also included. It appears that the 
GPG can directly be applied in the studies of 
software module interconnection complexity. A 
preliminary model describing the structure of 
software module interconnection is proposed, 
and other important practical and theoretical 
applications of the GPG are discussed. 

2.  A UNIFIED GRAPH MODEL OF 
IMPERATIVE PROGRAMS 

A program written in an imperative language 
typically consists of a set of variable definitions, 
together with the unique order of execution of the 
definitions governed by control flow constructs. 
A variable definition is a statement that may 
modify the value of a variable, such as 
assignment statements, procedure calls, and 
input statements. The control flow is the direct 
representation of the prescribed order of 
execution of the definitions in the program. The 
control flow, in its simplest form, prescribes the 
sequential execution of contiguous statements. 
However, if  there is more than one possible 
alternative next statement, a predicate is used to 
specify the choice. A predicate consists of an 
expression that evaluates to either true or false 
(assuming only binary predicates), and this 
boolean result precisely determines the next 
statement to be executed. 

In this section, a rigorous definition of the 
generalized program graph, an abstraction 
capturing features of both the control flow graph 
and the data dependency graph, is provided. 

Several important aspects of GPG construction is 
also explicitly discussed. 

2 .1 .  Generalized Program Graph 

The generalized program graph is an abstract 
representation of a computer program written in 
an imperative language. The GPG is a directed 
graph with each node denoting either a variable 
definition or a predicate, and edges representing 
control flow and data dependencies. 

Formally, the GPG representation of  a 
program P is defined to be a digraph, 

GPG = (N, E, s, If), 

where N is a finite set of nodes, E is a set of 

edges i n N x N ,  ands ,  f e N .  N o d e s s a n d f  
represent the unique entry node and exit node 
respectively. In addition, 

N = N p U N D U s u f ,  
where 
(a) there is a one-one mapping between the 
elements in Np and the predicates in P, and 
(b) there is a one-one mapping between the 
elements in No and the variables definitions in P. 

Any node D e ND of a GPG can be thought 
of as representing a 2-tuple, <d,ed>, where d 
corresponds to a variable definition and ed refers 
to the expression associated with this definition 

d. Each node Q e Np can be regarded as having 
only an expression, eq, associated with it. 

The edges in a GPG are also divided into two 
disjoint  sets, called control  edges and 
dependency edges. More specifically, 

E = Ec u ED, 

where Ec refers to a set of control and ED 
denotes a set of dependency edges, as defined 
below. 

(a)<u,0> e Ec i f f u ,  0 e N and the code 
(definition or predicate) in P denoted by ~ can be 
executed immediately after the execution of the 
code denoted by u in P. It is assumed that all 
control flow is explicit -- exceptions are not 
addressed. 

(b) <q,kt> e ED iff q e No and l.t e N, and q 
denotes a definition in P that can reach/.t and the 

182 



variable defined by q is referenced by the 
expression associated with the code in P 
represented by It. A definition q of variable v 
can reach node ~ if there is a control flow path 
from q to I.t that is free of redefinition of v [9]. 

Note that, the control flow edges in Ec are 
essentially the same as the edges in a flow graph. 
A GPG is an expanded flow graph with a node 
corresponding to each variable definition and 
predicate rather than the flow graph strategy of 
nodes representing basic blocks. Additional 
edges denoting dependencies are also included in 
the GPG. The edges in ED represent the possible 
dependencies of nodes in N on definitions in ND. 

2 .2  Sources of Data Dependencies in a 
Program 

A variable definition may depend on the values 
of several independent variables for various 
reasons. A dependency can be determined by 
evaluating an individual statement in the 
program. Every possible data dependency 
resulting from the execution of the statement 
(isolated from the rest of the program) is 
represented by an edge. Statements that 
generally cause a change in the values of 
variables include input statements, assignment 
statements and procedure calls. 

Consider an assignment of the form, 

A := h(yl, Y2 ..... Yn), n _> 1 

where A, Yl, Y2 . . . . .  Yn are variables and h 
denotes some combination of operations on y 1, 
Y2, ..., Yn. There are n dependencies in this 
statement, since the assignment to A depends on 
the values of Yl, Y2, ..., Yn (assuming only one 
definition of each variable Yi, 1 _< i _< n, can reach 
the statement). 

The actual data dependencies resulting from 
an external procedure call can not be determined. 
Hence, all possible data dependencies that may 
result from an external procedure call are 
included in the GPG. The data dependencies 
resulting from an external procedure call 
statement depend on the modifiability of the 
procedure arguments. In particular, if  the 
parameters are passed by reference and not 
protected from modification by the called 
procedure, then each argument may be affected 
by the values of the arguments. Consider a 
statement denoting procedure call, 

CALL Q(x, y, z). 

Assuming that each argument may be modified 
by the procedure Q, Figure 1 shows the data 
dependencies for the external procedure call 
statement from the rest of the program. 

\ " ~ (  -.  I . .  \ / I 
I x t" / I 

! /×\ -~'i'-.._)\ I 
! I / \ ! ~ \ . I .  

Figure 1. Possible dependencies for the 
procedure call statement 

In Figure 1, x l ,  Yl and zl denote new 
definitions of x, y and z respectively. Also an 
edge <a,b> represents the dependency of the 
definition node b on a. One should note that, 
because definitions Xl, Yl and Zl are possible 
definitions and not absolute, x, y and z can still 
be referenced after the procedure call. A more 
detailed discussion about procedure calls is 
presented in section 3. 

Global variables that may be referenced or 
modified by a called procedure are implicit 
arguments of a procedure call and hence result in 
additional data dependencies. In order to include 
the influence of global variables in the model, 
global variables referenced or modified by the 
procedure are treated as if they are explicit 
arguments of the procedure call. 

2 .3 .  Live Definitions of Variables 

A variable definition is considered live at a 
statement, say S, if the value assigned may still 
be present on execution of S. Exact knowledge 
of live definitions at each statement in a program 
is required for constructing a GPG. In other 
words, one needs to know all the definitions of a 
variable X that can reach a variable definition d in 
order to correctly use definitions of X as the 
source node at d if d depends on X. 

There are three control constnacts, namely 
sequential code, branches and joins, that must be 
considered in determining live definitions of 
variables at any particular statement. 

183 

= . . ~...~ . i .  ~ :g=~.~ i4~  ~ ~ , . . ~ , . g ~ ~  ~ . ~ : ? >  ~ 



A variable definition for X kills all def'mitions 
that were live for the straight line code just prior 
to the new definition. However, a previous 
definition for X may remain live when the new 
definition is a possible definition such as a 
procedure call parameter. Since a procedure 
parameter might not be modified, all the earlier 
definitions for the parameter remain live. At a 
branch point all live definitions remain live until 
they are redefined. The live definitions after a 
join point consist of the union of all the 
definitions that were live on each predecessor of 
the join. The effects of branches and joins can 
further be illustrated using specific examples. 

Consider the following IF-THEN-ELSE 
construct: 

IFA > B THEN 
C : = A  

ELSE 
C : = B ;  

X : = C ;  

Note that, assignment to X depends on the 
variable C. Since C can receive its value in either 
the IF-THEN branch or the IF-ELSE branch, X 
is dependent on both assignment to C. The GPG 
representation of the above code segment is 
shown in Figure 2, where C 1 and C2 denote two 
different definitions of variable C. p refers to the 
predicate node and both A and B are assumed to 
be initialized. Also, control edges are 
represented by solid lines and dotted arcs denote 
data dependencies. 

i 

/ 

| i h x  

K 

Figure 2. GPG Structure for 1F-THEN-ELSE 

Loops are considered as special cases of 
branches and joins. The loop exit is a branch, 
where one successor being the loop entrance and 
the other successor being the code following the 
loop. The loop entrance is a join, with one 
predecessor is the code for the first entrance and 
the other predecessor is the loop exit. 

Consider the program segment containing a 
loop control structure as shown below. 

X :=Y ; 
WHILE X > Z DO 

X : = X + Z ;  
W : = X * Z ;  

In this case, the variable X used in the condition 
is considered to be dependent  on both 
assignments to X since it is possible, at that 
point, that the value of X could have been set 
either before or within the body of the loop. 
Based on the same argument, it is evident that 
assignment to W also depends on both 
assignments to X. The GPG structure for this 
segment is shown in Figure 3, where X1 and X2 
repi'esent two different definitions of X. The 
other loop constructs can be treated analogously. 

C) 

x 

t 
• t I / f • t i 

t , , e  • ! 

/ I 

, ) : 
It • ' i ~ I I 

Figure 3. GPG structure for WHILE-DO 

Finally assignment to an array element must 
be considered. Suppose the array, rather than its 
elements, is the data object of interest. Since an 
assignment to an array element modifies the 
contents of the array, the assignment kills the old 

184 



defini t ion and creates a new defini t ion.  
However, as the values of many of the array 
elements may remain unchanged after the 
assignment, the new definition is dependent on 
the old definition. Complex data objects other 
than an array would be treated in a similar 
manner. 

2.4 Algorithm for Constructing a GPG 

An algorithm for constructing a GPG is 
outlined below. The input to the algorithm is an 
imperative language program and the output is a 
GPG representation of the input program. For 
simplicity, it is assumed that all procedures are 
external and so the actual data dependencies of 
called procedures are not known. 

Algorithm. CONSTRUCT-GPG(P). 

Inout .  A source program, P, written in an 
irffperative language. 

Qutpot. A GPG = (N, E, s, If). 

MCtho;1. 

A. Find the node set N consisting of all the 
variable definitions and the predicates in the 
program, P. 

B. Draw a control flow graph, 

G = (N, Ec, s, f), 

where the edges in Ec describes the order of 
execution of the definitions in N within the 
program. 

C. Add data dependency edges on the structure 
obtained in step B using the following rules. 

C. 1. For each statement S in the program P 
find the set of definitions that are live before 
execution of S, and the set of definitions that are 
live after execution of S. An algorithm for 
determining the live definitions of variables at 
each statement of a program can be found in [9]. 

C.2. For each definit ion in G use the 
appropriate routine below. 

C.2.1. Scalar Assignment 
x := h(yt, Y2 ... . .  Yn) 

(a) Find the set of live definit ions,  Lyi, 
corresponding to each variable Yi for 1 _< i _< n. 

n 
(b) For all definitions d e u Lyi, add the data 

i=l 
dependency edges (d,x). 

C.2.2. Array Assignment 
x(yl ,  Y2, ..., Ym) := h(ym÷l, Ym+2, ..., Yn) 

(a) Use case (C.2.1) above to process as if  the 
assignment were x := h(x, Yt, Y2 .... , Yn). 

C.2.3. P rocedure  Call  
CALL Q(xb x2 ..... Xm, Yl, Y2 ..... Yn) 
where x l ,  x2, ..., Xm are input arguments, and 
Yl, Y2 ..... Yn are output arguments. 

(a) Find the set of live defini t ions Lxj 
corresponding to each xj with 1 < j _< m. 

m 
(b) For each Yk, 1 < k < n, for all z e u Lxj, add 

j= l  
dependency edges (z,yk). 

C.2.4. Predicates  (IF,WHILE, FOR, etc.) 
For a given predicate node Pk use the following 
rules. 

(a) Corresponding to each variable x i in the 
conditional expression, find the set of live 
definitions Lxi, i >_ 1. 

(b) For all elements w e u Lxi, add the 
dependency edges (w, Pk). i 

D. The graph obtained using the above steps is a 
GPG = (N, E, s, f) corresponding to the input 
program P. 

2.5 .  GPG Construction 

We construct the generalized program graph 
for two program segments written in PASCAL. 
For the readers benefit, each definition node is 
labeled with a name identifying the variable that 
the node represents and a subscript. The 
subscripts are used to distinguish between nodes 
denoting different definitions of the same 
variable and are sequentially numbered based on 

185 



P r o g r a m  I .  

P r o g r a m  

0 Readln (A, B) ; 
1 X : = A ;  
2 Y : = B ;  
3 While X < > B do 

Begin 
4 X : = X - 1 ;  
5 Y : = Y + X ;  

End ; 
6 Z : = X + Y + 2 :  
7 Writeln (Z) ; 

G 

/ 
/ 

/ i  
/ ~ 

! / 
! 

f t 

I / 
I 

I 
I I 

~ t 
t 

\ \ 
\ \ 

\ 

\ 

the relative position of the definition in the source 
code. The predicate nodes are not designed by 
any special labels. The expression associated 
with a predicate or a definit ion node is also 
implicit in the graph. 

In the GPG diagrams, solid lines are used to 
denote control edges and dotted lines represent 
dependency edges. Explici t  structures of the 
GPG's corresponding to two program segments 
are shown in Figure 4 and Figure 5. 

i 

| 
x I , /  

J \  

\ 

I 

, I 

# 

# 
/ 

. 

1 
2 
3 
4 
5 
6 
7 
8 
9 1:  

/ 

/ 

/ 

/ 
f 
I 
I 

I 

t 

\ 

M : - - 5 ;  
X : = 3 ;  
Fo r I  := 1 t o M d o  

If  X = L[I] then 
G o t o l  ; 

L[I] := X ; 
C[I] := 0 ; 
M : = I ;  
C[I] := C[I] + 1 ; 

t 
/ 

1 

\ 
\ 

I 
/ 

/ 

! 

I 
I 
I 
t 

k 
\ 

'k 
\ 

Q 

.-TS@/ 
/ 

I \ 

\ 

J 

/ 
# 
I 

t 

-x. 

\ 
\ 

\ 
\ 

\ \ 

\ \ 

", \ 
\ 

\ 
• \ 

i( \ / 

/ I  t 

/ # I 
) / 

/ 
/ / 

/ 
/ ! 

, / 
f 

/ 
/ / 

t 
/ 

\ 

\ 

\ 
\ 

t 
/ 

t 
# 

/ 

Figure 4. GPG Structure for Program 1 Figure 5. GPG Structure for Program 2 

1 8 6  



In figure 4, the nodes labeled A0 and B0 
represent the definitions of the initial values of 
the variables A and B respectively, and these 
initial values are set by the input statement. The 
nodes X 1 and Y2 denote the initial definitions of 
the corresponding variables at the appropriate 
positions of the source code. The node 
following the definition Yz refers to the condition 
of the WHILE loop. X4 and Y5 are the 
redefinitions of the variables X and Y at 
statement 4 and statement 5 respectively. 
Similarly, the node Z6 refers to the definition of 
Z at statement 6. The Writeln statement is 
considered to be a definition of an output file, 
and is represented by the node labeled out7. 

The possible dependency edges were 
constructed based on the strategy described in 
Section 2.4. In statement 1, the assignment to X 
depends on the variable A. Since only one 
definition of A, namely A0, is live at this 

statement, the edge <A0, X> E ED. Clearly from 

statement 2, the edge <B0,Y> e ED. The 
predicate at statement 3 is dependent on the 
variables X and B. A simple analysis shows that 
both the definitions of X (given by statements 1 
and 4) and one definition of B can be live at 
statement 3, and thus the node representing the 
predicate has three dependency edges as drawn 
from X1, X4 and B0. Data dependencies at other 
nodes were drawn following Algorithm 1, and 
are explicitly shown in Figure 4. Note that, the 
self loops at the nodes labeled X4 and Y5 mean 
that these defini t ions are dependent  on 
themselves (from previous iterations). 

Referring to Figure 5, one should note that 
the nodes labeled L0 and Co denote definitions of 
the initial values of the arrays L and C 
respectively. We assume these initial values are 
set via explicit initialization or from input 
statements. The definition 13 is followed by two 
predicate nodes -- one refers to the condition of 
the FOR loop and the other represents the 
condition of the IF statement. The dependency 
edges at nodes L6, C7 and C9 are drawn based 
on the rule (C.2.2) of Algorithm 1. 

3 .  STUDY OF S O F T W A R E  M O D U L E  
I N T E R C O N N E C T I O N  

A software system typically consists of a set 
of interconnected modules. Therefore, the 
overall programmer/program complexity of a 

software depends on two major factors: 
(1) intramodular complexity -- the complexity of 
the code within the modules and 
(2) intermodular complexity -- the complexity 
due to interconnection between the modules. 
Most of the existing software measures focus on 
the complexity of an individual module and 
barely address the intermodular complexity. 

In this section, we describe software module 
interfaces using the GPG model of module 
structure as a base. The GPG of individual 
module is reduced to eliminate information not 
relevant to interconnection. The individual 
reduced GPG's are then connected using the 
possible correspondence between actual and 
formal parameters. The resulting interconnection 
structure can be a very useful model to 

rigorously develop measures of interconnection 
complexity for a software system. 

Given a GPG = (N, E, s, If) for a module i. a 
reduced GPG (RGPG) is a digraph 

RGPG = (Ni, Ei, s, If), 

where Ni is the set of nodes and Ni ~ N, Ei is a 

set of edges in Ni x Ni , and s, f e Ni. 
Moreover, Ni can be grouped into subsets, 

Ni = Ni,r U Ni,¢ U Ni,in U Ni,out U s U f, 

where Ni,r = the set of definitions r e N such that 
r can reach a procedure/function invocation that 
references the variable defined by r as an 
argument, 

Ni,c = the set of definitions c e N which are 
created due to the invocation of a module j by the 
module i, 

Ni, in = the set of formal parameter definitions of 
module i, and 

Ni,out = the set of definitions corresponding to 
the variables or formal parameters whose values 
are returned to some calling module k within the 
system. 

The nonempty set Ei is also divided into two 
disjoint sets Ei,c, a set of control edges, and 
El, D, a set of dependency edges, where 

Ei = Ei,c u Ei,D and 

(a) <u,3> E Ei,c iff u, 3 e Ni and either <u,3> 
Ec or there exists a control flow path u, xl, x2, 

187 



.... Xn, ~ in the GPG such that each xj e (N-Ni), 
1 <_j_<n. 

(b) <x,y> e Ei,D iff x e Ni, y e ( Ni,in u Ni,out u 

Ni,r ) ,  and either <x,y> e ED or there exists a 
dependency path x, wl ,  w2, ...,win, y in the 

GPG with each Wk e (N-Ni), 1 _< k _< m. 
Module interfaces consist of the flow of 

control between modules and the dependencies 
between parameter definitions and references. 
The interconnection structure that we define 
includes the set of RGPGs in a system and a set 
of  interaction edges that connect nodes in 
different RGPGs. 

It is assumed that communication between a 
calling and a called module is maintained only via 
parameter passing. Global variables are treated 
as implicit parameters. We also assume that 
whenever a module is invoked by another 
module the execution starts at the start node s and 
terminates at the exit node f. Interface between 
any pair of RGPGs is represented by interaction 
edges which connect the nodes denoting the 
definitions of actual parameters with the nodes 
representing the definitions of formal parameters. 

Formally, the structure of software module 
interconnection is defined to be a 2-tuple, IG = 
<G,I>, where 

(a) G is a finite set of RGPG's, G = {G1, G2, 
.... Gn}, such that Gi = (Ni, Ei, si, fi) is the 
RGPG for module i, 1 _< i _< n, and n is the 
number of modules in the system. 

(b) I is a set of directed interaction edges 
connecting the parameter definition nodes in 
different RGPGs, 

M Nm k 
I=Um=l (~1  Ej ) 

m 

where jl, J2 ..... jM are the calling modules in the 
system, Nm is the number of modules invoked 
by a particular modules jm, 1 <_ m _< M, and 

E .k is the set of interaction edges between the 
Jm 

calling module j m and the kth module invoked by 
jm, 

k 
Ejm ={<x,y> I (x e N jm,r is bound to the 

corresponding y e Nk.in ) or ( x e Nk,out is bound 

to  y e Njm,C )}. 
Algorithms for producing a RGPG from a 

given GPG and for constructing the interaction 
edges of a system, and a detailed analysis of the 
interconnection structure are presented in [8]. 
The analysis is directed towards the development 
of  useful measures of software module  
interconnection structure. 

Other theoretical and practical applications of 
the GPG are quite apparent. The GPG can 
conveniently be used as an analytical tool for 
studying software structure. Some preliminary 
results of the analysis of the GPG structure and 
the interface between control  and data 
dependencies are reported in [7]. As our work 
moves from an analytical to an empirical 
perspective, we see the GPG as an ideal 
implementation model for the development of 
software structure and measurement tools. We 
can construct a set of software tools based on the 
GPG to analyze control structure, data 
dependency structure, and the control and data 
dependency interface. Software tools can be 
designed to compute proposed measures from 
arbitrary GPG's. Since the structural content of 
the original source is more completely captured 
by its GPG representation than by the control 
flow graph or the data dependency graph 
independently, most of the new structural 
abstractions and measures can directly be applied 
to the GPG representation. 

There are pragmatic advantages of basing 
software structure and measurement tools on an 
abstract representation rather than the actual 
source code. Researchers can develop one set of 
tools that analyze the abstract representation. 
These tools can be used to study programs 
written in any language for which a GPG 
construction program has been implemented. 
Only the GPG construction program would have 
to be implemented individually for each 
language. Industry has been reluctant to release 
programs to software structure and measures 
researchers because of proprietary and copyright 
concerns.  Proposals  for developing a 
standardized reduced form of a program for 
software complexity research purposes have 
recently appeared in the literature [10]. We feel 
that the GPG is a suitable candidate. Industry 
should be less reluctant to share valuable data 
when the software is converted into its abstract 

188 



GPG representation before release to the research 
community. 

4. CONCLUSIONS 

A general abstraction, called generalized 
program graph, for representing arbitrary 
imperative programs is developed in this paper. 
Some important aspects of GPG construction 
were explicitly discussed and an algorithm for 
building the GPG was presented. The GPG can 
prove useful for examining the static structural 
relationship between control flow and data 
dependencies. Moreover, applications of the 
GPG in studies of module interconnection 
complexity appears to be encouraging. It is 
expected that the directed graph structure of the 
software module interconnection, incorporating 
the effect of both control flow and data 
dependencies, will aid in the effort to isolate 
quantifiable software properties that can be 
examined in a rigorous manner. Finally, the 
GPG may form a basis of an implementation 
model for the development of software structure 
and measurement tools. 

References  

[1] McCabe, T.J., "A Complexity Measure", 
IEEE Tran. Software Engineering, Vol. SE-2, 
December 1976, pp. 308-320. 

[2] Oviedo, E. I., "Control Flow, Data Flow 
and Program Complexity",  Proceedings 
COMPSAC 1980, pp. 146-152. 

[3] Harrison, W. A. and Magel, K. I., "A 
Complexity Measure Based on Nesting Level", 
ACM SIGPLAN Notices, Vol. 16. No. 3, 
March 1981, pp. 63-74. 

[4] Evangelist, M., "An Analysis of Control 
Flow Complexity", Proceedings COMPSAC 
1984, pp. 388-396. 

[5] Howatt, J. W. and Baker, A.L., A New 
Perspective on Measuring Control Flow 
Complexity, Technical Report 85-1, Computer 
Science Department, Iowa State University, 
1985. 

[6] Bieman, J. M., Measuring Software Data 
Dependency Complexity, Ph.D. Dissertation, 
University of Louisiana, 1984. 

[7] Debnath, N. C. and Bieman, J. M., An 
Analysis of Software Structure Using. a 
Generalized Program Graph, Technical Report 
85-7, Computer Science Department, Iowa State 
University, 1985. 

[8] Bieman, J. M. and Debnath, N. C., The 
Structure of Software Module Interconnection, 
Technical Report 86-2, Computer Science 
Department, Iowa State University, 1986. 

[9] Hecht, M.S., Flow Analysis of 
Computer Programs, Elsevier North-Holland, 
New York, 1977. 

[10] Harrison, W. and Cook, C., "A Method 
of Sharing Industrial Software Complexity 
Data", ACM SIGPLAN Notices, Vol. 20, No. 
2, February 1985, pp. 42-51. 

189 


