
Implementing Semantics of Object Oriented Languages Using
Attribute Grammars

KAREN A. LEMONE
Dept of Computer Science
Worcester Polytechnic Institute
Worcester, MA 01609

MARY ANN O'CONNOR
Digital Equipment Corporation
Nashua, NH 03062

JEFFREY J. MCCONNELL
Dept of Computer Science
Canisius College
Buffalo, NY 14208

JOE WISNEWSKI
Compass, Inc

Wakefield, MA 01880

Abstract

Object-oriented solutions are becoming an established
paradigm for writing robust, reusable software. Many
object-oriented languages have begun to appear. This paper
examines how the special object-oriented concepts might
be implemented in a compiler using the also well-
established tool of attribute grammars.

KEYWORDS: Attribute grammar, object-oriented,
inheritance, polymorphism, late binding

1 Introduction

Attribute Grammars, invented by Knuth in the 60's
(Knu68, Knu71), are used for semantic analysis by
compiler writers in many of today's compilers and
compiler tools (Far82, Lor84, Aho86, Fis88). Static type
checking, storage allocation, expressions for array offsets,

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

even symbol table creation and dataflow analysis (Bab78,
Boc78) are described using attributes and attribute
grammars.

Object-oriented programming languages present special
problems to the compiler designer. Encapsulation,
information hiding, message passing and methods,
inheritance, overloading and polymorphism, late binding,
are concepts associated with object oriented programming
(Wi187). The syntax and semantics for expressing these
concepts is an issue for compiler designers, as well.

In this paper, an attribute grammar is presented
describing some object-oriented programming language
concepts. Every effort has been made to keep the syntax
and semantics simple and yet broad enough to be applied to
actual object-oriented languages. A pseudocode example (a
Banking System) and its BNF are used for illustration.

Section 2 reviews object-oriented concepts in order to
show the philosophy and simplifications made to arrive at
the pseudocode; Section 3 contains the BNF and the bank
example; Section 4 reviews attribute grammars and their
use in creating language processors; Section 5 shows the
attributes and semantic functions for implementing the
semantics of object-oriented programming concepts.
Section 6 draws conclusions concerning the applicability
of this to object-oriented languages.

© 1991 ACM 089791-382-5/91/0003/0190 $1.50 190

http://crossmark.crossref.org/dialog/?doi=10.1145%2F327164.327236&domain=pdf&date_stamp=1991-04-01

2 Rev iew of Object -Oriented
Concepts

Object-oriented concepts evolved from encapsulation and
information hiding of abstract data types. To encapsulation
and information hiding are added messages, methods,
inheritance, overloading, polymorphism, and late binding
(Cox86, Sch87).

In this paper, we adopt the definitions of object-oriented as
defined in [Weg87]. Thus, an object-oriented language
supports objects which, themselves, belong to classes. The
classes are hierarchically connected by an inheritance
mechanism.

In addition, we consider polymorphism and late-binding.

2.1 Objects, Classes and Data
Abstraction

Objects are dynamic data on which dynamic actions are
performed, and which have a state. A class is a static
grouping to which similar objects belong and under whose
auspices new objects may be created. The data is described
by variables and behavior is characterized by permitted
operations.

Data abstraction hides the internal representation of the
data and the implementation of the operations. The user
specifies what operation is to be performed, not how the
operation is to be performed.

2.2 Messages and Methods

Data abstraction prevents an object's data from being
directly manipulated. To perform an operation on an
object, a message is sent. The message contains a selector
which tells the object what to do. The message may also
contain parameters to aid in the operation or through which
the object may return values.

A class groups actions called methods and variables called
class variables. When an object of a particular class
receives a message to perform an action, it finds the
method(s) corresponding to the message selector and
performs the action. For a banking system, a message may
be sent to a Savings Account object telling it to generate
an account number for a new Savings Account.
GenerateAccountNumber is the selector in the message.
The sender of the message does not know how this number
is generated. The object Savings Account invokes its
method, GenerateAccountNumber to generate the account
number.

Two types of variables may be identified - class variables
whose values vary for each object instance of that class and
shared variables whose values are common and accessible
to, and changeable by, all object instances of a class.

2.3 Subclasses, Superclasses and
Inheritance

Reusability of software is enhanced via inheritance, a
technique for defining new classes called subclasses in
terms of existing classes. These new classes are defined by
describing how they are similar and how they differ from
their preexisting super classes. They may share the same
memory layout and respond to messages with the same or
slightly altered methods.

A subclass is said to inherit characteristics of its
superclass, enabling the creation of classes which are very
similar to other classes, thus saving "programmer" time.
Multiple inheritance allows a class to inherit from more
than one superclass. Altering a method from that of a
superclass is referred to as specialization. In our model,
inheritance of data and methods is stated explicitly. This
does not require the programmer to write (much) more
code, and is worth the tradeoff in safety.

A Bank Account class may have two subclasses,
Checking Account and Savings Account. These subclasses
may inherit many, but not all, of the methods of Bank
Account. A class called NOWAccount may be defined and
be an example of multiple inheritance if it is a subclass of
both Checking Account and Savings Account and inherits
from both. For NOWAccount, one of the inherited
methods, GetlnterestRate, may be specialized by
appending a method, CheckForMinimumBalance, to the
beginning.

2.4 Overloading and Polymorphism

Overloading allows an operator to operate on more than
one data type. For example, virtually all languages allow
"+" to operate on both integer and real type data.
Polymorphism extends this capability to allow procedures
to operate on different types and functions to return
values of different types on different calls (Har84). For
example, a procedure Sort would be polymorphic if it
could be used as the selector in a message to both an
integer array object and a character array object. The objects
themselves would invoke methods corresponding to the
selector to perform the appropriate actions. In the bank
example for (simple) polymorphism, GetlnterestRate is

191

the selector in a message to both a Savings Account object
and a NOWAccount object.

2.5 Late Binding

Binding is the process whereby object operations and
operands are combined. Early binding combines them at
compile time (static binding) or before (program writing
time) and is implemented with case statements which must
be changed if a new data type is to be included for the
operation. Late binding combines them as late as when the
program is running (dynamic binding). Messages often
require dynamic binding - in our example, the message to
tell an account to add interest to the balance involves
dynamic binding since the type of account is not known at
compile time (see Late Binding example in section 5.5)

3. Pseudocode BNF and an
E x a m p l e

Briefly, a program consists of a number of class
descriptions followed by a number of actions.

The syntax for each class consists of the class name, the
names of any super classes, the class and shared variables,
methods, both inherited and those introduced in the class,
and the definitions of the inlxoduced variables and methods.

Class variables have their own values for each object
instance of the class while shared variables share the value
and make it accessible to each object instance.

Actions are the usual statements found in algorithmic
programming languages with the addition of the m~sage
statement whose syntax is the ObjectName to receive the
message, followed by a selector which tells the object what
to do, followed by any parameters if necessary.

NEW creates a new instance of a class, and GET, given
appropriate information, searches a data base for a
previously created object.

Tokens are bolded. The metalanguage is extended BNF
with {What} + indicating 1 or more What's and [What]
indicating and optional What. It is these productions to
which attribute functions will be added in section 4. Rather
than repeat all the words that end in Name, the notation

Name is used. Delimiters such as semicolons are
omitted. BNF for expressions and data types is also
omitted for simplicity.

Program -->
{ClassDescription}+ {Action}+

ClassDescription -->

Class ClassName
SuperClass

SuperClassNameslNone
ClassVariables

{Inherit InheritClassNames
From ClassName}+ I None
Introduce IntroClassNames

I None
SharedVariables

{Inherit SharedVarNames}
From ClassName}+ I None
Introduce SharedVarNames

I None
Methods MethodslNone
EndClass ClassName

Methods -->
{Inherit InheritMethodNames

From ClassName}+ I None
Introduce IntroMethodNames

[N o n e
{SpecializeSpecializeMethodName

With MethodName Before}+
{SpecializeSpecializeMethodName

With MethodName After}+
I None

Definitions Definitions
I None

Definitions -->
{Method MethodName

I Met hodName
(ParameterNames)

LocalNames
LocalNames I None

BeglnMethod
{ Statement } +

EndMethod MethodName } +

Action -->
Action ActionName
LocalNames LocalNames
BeginAction

{Statement;}+
EndAction ActionName

I None

Statement -->
Assignment
Selection
WhileLoop
Instantiation
Message
Return (Expression)
Read (Names)
Write (Expression)

Assignment
Name := Expression

Selection
If (Expression) Then

{Statement;}+

-->

-->

192

{ElseIf (Expression)
Then{Statement;l+}

[Else {Statement;)+
EndIf

WhileLoop
While (Condition)

{Statement;}+
EndWhile

-->

Instantiation -->
ClassName := New(ClassName)
IClassName := Get (ClassName)

Message -->
ObjectName : Selector[

(ParameterNames)]

Selector
MethodName

-->

Names - ->
Name

l Name , Names
I Name : TypeName

Name - ->
Name [:= InitialValue]

Figure 1 BNF For OOPL Concepts

The pseudocode program in the Appendix consists of five
classes: a Utilities class providing input and output
procedures, a Bank Account class with two subclasses
Checking Account and Savings Account; the fifth class,
NOW Account is a subclass of both Checking Account and
Savings Account and is provided as an example of multiple
inheritance.

Although the example is somewhat lengthy, a true
banking system would be far longer. Only the class
declarations are shown here. Actions that operate on object
instances from these classes are shown in section 5.

Types are omitted; for example, owner, address,
phonenumber etc are all (likely) of type string.

4. Review of Attribute Grammar
Concepts

Attribute grammars consist of BNF describing the syntax
with semantic functions describing the semantics. In the
BNF for the pseudocode example described here, a program
consists of class descriptions describing both the data and
operations associated with objects of each class.

Attribute grammars are used in compiler environments to
specify semantics in the same sense that BNF specifies
syntax. Just as compiler tools allow BNF to be input to
create the syntax analyzer, there are also tools which create
a semantic analyzer from attribute grammar input (Far82).
Many of these syntax/semantic analyzer generator tools
work together :

J,
Scanner
Generator

Parser
Generator

Evaluator

S o u r c e

Figure 2

Generator I

Parser S©annerll Ewalgato~

.~va~n t6c~ l ~
E w ,r~ra f e d

Syntax/Semantic Analyzer Tool

In Figure two, an attribute grammar, consisting of BNF
plus token descriptions and semantic functions is input.
From the token description, a lexical analyzer is built;
from the BNF a syntax analyzer is built; from the
attributes and semantic functions, the evaluator is built.
Alternatively, for some attribute grammars for which it is
too difficult at compiler generation time to generate the
evaluator (Ken76, Ken77), handcoded evaluators can be
written with varying ease and efficiency. Although it is
possible to evaluate some attributes at parse time, this
paper presumes that all attributes are evaluated after the
program has been parsed.

4.1 Attributes

Attributes are variables to which values are assigned. Each
attribute variable is associated with a nonterminal or
terminal of the grammar. Thus, in the BNF pseudocode for
our example, the variable MethodList (italics will be used
for attributes) is associated with the nonterminal

193

ClassDescription (as well as with various other
nonterminals). The notation is :

Clas sDescript ion. MethodList

ClassDescription is the nonterminal representing a
syntactic class and MethodList is its associated attribute
which will be assigned a semantic value.

Values are assigned to attributes by equations called
semantic functions. These equations are evaluated locally,
that is, within the scope of a production. Consider, for
example, the production defining the syntax of
ClassDescription. To it has been added a semantic equation
defining a semantic value for a variable MethodList to be
associated with the nonterminal ClassDescription.

At compile time, the attribute MethodList will be
evaluated at lhe node(s) ClassDescription :

ClassDescription -->
Class Clas sName

SuperClass
SuperClassNames I None

ClassVariables
Inherit { InheritClassNames }
From ClassName}+ I None
Introduce IntroClassNames

I None
SharedVariables

Inherit { SharedClas sNames }
From ClassName } + I None
Introduce SharedClassNames

I None
Methods Methods I None
EndClass Clas sName

ClassDescription.MethodList :=
Methods.MethodList

The attribute, MethodList, is associated with both the
nonterminals ClassDescription and Methods. At compile
time, the value of MethodList is passed up the parse tree
since the nonterminal Methods appears on the right-hand
side of the equation and the nonterminal ClassDescription
appears on the left-hand side. Such attributes are termed
synthesized. Attributes whose values are passed down the
parse free are termed inherited.

Terminals may have only synthesized attributes, and their
values are assigned by the lexical analyzer. Inherited
attributes of the start symbol are given values via
parameters when attribute evaluation begins.

5 Implementing Semantics of
Object-Oriented Languages Using
Attributes
In this section, we show how inheritance, multiple
inheritance, message passing, polymorphism, and even late
binding can be facilitated at compile time by attribute
grammars. In what follows, we show separate parse trees
for separate class declarations. In addition, it can be
assumed that the parser can create a topological ordering in
which to evaluate attributes. Thus, for our example, the
attributes for BankAccount are evaluated before those for
SavingsAccount and before those for CheckingAccount.
The attributes for SavingsAccount and CheckingAccount
are evaluated before those for NOWAccount and the
attributes for all the class declarations are evaluated before
those of the actions. This ordering is shown in Figure
three.

Bank Account
Utilities

Savings Checking
Account Account

N~//~e¢ount

Actions

Figure 3 Attribute Evaluation Order

5.1 T h e U n e v a l u a t e d Parse Trees

For the four classes of interest here, Bank Account (BA),
Savings Account (SA), Checking Account (CA) and
NOWAccount (NOW), the parse trees before attribute
evaluation are shown in Figure four. Nodes that are not of
interest here (e.g., Shared Variables) are not shown for
simplicity. Method Names are abbreviated, e.g., GIR for
GetlnterestRate.

194

Bank Account :

Close Deeori ption
" " i - , , ~

~erne .eme, .11 k
J - J I nh1:rit I ntraduen ~l

EIA II l e j J g~eie l i z~
None 61R I

CB Neni

GAB

Savings Account :

CleB# DeBori ption
- - - ' i ' -

Class 5uPerCloss ... l~tl~oOs
Name Nsma~ ~

I I Inher i t Introduce
SA B h A I 3peclal lze

W i = I
From From N o n ~

A ~mTB
SA f i l E C A C C

CO

D A N

Checking Account :

mass Description

Class SuperClaee ... M--'othods
Na me Na rne~ . . , , , " " 1 "

I I Inher i t I ntroduc e \
C~i BA J I special1 ze

From CC I
A Nll n£

N OW Account

BA C 6
. . .

~ A N

E ' I ~ { ~ I ~ J p , = r ' i ~ a = : I - I w t h m c l s

:7: :c/TN
Ir 't~Dvlt Ird:l."~due~ Mt~di{V

= ~ CFIHO
~ F
allll, l ' t ll~

Figure 4 The Class Trees

5.2 The Attributes

There are three attributes :

(1) ClassName, abbreviated CN, an inherited attribute,
passed down the class declaration tree to the Methods
subtree. As the mnemonics imply, it carries the name of
the current class down the Iree.

(2) SuperClassNames, abbreviated SN, an inherited
attribute which descends to the Methods sublree and is used
to make available the names of superclasses to the class.

(3) MethodList, abbreviated ML, a synthesized attribute
which, when it finally reaches the top of the tree, contains
a list of methods available to the current class. Its value is
a list of pairs : ClassName & MethodName for each
MethodName available to the ClassName, and for each
class name. They are ordered so that the methods belonging
to the current class are listed first, with superclass methods
listed second.

5.3 The Semantic Functions

The two productions of interest here are those for
ClassDescription and Methods : The semantic functions
follow each production.

ClassDescription -->
Class ClassName
SuperClass

SuperClassNamesINone
ClassVariables

{Inherit InheritClassNames}
From ClassName}+ I None
Introduce IntroClassNames

I None
SharedVariables

{Inherit SharedClassNames}
From ClassName}+ J None
Introduce SharedClassNames

i None
Methods MethodsJNone
EndClass ClassName

(i) Methods.CN = LexValue
(ClassName)

(ii) Methods. SN ={LexValue
(SuperClassNames)}

(iii) ClassDescription.ML=
Methods.ML

Methods -->
{Inherit InheritMethodNames

From ClassName}+ INone
Introduce IntroduceMethodNames

I None
{Specialize SpecializeMethodName

195

With MethodName Before}+
{Specialize SpecializeMethodName

With MethodName After}+
I None

Definitions DefinitionslNone

(iv) Methods.ML= Methods.gN
& {LexValue(IntroduceMethodNames)}

+ Methods.CN
& {LexValue

(SpecializeMethodName '
NewMethodName) } + Methods.SN

({LexValue(InheritMethodNames)}
- {LexValue

(SpecializeMethodNames)})

The nomdon is explained as follows :

{ } indicates an ordered fist.

& is defined for both elements and lists :

a & {B ,C ,D } i s { a & B , a & C , a & D }

{a,b } & { B ,C ,D } i s { a & B , a & C , a & D b
& B , b & C , b & D }

where lowercase represents elements and uppercase
represents sets.

Bank Account :
Class Descri ption

Class Super Class ...Methods c~=~
Name Names

I Heine Inherit Introduce
BA i I Specialize

Non, GIR
CB I

None

GAN

Attribute SN can be evaluated using function (ii) :

Bank Account:

Class Descri ption CAt-- 9,#

Class Super Class ...Methods
Name Names ~ 7 ~ = ~ S o n e ~

I Ngne Inherit Introduce
BA I I Specialize

None GIR
CB I

None

GAN

+ appends two lists, that is,

{a,b,c } + {d,e } is {a, b, c, d, e}

- is set difference, that is,

{a, b, c} - {b} is {a, c}

' appends two method names, that is,

a ' b appends the new method name b before or after a,
according to the syntax.

5.4 Attribute Evaluation

Using a topological ordering, the attributes for Bank
Account will be evaluated first, then those for Savings
Account, Checking Account and NOWAccount.

B a n k A c c o u n t

Attribute CN can be evaluated using function (i):

Attribute ML can be calculated using functions (iii) and
(iv). For function (iv),

Methods.ML = BA & { GIR, CB, ..., GAN } +
None & ({ None } - {None}) + BA & {None} =
{ BA & GIR, BA & CB, ..., BA & GAN } :

Bank Account:

Class Descri ption . _

Class Super Class ...Methods
me Names " '" '~ ".,.,-,.,"~¢'%~=LISonez~ Ne
I Nolnelnheri~ Int ro 'duce~'

BA I I Specialize
None GIR

cB I
None

= o .

(;AN

t'~ =,~BA&G IR,BA&CB.. . ,BA&GAH~

196

Function (iii) is simply a copy rule and the completely
attributed tree is :

Bank Account :

C'lags Deser l p t lon

c ~ = Super c:1=== ...Method'-~ £:4.'= R.,e

I Noino Inherl t I nt r'c~d u c e ' ~ ~ - ' ' ' ' "
SA I i ~eo la r l ze

HOl lO Gl R
= B I

No no

/ ' ~ " ,~B A & 8 m: , B A&C:B . . . , B ,A,,l~r. ~ ANT

N O W A c c o u n t :

Class g u p e r C l ~ Hethad=
N~rn~ Names ~ - MO'W

.'=, J^
C$, " I %

Inheri t Introduce ModlfU

From Fram Nol le ^ / ' , [o g A GIR . _ _ Be re
CB C ~ ~ t ;
. . .

s a w C r M B
W F
A I T B

/ '~ = ~ N O ' # , ~ e l R . S W',~,CB S t, ,~. A l l " B ,

The rest of the trees are shown after complete attribute
evaluation •

Savings Account:

,,~m, I Inffwitldr0d~
I aM I I Specia l im

s A Frum WF I
B ~ ' ~ I R & I T B NOlle

C B
. . °

BAM

Checking Account:

Clef= Doee ri ption q

el.a== Names ~ 7 ' ~ .

rd~me I I n h e r i t I I'lodifu
I

CA BA C B

IB, CL N

5.5 An Application

Inheritance, polymorphism, and late binding issues can
now be facilitated using these attributes. We address each
of these three issues by defining actions for the bank
example.

(1) I n h e r i t a n c e

Since the code which defines a method may be passed down
from class to subclass to subclass, and perhaps altered
along the way, it is helpful and efficient to maintain the
lists shown above which indicate the methods which a
class has available to it. This information need not be used
until run-time when a message is sent to an object to
perform the selector operation. This technique is shown in
Figure five.

Action CreateNewSavingsAccount

{Example of inheritance, object
instantiation and messaging}

LocalNames
CompoundInterestRate := 6,

{ThisAccount used for instantiation of
savings account object}

ThisAccount : SavingsAccount,
{IO used for instantiation of a utilities
object}

IO : Utilities
BeginAction {CreateNewSavingsAccount}
{Instantiate a savings account object}

ThisAccount := New (SavingsAccount);
{Instantiate a Utilities object }

197

IO := New (Utilities);
{ Send messages to object utilities and

to object savings account to set fields }
IO : PutPrompt ("Owner?");
IO : Input (Owner) ;
ThisAccount : SetOwner(Owner);
IO : PutPrompt ("Address?")
IO : Input (Address);
ThisAccount : SetAddress (Address);
IO : PutPrompt ("PhoneNumber?");
IO : Input (PhoneNumber);
ThisAccount :

SetPhoneNumber(PhoneNumber);
ThisAccount : GenerateAccountNumber;
IO : PutPrompt ("InitialDeposit");
IO : Input (InitialDeposit);
ThisAccount : DepositFunds

(InitialDeposit);
ThisAccount : AddInterestToBalance;

EndAction CreateNewSavingsAccount

Figure 5 Inheritance

Here, the object Savings Account is created and messages
are sent to it. The names of the corresponding methods are
easily found from the attribute list computed for Savings
Account.

Multiple inheritance is easily facilitated with the
computed attribute lists, also.

(2) Polymorphism

The action in Figure six illustrates polymorphism by
sending a message with the same selector
(AddlnterestToBalance) to two different objects. The
attributes computed for NOWAccount and Savings
Account again facilitate the selection of the correct method.

Action AddInterest
{Example shows simple polymorphism - can be
resolved at compile time}
Local Names
Accountl used for instantiation of a
NOWaccount object}
Accountl : NOWAccount,
{Account2 used for instantiation of a
Savings account object}
Account2 : SavingsAccount,
{IO used for instantiation of a Utilities
object}
IO : Utilities
BeginAction {AddInterest}

IO :=NEW(Utilities);
IO : Input(AccountName);
Accountl :=

GET(NOWAccount,AccountName);
{Presumably, AccountName has
2 different accounts}
Account2 :=
GET(SavingsAccountAccountName);
Accountl : AddInterestToBalance;
Account2 : AddInterestToBalance;

EndAction AddInterest

Figure 6 Simple Polymorphism

(3) Late Binding

Dynamic binding is a philosophy basic to many object-
oriented programming environments. And yet, it is often
admitted that dynamic binding is a flexibility that is paid
for in terms of efficiency. The solution may be to do as
much bookkeeping at compile time as possible to facilitate
dynamic binding. Figure seven shows a message that is
sent to an object whose identity is not known until run-
time (since the object type itself is an input value) :

Action AddInterest

{Example shows late binding}

Local Names
{Used for instantiation of an account
object}
Account : BankAccount,
{Used for instantiation of a Utilities

object}
IO : Utilities

BeginAction {AddInterest}

IO := NEW(Utilities);
IO : Input(AccountType);
IO : Input(AccountName);
IO : Input(Deposit);
Account := NEW(AccountType);
ACcount : DepositFunds(Deposit);
Account : AddInterestToBalance

EndAction AddInterest

Figure 7 Late Binding

Here, the specific object, whether it be a Savings
Account, a Checking Account or a NOWAccount is not
known until run-time. Nevertheless, once the proper object
is identified, the bookkeeping done by the compiler
facilitates accessing the proper method.

198

6. Conclusions

The use of attributes in compilers for semantic analysis is
well established. Object-oriented languages present unusual
semantic analysis needs in addition to the usual ones found
in all languages. Using a very high-level syntax and BNF,
three simple attributes, and four functions, we computed
information that facilitates inheritance (including multiple
inheritance), polymorphism, even bookkeeping for late
binding.

In a real language, there would, of course, be many more

nodes to the parse tree, and many more Ofunctions to
compute. In addition, restrictions were made to the
concepts here to ensure simplicity, and in some cases, just
to ensure a decision. For example, not all object-oriented
languages would declare inheritance in the ways done here,
e.g., it is common to assume methods are inherited and to
explicitly remove those not desired rather than mentioning
explicitly those to be inherited (Go184). Thus, the attribute
functions need to be specialized for a particular syntax.

Appendix

A Simple Banking System Using OOPL
Constructs

{ Class Descriptions }

Class Utilities
SuperClass None
ClassVariables

Inherit None
Introduce None

SharedVariables
Inherit None

Introduce None
Methods

Inherit None
Introduce

Input,
PutPrompt

Specialize None
Definitions

Method Input (Info)
LocalNames None
BeginMethod

Read(Info);
EndMethod Input
Method PutPrompt (Info)

EndClass

LocalNames None
BeginMethod

Write (Info);
EndMethod PutPrompt
Utilities

Class BankAccount
SuperClass None
ClassVariables

Inherit None
Introduce

Owner,
Address,
PhoneNumber,
AccountNumber
Balance

SharedVariables
Inherit None
Introduce

HighInterestRate := 0.07,
LowInterestRate := 0.045,

NextAccountNumber:= 0
Methods

Inherit None
Introduce

GetInterestRate,
DepositFunds,
SetOwner,
SetAddress,
SetPhoneNumber,
GenerateAccountNumber

Specialize None
Definitions

Method GetInterestRate
LocalNames None
BeginMethod
If (Balance > i0000) Then
Return (HighInterestRate);
Else

Return (LowInterestRate);
EndIf;

EndMethod GetInterestRate
Method DepositFunds

(AmountDeposited)
LocalNames None
BeginMethod

Balance := Balance +
AmountDeposited

EndMethod Deposit Funds
Method SetOwner (Name)

LocalNames None
BeginMethod

Owner := Name;
EndMethod SetOwner
Method SetAddress(Name)

LocalNames None
BeginMethod

Address := Name;
EndMethod SetAddress
Method SetPhoneNumber

(Number)

199

..... ~ ~ ~ ~ ~ ~: : ~ ~::i~=~i ~

LocalNames None
BeginMethod

PhoneNumber := Number;
EndMethod SetPhoneNumber
Method GenerateAccountNumber

LocalNames None
BeginMethod

NextAccountNumber :=
NextAccountNumber + i;

AccountNumber:=
NextAccountNumber;

EndMethod
GenerateAccountNumber

EndClass BankAccount

Class SavingsAccount
SuperClass

BankAccount
ClassVariables

Inherit
Owner,
Address,
PhoneNumber,
AccountNumber,
Balance

From BankAccount
Introduce None

SharedVariables
Inherit
HighInterestRate := 0.07,
LowInterestRate := 0.045,

NextAccountNumber:= 0
Introduce None

Methods
Inherit

GetInterestRate,
DepositFunds,
SetOwner,
SetAddress,
SetPhoneNumber,
GenerateAccountNumber,

From BankAccount
Introduce

WithDrawFunds,
AddInterestToBalance

Specialize None
Definitions

Method WithDrawFunds
(AmountRequested)

LocalNames
IO, PromptString

BeginMethod
If (AmountRequested >

Balance) Then
IO := New(Utilities);
IO := PutPrompt

(PromptString);
Else Balance :=

Balance -
AmountRequested;

EndIf
EndMethod WithdrawFunds

EndClass

Method AddInterestToBalance
LocalNames InterestRate
BeginMethod
InterestRate := self :

GetInterestRate;
Balance := Balance +

Balance *InterestRate;
EndMethod

AddInterestToBalance
SavingsAccount

Class CheckingAccount
SuperClass

BankAccount
ClassVariables

Inherit
Owner,
Address,
PhoneNumber,
AccountNumber
Balance

From BankAccount
Introduce

JointAccount,
SecondAccountHolder

SharedVariables
Inherit
HighInterestRate := 0.07;
LowInterestRate := 0.045;

NextAccountNumber:= 0
From BankAccount
Introduce

BounceFee := 12.50
Methods

Inherit
DepositFunds,

{GetInterestRate removed}
SetOwner,
SetAddress,
SetPhoneNumber,
GenerateAccountNumber,

From BankAccount
Introduce

ClearCheck
Specialize None
Definitions
Method

ClearCheck(CheckAmount)
LocalNames IO, SomePrompt
BeginMethod

If (CheckAmount > Balance Then
IO := New(Utilities);

IO:PutPrompt(SomePrompt);
Balance := Balance -

BounceFee;
Else Balance :=

Balance -CheckAmount;
EndIf

EndMethod ClearCheck
EndClass CheckingAccount

200

Class NOWAccount
SuperClass

SavingsAccount,
CheckingAccount

ClassVariables
Inherit

Owner,
Address,
PhoneNumber,
Balance,
AccountNumber
JointAccount,
SecondAccountHolder

From CheckingAccount
Introduce None

SharedVariables
Inherit

HighInterestRate := 0.07;
LowInterestRate := 0.045;

NextAccountNumber:= 0
From SavingsAccount
Introduce None

Methods
Inherit

GetInterestRate,
DepositFunds,
SetOwner,
SetAddress,
SetPhoneNumber,
GenerateAccountNumber,
WithDrawFunds,
AddInterestToBalance

From Savings Account
Inherit

ClearCheck
From CheckingAccount
Introduce None
Specialize

GetInterestRate
With CheckForMinimumBalance
Before

Definitions
Method

CheckForMinimumBalance
LocalNames None
BeginMethod
If (Balance <

I000) Then
Return (0);

EndIf;
EndMethod

CheckForMinimumBalance

EndClass
CheckForMinimumBalance

NOWAccount

{ Actions }

Bibliography
Aho, A.V., Sethi, R., & Ullman, J. D. , Compilers,

Principles, Techniques, and Tools, (1986) Addison
Wesley, Reading MA.

Babich, W.A. & Jazayeri, M., "The Methods of Attributes
for Data Flow Analysis, Part I. Exhaustive Analysis",
Acta Informatica 10, (1978) 245 - 264.

Babich, W.A. & Jazayeri, M., "The Methods of Attributes
for Data Flow Analysis, Part II. Demand Analysis",
Acta Informatica 10, (1978) 265 - 272.

Bochmann, G.V., & Ward, P., "Compiler Writing System
for Attribute Grammars", Computer Journal 21, 2
(1978) pp. 144- 148,

Briot, J., & Cointe, P., "A Uniform Model for Object-
Oriented Languages Using the Class Abstraction",
(1987), Architectures and Languages, pp 40 - 43.

Cox, B.J., Object Oriented Programming, An
Evolutionary Approach, (1986), Addison Wesley,
Reading MA.

Demers, A., Reps, T., & Teitelbaum, T. , "Attribute
Propagation by Message Passing", ACM SIGPLAN
85 Symposium on Language Issues in Programming
Environments.

Farrow, R., "Experience with an Atlribute Grammar -
Based Compiler", Ninth ACM Symposium on
Principles of Programming Languages (1982) pp. 95 -
107.

Fischer, C.N. & LeBlanc, R.J., Crafting a Compiler,
(1988) Benjamin/Cummings, Menlo Park, CA.

Goldberg, A., & Robson, D., Smalltalk-80: The Language
and its Implementation, (1984) Addison-Wesley,
Reading, MA

Harland, D.M., Polymorphic Programming Languages,
Design & Implementation (1984), Harland/E|lis
Horwood Limited.

Kennedy, K. & Warren, S.K., "Automatic Generation of
Efficient Evaluators for Attribute Grammars", Third
ACM Symposium on Principles of Programming
Languages (1976), pp. 32 - 49.

Kennedy, K. & Ramanathan, J., "A Deterministic
Attribute Grammar Evaluator Based on Dynamic

201

Sequencing", Fourth ACM Symposium on Principles
of Programming Languages, (1977), pp. 72 - 85.

Knuth, D.E., "Semantics of Context-free languages",
Mathematical Systems Theory, Vol. 2, No. 2, (1968)
pp. 127- 145.

Knuth, D.E., "Semantics of Context-free languages :
correction", Mathematical Systems Theory, Vol. 5,
No. 1, (1971) pp. 95.

Liskov, B., "Data Abstraction and Hierarchy", Addendum
to OOPSLA '87, pp 17 - 34.

Lorho, B., (ed.), Methods and Tools for Compiler
Construction, (1984), Cambridge University Press.

Schriver, B., & Wegner, P., (ed) Research Directions in
Object-Oriented Programming, (1987), MIT Press.

Snyder, A., "Encapsulation and Inheritance in Object-
Oriented Programming Languages", (1987), Proc. of
ACM Conf. on Object-Oriented Programming
Systems, Languages and Applications, SIGPLAN
Notices 21, 11

Wegner, P., "Dimensions of Object-Based Language
Design", (1987), OOPSLA '87, pp 168 - 182.

Wilson, R., "Object Oriented Languages Reorient
Programming Techniques", (1987), Computer Design
pp. 52 - 62.

Work by Professor Lemone performed while on sabbatical
leave at Ecole Polytechnique F6d6rale de Lausanne,
Switzerland.
Work by Professor MeConnell performed under a WPI Goddard
Fellowship & a Canisius faculty development grant.

202

