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Abstract 

Object-oriented solutions are becoming an established 
paradigm for writing robust, reusable software. Many 
object-oriented languages have begun to appear. This paper 
examines how the special object-oriented concepts might 
be implemented in a compiler using the also well- 
established tool of attribute grammars. 
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1 Introduction 

Attribute Grammars, invented by Knuth in the 60's 
(Knu68, Knu71), are used for semantic analysis by 
compiler writers in many of today's compilers and 
compiler tools (Far82, Lor84, Aho86, Fis88). Static type 
checking, storage allocation, expressions for array offsets, 
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even symbol table creation and dataflow analysis (Bab78, 
Boc78) are described using attributes and attribute 
grammars. 

Object-oriented programming languages present special 
problems to the compiler designer. Encapsulation, 
information hiding, message passing and methods, 
inheritance, overloading and polymorphism, late binding, 
are concepts associated with object oriented programming 
(Wi187). The syntax and semantics for expressing these 
concepts is an issue for compiler designers, as well. 

In this paper, an attribute grammar is presented 
describing some object-oriented programming language 
concepts. Every effort has been made to keep the syntax 
and semantics simple and yet broad enough to be applied to 
actual object-oriented languages. A pseudocode example (a 
Banking System) and its BNF are used for illustration. 

Section 2 reviews object-oriented concepts in order to 
show the philosophy and simplifications made to arrive at 
the pseudocode; Section 3 contains the BNF and the bank 
example; Section 4 reviews attribute grammars and their 
use in creating language processors; Section 5 shows the 
attributes and semantic functions for implementing the 
semantics of object-oriented programming concepts. 
Section 6 draws conclusions concerning the applicability 
of this to object-oriented languages. 
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2 Rev iew of Object -Oriented  
Concepts  

Object-oriented concepts evolved from encapsulation and 
information hiding of abstract data types. To encapsulation 
and information hiding are added messages, methods, 
inheritance, overloading, polymorphism, and late binding 
(Cox86, Sch87). 

In this paper, we adopt the definitions of object-oriented as 
defined in [Weg87]. Thus, an object-oriented language 
supports objects which, themselves, belong to classes. The 
classes are hierarchically connected by an inheritance 
mechanism. 

In addition, we consider polymorphism and late-binding. 

2.1 Objects, Classes and Data 
Abstraction 

Objects are dynamic data on which dynamic actions are 
performed, and which have a state. A class is a static 
grouping to which similar objects belong and under whose 
auspices new objects may be created. The data is described 
by variables and behavior is characterized by permitted 
operations. 

Data abstraction hides the internal representation of the 
data and the implementation of the operations. The user 
specifies what operation is to be performed, not how the 
operation is to be performed. 

2.2 Messages  and Methods  

Data abstraction prevents an object's data from being 
directly manipulated. To perform an operation on an 
object, a message is sent. The message contains a selector 
which tells the object what to do. The message may also 
contain parameters to aid in the operation or through which 
the object may return values. 

A class groups actions called methods and variables called 
class variables. When an object of a particular class 
receives a message to perform an action, it finds the 
method(s) corresponding to the message selector and 
performs the action. For a banking system, a message may 
be sent to a Savings Account object telling it to generate 
an account number for a new Savings Account. 
GenerateAccountNumber is the selector in the message. 
The sender of the message does not know how this number 
is generated. The object Savings Account invokes its 
method, GenerateAccountNumber to generate the account 
number. 

Two types of variables may be identified - class variables 
whose values vary for each object instance of that class and 
shared variables whose values are common and accessible 
to, and changeable by, all object instances of a class. 

2.3 Subclasses, Superclasses and 
Inheritance 

Reusability of software is enhanced via inheritance, a 
technique for defining new classes called subclasses in 
terms of existing classes. These new classes are defined by 
describing how they are similar and how they differ from 
their preexisting super classes. They may share the same 
memory layout and respond to messages with the same or 
slightly altered methods. 

A subclass is said to inherit characteristics of its 
superclass, enabling the creation of classes which are very 
similar to other classes, thus saving "programmer" time. 
Multiple inheritance allows a class to inherit from more 
than one superclass. Altering a method from that of a 
superclass is referred to as specialization. In our model, 
inheritance of data and methods is stated explicitly. This 
does not require the programmer to write (much) more 
code, and is worth the tradeoff in safety. 

A Bank Account class may have two subclasses, 
Checking Account and Savings Account. These subclasses 
may inherit many, but not all, of the methods of Bank 
Account. A class called NOWAccount may be defined and 
be an example of multiple inheritance if it is a subclass of 
both Checking Account and Savings Account and inherits 
from both. For NOWAccount, one of the inherited 
methods, GetlnterestRate, may be specialized by 
appending a method, CheckForMinimumBalance, to the 
beginning. 

2.4 Overloading and Polymorphism 

Overloading allows an operator to operate on more than 
one data type. For example, virtually all languages allow 
"+" to operate on both integer and real type data. 
Polymorphism extends this capability to allow procedures 
to operate on different types and functions to return 
values of different types on different calls (Har84). For 
example, a procedure Sort would be polymorphic if it 
could be used as the selector in a message to both an 
integer array object and a character array object. The objects 
themselves would invoke methods corresponding to the 
selector to perform the appropriate actions. In the bank 
example for (simple) polymorphism, GetlnterestRate is 
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the selector in a message to both a Savings Account object 
and a NOWAccount object. 

2.5 Late Binding 

Binding is the process whereby object operations and 
operands are combined. Early binding combines them at 
compile time (static binding) or before (program writing 
time) and is implemented with case statements which must 
be changed if a new data type is to be included for the 
operation. Late binding combines them as late as when the 
program is running (dynamic binding). Messages often 
require dynamic binding - in our example, the message to 
tell an account to add interest to the balance involves 
dynamic binding since the type of account is not known at 
compile time (see Late Binding example in section 5.5) 

3. Pseudocode  BNF and an 
E x a m p l e  

Briefly, a program consists of a number of class 
descriptions followed by a number of actions. 

The syntax for each class consists of the class name, the 
names of any super classes, the class and shared variables, 
methods, both inherited and those introduced in the class, 
and the definitions of the inlxoduced variables and methods. 

Class variables have their own values for each object 
instance of the class while shared variables share the value 
and make it accessible to each object instance. 

Actions are the usual statements found in algorithmic 
programming languages with the addition of the m~sage 
statement whose syntax is the ObjectName to receive the 
message, followed by a selector which tells the object what 
to do, followed by any parameters if necessary. 

NEW creates a new instance of a class, and GET, given 
appropriate information, searches a data base for a 
previously created object. 

Tokens are bolded. The metalanguage is extended BNF 
with {What} + indicating 1 or more What's and [What] 
indicating and optional What. It is these productions to 
which attribute functions will be added in section 4. Rather 
than repeat all the words that end in Name, the notation 

Name is used. Delimiters such as semicolons are 
omitted. BNF for expressions and data types is also 
omitted for simplicity. 

Program --> 
{ClassDescription}+ {Action}+ 

ClassDescription --> 

Class ClassName 
SuperClass 

SuperClassNameslNone 
ClassVariables 

{Inherit InheritClassNames 
From ClassName}+ I None 
Introduce IntroClassNames 

I None 
SharedVariables 

{Inherit SharedVarNames} 
From ClassName}+ I None 
Introduce SharedVarNames 

I None 
Methods MethodslNone 
EndClass ClassName 

Methods --> 
{Inherit InheritMethodNames 

From ClassName}+ I None 
Introduce IntroMethodNames 

[ N o n e  
{SpecializeSpecializeMethodName 

With MethodName Before}+ 
{SpecializeSpecializeMethodName 

With MethodName After}+ 
I None 

Definitions Definitions 
I None 

Definitions --> 
{Method MethodName 

I Met hodName 
(ParameterNames) 

LocalNames 
LocalNames I None 

BeglnMethod 
{ Statement } + 

EndMethod MethodName } + 

Action --> 
Action ActionName 
LocalNames LocalNames 
BeginAction 

{Statement;}+ 
EndAction ActionName 

I None 

Statement --> 
Assignment 
Selection 
WhileLoop 
Instantiation 
Message 
Return (Expression) 
Read (Names) 
Write (Expression) 

Assignment 
Name := Expression 

Selection 
If (Expression) Then 

{Statement;}+ 

--> 

--> 
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{ElseIf (Expression) 
Then{Statement;l+} 

[Else {Statement;)+ 
EndIf 

WhileLoop 
While (Condition) 

{Statement;}+ 
EndWhile 

--> 

Instantiation --> 
ClassName := New(ClassName) 
IClassName := Get (ClassName) 

Message --> 
ObjectName : Selector[ 

(ParameterNames)] 

Selector 
MethodName 

--> 

Names - -> 
Name 

l Name , Names 
I Name : TypeName 

Name - -> 
Name [:= InitialValue] 

Figure 1 BNF For OOPL Concepts 

The pseudocode program in the Appendix consists of five 
classes: a Utilities class providing input and output 
procedures, a Bank Account class with two subclasses 
Checking Account and Savings Account; the fifth class, 
NOW Account is a subclass of both Checking Account and 
Savings Account and is provided as an example of multiple 
inheritance. 

Although the example is somewhat lengthy, a true 
banking system would be far longer. Only the class 
declarations are shown here. Actions that operate on object 
instances from these classes are shown in section 5. 

Types are omitted; for example, owner, address, 
phonenumber etc are all (likely) of type string. 

4. Review of Attribute Grammar 
Concepts 

Attribute grammars consist of BNF describing the syntax 
with semantic functions describing the semantics. In the 
BNF for the pseudocode example described here, a program 
consists of class descriptions describing both the data and 
operations associated with objects of each class. 

Attribute grammars are used in compiler environments to 
specify semantics in the same sense that BNF specifies 
syntax. Just as compiler tools allow BNF to be input to 
create the syntax analyzer, there are also tools which create 
a semantic analyzer from attribute grammar input (Far82). 
Many of these syntax/semantic analyzer generator tools 
work together : 

J, 
Scanner 
Generator  

Parser 
Generator 

Evaluator 

S o u r c e  

Figure 2 

Generator I 

Parser S©annerll Ewalgato~ 

.~va~n t6c~ l ~  
E w  ,r~ra f e d  

Syntax/Semantic Analyzer Tool 

In Figure two, an attribute grammar, consisting of BNF 
plus token descriptions and semantic functions is input. 
From the token description, a lexical analyzer is built; 
from the BNF a syntax analyzer is built; from the 
attributes and semantic functions, the evaluator is built. 
Alternatively, for some attribute grammars for which it is 
too difficult at compiler generation time to generate the 
evaluator (Ken76, Ken77), handcoded evaluators can be 
written with varying ease and efficiency. Although it is 
possible to evaluate some attributes at parse time, this 
paper presumes that all attributes are evaluated after the 
program has been parsed. 

4.1 Attributes 

Attributes are variables to which values are assigned. Each 
attribute variable is associated with a nonterminal or 
terminal of the grammar. Thus, in the BNF pseudocode for 
our example, the variable MethodList (italics will be used 
for attributes) is associated with the nonterminal 
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ClassDescription (as well as with various other 
nonterminals). The notation is : 

Clas sDescript ion. MethodList 

ClassDescription is the nonterminal representing a 
syntactic class and MethodList is its associated attribute 
which will be assigned a semantic value. 

Values are assigned to attributes by equations called 
semantic functions. These equations are evaluated locally, 
that is, within the scope of a production. Consider, for 
example, the production defining the syntax of 
ClassDescription. To it has been added a semantic equation 
defining a semantic value for a variable MethodList to be 
associated with the nonterminal ClassDescription. 

At compile time, the attribute MethodList  will be 
evaluated at lhe node(s) ClassDescription : 

ClassDescription --> 
Class Clas sName 

SuperClass 
SuperClassNames I None 

ClassVariables 
Inherit { InheritClassNames } 
From ClassName}+ I None 
Introduce IntroClassNames 

I None 
SharedVariables 

Inherit { SharedClas sNames } 
From ClassName } + I None 
Introduce SharedClassNames 

I None 
Methods Methods I None 
EndClass Clas sName 

ClassDescription.MethodList := 
Methods.MethodList 

The attribute, MethodList, is associated with both the 
nonterminals ClassDescription and Methods. At compile 
time, the value of MethodList is passed up the parse tree 
since the nonterminal Methods appears on the right-hand 
side of the equation and the nonterminal ClassDescription 
appears on the left-hand side. Such attributes are termed 
synthesized. Attributes whose values are passed down the 
parse free are termed inherited. 

Terminals may have only synthesized attributes, and their 
values are assigned by the lexical analyzer. Inherited 
attributes of the start symbol are given values via 
parameters when attribute evaluation begins. 

5 Implementing Semantics of 
Object-Oriented Languages Using 
Attributes 
In this section, we show how inheritance, multiple 
inheritance, message passing, polymorphism, and even late 
binding can be facilitated at compile time by attribute 
grammars. In what follows, we show separate parse trees 
for separate class declarations. In addition, it can be 
assumed that the parser can create a topological ordering in 
which to evaluate attributes. Thus, for our example, the 
attributes for BankAccount are evaluated before those for 
SavingsAccount and before those for CheckingAccount. 
The attributes for SavingsAccount and CheckingAccount 
are evaluated before those for NOWAccount and the 
attributes for all the class declarations are evaluated before 
those of the actions. This ordering is shown in Figure 
three. 

Bank Account 
Utilities 

Savings Checking 
Account Account 

N~//~e¢ount 

Actions 

Figure 3 Attribute Evaluation Order 

5.1 T h e  U n e v a l u a t e d  Parse  Trees  

For the four classes of interest here, Bank Account (BA), 
Savings Account (SA), Checking Account (CA) and 
NOWAccount (NOW), the parse trees before attribute 
evaluation are shown in Figure four. Nodes that are not of 
interest here (e.g., Shared Variables) are not shown for 
simplicity. Method Names are abbreviated, e.g., GIR for 
GetlnterestRate. 
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Bank Account : 

Close Deeori ption 
" " i -  , , ~  

~erne .eme, .11 k 
J - J  I nh1:rit I ntraduen ~l  

EIA II l e  j J g~eie l i  z~ 
None 61R I 

CB Neni 

GAB 

Savings Account  : 

CleB# DeBori ption 
- - - ' i ' -  

Class 5uPerCloss ... l~tl~oOs 
Name Nsma~ ~ 

I I Inher i t  Introduce 
SA B h  A I 3peclal lze 

W i  = I 
From From N o n ~  

A ~mTB 
SA f i l E  C A C C  

CO 

D A N  

Checking  Account  : 

mass Description 

Class SuperClaee ... M--'othods 
Na me Na rne~  . . , , , " " 1 "  

I I Inher i t  I ntroduc e \  
C~i BA J I special1 ze 

From CC I 
A Nll n£ 

N OW  Account 

BA C 6  
. . .  

~ A N  

E ' I ~ { ~  I ~ J p , = r ' i ~ a = :  I - I w t h m c l s  

:7: :c/TN 
Ir 't~Dvlt Ird:l."~due~ Mt~di{V 

= ~ CFIHO 
~ F  
allll, l ' t  ll~ 

Figure  4 The  Class Trees  

5.2 The Attributes 

There are three attributes : 

(1) ClassName, abbreviated CN, an inherited attribute, 
passed down the class declaration tree to the Methods 
subtree. As the mnemonics imply, it carries the name of 
the current class down the Iree. 

(2) SuperClassNames, abbreviated SN, an inherited 
attribute which descends to the Methods sublree and is used 
to make available the names of  superclasses to the class. 

(3) MethodList, abbreviated ML, a synthesized attribute 
which, when it finally reaches the top of  the tree, contains 
a list of methods available to the current class. Its value is 
a list of  pairs : ClassName & MethodName for each 
MethodName available to the ClassName, and for each 
class name. They are ordered so that the methods belonging 
to the current class are listed first, with superclass methods 
listed second. 

5.3 The Semantic Functions 

The two productions of  interest here are those for 
ClassDescription and Methods : The semantic functions 
follow each production. 

ClassDescription --> 
Class ClassName 
SuperClass 

SuperClassNamesINone 
ClassVariables 

{Inherit InheritClassNames} 
From ClassName}+ I None 
Introduce IntroClassNames 

I None 
SharedVariables 

{Inherit SharedClassNames} 
From ClassName}+ J None 
Introduce SharedClassNames 

i None 
Methods MethodsJNone 
EndClass ClassName 

(i) Methods.CN = LexValue 
(ClassName) 

(ii) Methods. SN ={LexValue 
(SuperClassNames)} 

(iii) ClassDescription.ML= 
Methods.ML 

Methods --> 
{Inherit InheritMethodNames 

From ClassName}+ INone 
Introduce IntroduceMethodNames 

I None 
{Specialize SpecializeMethodName 
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With MethodName Before}+ 
{Specialize SpecializeMethodName 

With MethodName After}+ 
I None 

Definitions DefinitionslNone 

(iv) Methods.ML= Methods.gN 
& {LexValue(IntroduceMethodNames)} 

+ Methods.CN 
& {LexValue 

(SpecializeMethodName ' 
NewMethodName) } + Methods.SN 

({LexValue(InheritMethodNames)} 
- {LexValue 

(SpecializeMethodNames)}) 

The nomdon is explained as follows : 

{ } indicates an ordered fist. 

& is defined for both elements and lists : 

a &  {B ,C ,D  .. . .  } i s { a & B , a & C , a & D  .... } 

{a,b .. . .  } & { B ,C ,D  ... .  } i s { a & B , a & C , a & D  .... .  b 
& B , b & C , b & D  .. . .  } 

where lowercase represents elements and uppercase 
represents sets. 

Bank Account : 
Class Descri ption 

Class Super Class ...Methods c~=~ 
Name Names 

I Heine Inherit Introduce 
BA i I Specialize 

Non, GIR 
CB I 

None 

GAN 

Attribute SN can be evaluated using function (ii) : 

Bank Account:  

Class Descri ption CAt-- 9,# 

Class Super Class ...Methods 
Name Names ~ 7 ~ = ~ S o n e ~  

I Ngne Inherit Introduce 
BA I I Specialize 

None GIR 
CB I 

None 

GAN 

+ appends two lists, that is, 

{a,b,c  . . . .  } + {d,e .... } is {a, b, c, d, e} 

- is set difference, that is, 

{a, b, c} - {b} is {a, c} 

' appends two method names, that is, 

a '  b appends the new method name b before or after a, 
according to the syntax. 

5.4 Attribute Evaluation 

Using a topological ordering, the attributes for Bank 
Account will be evaluated first, then those for Savings 
Account, Checking Account and NOWAccount. 

B a n k  A c c o u n t  

Attribute CN can be evaluated using function (i): 

Attribute ML can be calculated using functions (iii) and 
(iv). For function (iv), 

Methods.ML = BA & { GIR, CB, ..., GAN } + 
None & ({ None } - {None} ) + BA & {None} = 
{ BA & GIR, BA & CB, ..., BA & GAN } : 

Bank Account:  

Class Descri ption . _ 

Class Super Class ...Methods 
me Names " '" '~  ".,.,-,.,"~¢'%~=LISonez~ Ne 
I Nolnelnheri~ Int ro 'duce~'  

BA I I Specialize 
None GIR 

cB I 
None 

= o .  

(;AN 

t'~ =,~BA&G IR,BA&CB.. . ,BA&GAH~ 
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Function (iii) is simply a copy rule and the completely 
attributed tree is : 

Bank Account  : 

C'lags Deser l  p t lon  

c ~ =  Super  c:1=== ...Method'-~ £:4.'= R.,e 

I Noino Inherl t  I nt r'c~d u c e ' ~  ~ - ' ' ' ' "  
SA I i ~eo la r l ze  

HOl lO Gl R 
= B  I 

No no 

/ ' ~  " ,~B A & 8  m: , B  A&C:B . . .  , B  ,A,,l~r. ~ ANT 

N O W A c c o u n t :  

Class g u p e r C l ~  Hethad= 
N~rn~ Names ~ -  MO'W 

.'=, J^ 
C$,  " I % 

Inheri t  Introduce ModlfU 

From Fram Nol le  ^ / ' ,  [o g A  GIR . _ _  Be re 
CB C ~  ~ t ;  
. . .  

s a w  C r M B  
W F  
A I T B  

/ '~  = ~ N O ' # , ~ e l R  . S  W',~,CB . . . .  S t, ,~. A l l " B ,  

The rest of the trees are shown after complete attribute 
evaluation • 

Savings Account: 

,,~m, I Inffwitldr0d~ 
I aM I I Specia l im 

s A  Frum WF I 
B ~ ' ~ I R  & I T B  NOlle 

C B  
. . °  

BAM 

Checking  Account: 

Clef= Doee ri ption q 

el.a== Names ~ 7 ' ~ .  

rd~me I I n h e r i t  I I'lodifu 
I 

CA BA C B  

IB, CL N 

5.5 An Application 

Inheritance, polymorphism, and late binding issues can 
now be facilitated using these attributes. We address each 
of these three issues by defining actions for the bank 
example. 

(1) I n h e r i t a n c e  

Since the code which defines a method may be passed down 
from class to subclass to subclass, and perhaps altered 
along the way, it is helpful and efficient to maintain the 
lists shown above which indicate the methods which a 
class has available to it. This information need not be used 
until run-time when a message is sent to an object to 
perform the selector operation. This technique is shown in 
Figure five. 

Action CreateNewSavingsAccount 

{Example of inheritance, object 
instantiation and messaging} 

LocalNames 
CompoundInterestRate := 6, 

{ThisAccount used for instantiation of 
savings account object} 

ThisAccount : SavingsAccount, 
{IO used for instantiation of a utilities 
object} 

IO : Utilities 
BeginAction {CreateNewSavingsAccount} 
{Instantiate a savings account object} 

ThisAccount := New (SavingsAccount); 
{Instantiate a Utilities object } 
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IO := New (Utilities); 
{ Send messages to object utilities and 

to object savings account to set fields } 
IO : PutPrompt ("Owner?"); 
IO : Input (Owner) ; 
ThisAccount : SetOwner(Owner); 
IO : PutPrompt ("Address?") 
IO : Input (Address); 
ThisAccount : SetAddress (Address); 
IO : PutPrompt ("PhoneNumber?"); 
IO : Input (PhoneNumber); 
ThisAccount : 

SetPhoneNumber(PhoneNumber); 
ThisAccount : GenerateAccountNumber; 
IO : PutPrompt ("InitialDeposit"); 
IO : Input (InitialDeposit); 
ThisAccount : DepositFunds 

(InitialDeposit); 
ThisAccount : AddInterestToBalance; 

EndAction CreateNewSavingsAccount 

Figure 5 Inheritance 

Here, the object Savings Account is created and messages 
are sent to it. The names of the corresponding methods are 
easily found from the attribute list computed for Savings 
Account. 

Multiple inheritance is easily facilitated with the 
computed attribute lists, also. 

(2) Polymorphism 

The action in Figure six illustrates polymorphism by 
sending a message with the same selector 
(AddlnterestToBalance) to two different objects. The 
attributes computed for NOWAccount and Savings 
Account again facilitate the selection of the correct method. 

Action AddInterest 
{Example shows simple polymorphism - can be 
resolved at compile time} 
Local Names 
Accountl used for instantiation of a 
NOWaccount object} 
Accountl : NOWAccount, 
{Account2 used for instantiation of a 
Savings account object} 
Account2 : SavingsAccount, 
{IO used for instantiation of a Utilities 
object} 
IO : Utilities 
BeginAction {AddInterest} 

IO :=NEW(Utilities); 
IO : Input(AccountName); 
Accountl := 

GET(NOWAccount,AccountName); 
{Presumably, AccountName has 
2 different accounts} 
Account2 := 
GET(SavingsAccountAccountName); 
Accountl : AddInterestToBalance; 
Account2 : AddInterestToBalance; 

EndAction AddInterest 

Figure 6 Simple Polymorphism 

(3) Late Binding 

Dynamic binding is a philosophy basic to many object- 
oriented programming environments. And yet, it is often 
admitted that dynamic binding is a flexibility that is paid 
for in terms of efficiency. The solution may be to do as 
much bookkeeping at compile time as possible to facilitate 
dynamic binding. Figure seven shows a message that is 
sent to an object whose identity is not known until run- 
time (since the object type itself is an input value) : 

Action AddInterest 

{Example shows late binding} 

Local Names 
{Used for instantiation of an account 
object} 
Account : BankAccount, 
{Used for instantiation of a Utilities 

object} 
IO : Utilities 

BeginAction {AddInterest} 

IO := NEW(Utilities); 
IO : Input(AccountType); 
IO : Input(AccountName); 
IO : Input(Deposit); 
Account := NEW(AccountType); 
ACcount : DepositFunds(Deposit); 
Account : AddInterestToBalance 

EndAction AddInterest 

Figure 7 Late Binding 

Here, the specific object, whether it be a Savings 
Account, a Checking Account or a NOWAccount is not 
known until run-time. Nevertheless, once the proper object 
is identified, the bookkeeping done by the compiler 
facilitates accessing the proper method. 
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6. Conclusions 

The use of attributes in compilers for semantic analysis is 
well established. Object-oriented languages present unusual 
semantic analysis needs in addition to the usual ones found 
in all languages. Using a very high-level syntax and BNF, 
three simple attributes, and four functions, we computed 
information that facilitates inheritance (including multiple 
inheritance), polymorphism, even bookkeeping for late 
binding. 

In a real language, there would, of course, be many more 

nodes to the parse tree, and many more Ofunctions to 
compute. In addition, restrictions were made to the 
concepts here to ensure simplicity, and in some cases, just 
to ensure a decision. For example, not all object-oriented 
languages would declare inheritance in the ways done here, 
e.g., it is common to assume methods are inherited and to 
explicitly remove those not desired rather than mentioning 
explicitly those to be inherited (Go184). Thus, the attribute 
functions need to be specialized for a particular syntax. 

Appendix 

A Simple Banking System Using OOPL 
Constructs 

{ Class Descriptions } 

Class Utilities 
SuperClass None 
ClassVariables 

Inherit None 
Introduce None 

SharedVariables 
Inherit None 

Introduce None 
Methods 

Inherit None 
Introduce 

Input, 
PutPrompt 

Specialize None 
Definitions 

Method Input (Info) 
LocalNames None 
BeginMethod 

Read(Info); 
EndMethod Input 
Method PutPrompt (Info) 

EndClass 

LocalNames None 
BeginMethod 

Write (Info); 
EndMethod PutPrompt 
Utilities 

Class BankAccount 
SuperClass None 
ClassVariables 

Inherit None 
Introduce 

Owner, 
Address, 
PhoneNumber, 
AccountNumber 
Balance 

SharedVariables 
Inherit None 
Introduce 

HighInterestRate := 0.07, 
LowInterestRate := 0.045, 

NextAccountNumber:= 0 
Methods 

Inherit None 
Introduce 

GetInterestRate, 
DepositFunds, 
SetOwner, 
SetAddress, 
SetPhoneNumber, 
GenerateAccountNumber 

Specialize None 
Definitions 

Method GetInterestRate 
LocalNames None 
BeginMethod 
If (Balance > i0000) Then 
Return (HighInterestRate); 
Else 

Return (LowInterestRate); 
EndIf; 

EndMethod GetInterestRate 
Method DepositFunds 

(AmountDeposited) 
LocalNames None 
BeginMethod 

Balance := Balance + 
AmountDeposited 

EndMethod Deposit Funds 
Method SetOwner (Name) 

LocalNames None 
BeginMethod 

Owner := Name; 
EndMethod SetOwner 
Method SetAddress(Name) 

LocalNames None 
BeginMethod 

Address := Name; 
EndMethod SetAddress 
Method SetPhoneNumber 

(Number) 
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LocalNames None 
BeginMethod 

PhoneNumber := Number; 
EndMethod SetPhoneNumber 
Method GenerateAccountNumber 

LocalNames None 
BeginMethod 

NextAccountNumber := 
NextAccountNumber + i; 

AccountNumber:= 
NextAccountNumber; 

EndMethod 
GenerateAccountNumber 

EndClass BankAccount 

Class SavingsAccount 
SuperClass 

BankAccount 
ClassVariables 

Inherit 
Owner, 
Address, 
PhoneNumber, 
AccountNumber, 
Balance 

From BankAccount 
Introduce None 

SharedVariables 
Inherit 
HighInterestRate := 0.07, 
LowInterestRate := 0.045, 

NextAccountNumber:= 0 
Introduce None 

Methods 
Inherit 

GetInterestRate, 
DepositFunds, 
SetOwner, 
SetAddress, 
SetPhoneNumber, 
GenerateAccountNumber, 

From BankAccount 
Introduce 

WithDrawFunds, 
AddInterestToBalance 

Specialize None 
Definitions 

Method WithDrawFunds 
(AmountRequested) 

LocalNames 
IO, PromptString 

BeginMethod 
If (AmountRequested > 

Balance) Then 
IO := New(Utilities); 
IO := PutPrompt 

(PromptString); 
Else Balance := 

Balance - 
AmountRequested; 

EndIf 
EndMethod WithdrawFunds 

EndClass 

Method AddInterestToBalance 
LocalNames InterestRate 
BeginMethod 
InterestRate := self : 

GetInterestRate; 
Balance := Balance + 

Balance *InterestRate; 
EndMethod 

AddInterestToBalance 
SavingsAccount 

Class CheckingAccount 
SuperClass 

BankAccount 
ClassVariables 

Inherit 
Owner, 
Address, 
PhoneNumber, 
AccountNumber 
Balance 

From BankAccount 
Introduce 

JointAccount, 
SecondAccountHolder 

SharedVariables 
Inherit 
HighInterestRate := 0.07; 
LowInterestRate := 0.045; 

NextAccountNumber:= 0 
From BankAccount 
Introduce 

BounceFee := 12.50 
Methods 

Inherit 
DepositFunds, 

{GetInterestRate removed} 
SetOwner, 
SetAddress, 
SetPhoneNumber, 
GenerateAccountNumber, 

From BankAccount 
Introduce 

ClearCheck 
Specialize None 
Definitions 
Method 

ClearCheck(CheckAmount) 
LocalNames IO, SomePrompt 
BeginMethod 

If (CheckAmount > Balance Then 
IO := New(Utilities); 

IO:PutPrompt(SomePrompt); 
Balance := Balance - 

BounceFee; 
Else Balance := 

Balance -CheckAmount; 
EndIf 

EndMethod ClearCheck 
EndClass CheckingAccount 
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Class NOWAccount 
SuperClass 

SavingsAccount, 
CheckingAccount 

ClassVariables 
Inherit 

Owner, 
Address, 
PhoneNumber, 
Balance, 
AccountNumber 
JointAccount, 
SecondAccountHolder 

From CheckingAccount 
Introduce None 

SharedVariables 
Inherit 

HighInterestRate := 0.07; 
LowInterestRate := 0.045; 

NextAccountNumber:= 0 
From SavingsAccount 
Introduce None 

Methods 
Inherit 

GetInterestRate, 
DepositFunds, 
SetOwner, 
SetAddress, 
SetPhoneNumber, 
GenerateAccountNumber, 
WithDrawFunds, 
AddInterestToBalance 

From Savings Account 
Inherit 

ClearCheck 
From CheckingAccount 
Introduce None 
Specialize 

GetInterestRate 
With CheckForMinimumBalance 
Before 

Definitions 
Method 

CheckForMinimumBalance 
LocalNames None 
BeginMethod 
If (Balance < 

I000) Then 
Return (0); 

EndIf; 
EndMethod 

CheckForMinimumBalance 

EndClass 
CheckForMinimumBalance 

NOWAccount 

{ Actions } 
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