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A B S T R A C T  

We consider the problem of optimally scheduling the 
subtasks of a computational task modeled by a tree on 
parallel systems with identical processors. Execution of 
the subtasks must satisfy precedence constraints that are 
met via data exchanges among processors which introduce 
communication delays. The optimization criterion used is 
the minimization of the processing time and we assume 
that there is no restriction on the number of processors 
needed. We first show that the optimal scheduling 
problem can be solved in polynomial amount of time 
when the computational graph is a two-level tree. We then 
present an algorithm for the general tree that significantly 
reduces the search space and can work very fast in many 
cases. The number of processors needed for the optimal 
schedule is also computed. 

1. INTRODUCTION 

The optimal scheduling of the subtasks comprising a 
computational task to the individual processors of parallel 
systems with communication delays is an important 
design problem [1,2]. When fast real-time response is 
required, the optimal task scheduling must be determined 
by minimizing the processing time. Stone [3] used this 
criterion to study the allocation problem for a task with 
no parallelism and a non-homogeneous system of 
processors. In previous studies [4, 5], we considered the 
allocation problem for a task exhibiting parallelism. This 
task was modeled by a directed acyclie graph whose nodes 
(or subtasks) were executed on a system that had a fixed 
number of processors. Our approach involved the 
development of suboptimal algorithms using heuristics. 
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Here, we study the problem of optimally scheduling 
the subtasks of a computational task on parallel systems 
with identical processors, when there is no restriction in 
the number of processors. Execution of the subtasks 
must satisfy precedence constraints that are met via data 
exchanges among processors which introduce 
communication delays. We consider a task that can 
be modeled as a tree whose nodes correspond to the 
subtasks. A specific weight equal to the execution time 
of the corresponding subtask is assigned to each node. 
Communication costs are assigned to each arc and they are 
equal to the time required for the necessary data 
transmission when the two subtasks on this arc are 
allocated to different processors. 

The communication costs are functions of the amount 
of data involved in a given transmission and depend on the 
particular parallel system. We assume, however, that the 
communication costs do not depend on the allocation 
scheme and do not vary when two tasks are allocated to 
different pairs of processors. Note that in some systems 
the communication costs will depend on the allocation 
scheme. In the original iPSC INTEL ttypercube 
implementation, for example, communication costs 
depended on the "distance" between processors and were 
smallest when the communicating processors were 
neighbors. This limitation was alleviated in the current 
iPSC-2 machines where data transmission costs are 
virtually independent of the "distance" between 
communicating processors. 

We will develop the optimal algorithm for the general 
tree using induction. The 2-level tree is analyzed first and 
we show that the optimal schedule requires 

O( N log2N ) 

time. We then consider the 3-level tree case which requires 
a non-trivial extension of the 2-level tree results. Finally, 
we assume that we have computed the solution for a tree 
with (K-1) levels and develop the optimal algorithm for 
the K-level tree. 
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2. OPTIMAL SCHEDULING FOR 
A 2-LEVEL TREE 

Figure 1 gives an example of a two-level tree. If ESli 
arid EFli (1 _< i _< Ni ) are the earliest starting and finish 
thnes respectively of the first level nodes, then 

ESl i  = 0 1 _< i _< N 1 
EFl i  = Eli 1 _< i _< Nz 

S21 

Sl Sl Sl N S1 1 2 02 1 1 

Figure 1: An example of a two-level tree 

A f'mst-level node may or may not be allocated to the 
processor executing node $21. By not allocating a node 
S, l j  to the same processor as node $21, we add a 
communication overhead equal to Clj,21. Also, if two 
first-level nodes Slj and Slrn are not allocated to the 
same processor as node $21, we will allocate each of 
these nodes to a different processor. If we allocated S lj and 
Slm to the same processor, we might delay the earliest 
starting time ES21 of node $21 since the execution of 
$21 would start only after both Slj and Slm were  
sequentially executed on the same processor and their 
zesults were transmitted. 

With this assumption, an allocation of the two-level 
tree is completely defined by the boolean vector 

B1 ( j )  = [ b l l ,  b12 ... . .  blN1 ] 
where 

:tnd 

bli = 1 

bli = 0 

if f'wst-level node Sli is allocated to the same 
processor as node $21 ( 1 _< i _< N 1 ). 

if first-level node Sli is not allocated to the 
same processor as node $21 ( 1 _< i _< N 1 ). 

The cardinality of the set of all possible allocations is 
2 N-l, that is 0 _< j _< 2 N1 - 1 m 2 N - 1 _ 1. 

An allocation B 1 ( J )  can also be uniquely defined by 
a vector V1 ( j ) whose components are the locations of 
the l's of the boolean vector B 1 ( j ) .  For example, if 

Bi(Jl)=[ I ... l 0 ... 0 1 0 ... 0 1 0 ... 
TT T T 

k-I k ml ms 

then 

V1 ( J l )  = [ 11, 12 ..... l(k-1), lml ,  lm2 .. . . .  lms]  

The two vectors B 1 ( J ) and V l ( J ) are equivalent and 
fully interchangeable descriptions of the same allocation. 

Each allocation B1 ( j )  = [ b11, b12 . . . . .  blN1 ] 

defines a schedule. 

B1 defines all the first level nodes Slj that must be 
executed on the same processor with node $21 (these 
are all the nodes for which blj  = 1). All these nodes 
Slj can be executed in any order before node $21. 

Each of  the other nodes (for which bl j  = 0) is 
executed on a separate processor and the results are 
transmitted before the execution of $21 can start. 

For each allocation B 1 we can compute an earliest 
starting time for node $21 that we will denote by 
ES21(B1) or ES2i (V1). Similarly, the earliest finish 
times EF21 ( B1 ) or EF21 (V1) can be defined for the 
specific allocation. Note that EF21 ( B1 ) = ES21 ( B1 ) 
+ E21. We can now define the earliest starting time for 
$21 over all possible allocations of its predecessors by 

ES21=min  {ES21 ( B i ( j ) ) }  V j = 0 , 1 , 2  ..... 2 N I - 1  

Similarly 

EF2 1 = mi n  { E F 2 1 ( B I ( j ) ) }  V j = 0 , 1 , 2  ..... 2 N I - 1  

Finally, let EF11, 12 .. . . .  lk  be the earliest finish 
time for the same-level nodes S l l ,  S12 .. . . .  Slk when 
these nodes are assigned to the same processor. For the 
first level nodes of a tree 

EF l l ,  12 ..... lk = E l l  + E 1 2 + . . - + E l k  (1) 

where k = 1, 2 ..... N1. The definition of EFll, 12, .... lk 
implies that 

E F l l  -< EFl l ,  12 -< ... -< EFl l ,  12 ..... 1N1 (2) 

THEOREM 1: Consider a 2-level tree with N nodes 
and order the N 1 ( N1 = N - 1 ) first level nodes so that 
the following inequalities are satisfied 
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Then: 

E F l l + C l l , 2 1  _> EF12+C12,21 _> ... _> 
-> EF1,NI+C1N1, 21 (3) 

(a) The optimal allocation (that is the allocation 
providing the minimum processing time) is obtained 
by assigning 
• subtask $21 and D21 of its predecessors $11, 

S12 .. . . .  S1D21 (1 _< D21 _< N1) to one processor 
lind 

• each one of the remaining subtasks Si(D21+i), 

Si(D21+i) ... . .  S1N 1 to a separate processor. 

Nodes $11, S12 ..... S1D21 will be referred to as 
the critical predecessors of node $21 and the 
optimal allocation requires N-D21 processors. The 
number D21 can be as small as 1 (i.e. $21 has 
only one critical predecessor) or as large as N1. In 
the latter case, all nodes should be executed on the 
same processor. 

(b) The search space is reduced to k* allocations, where 
k* _< N 1. Note that k* = D21 or k* = D21 + 1 and 
k* may be small even when N 1 ---~ ~. 

(c) The cardinality k* of the search space, the number 
D21 of critical predecessors, and the optimal schedule 
can be determined in O(N log2 N) amount of time. 

Proof of Theorem 1: 

CLAIM 1: The optimal schedule can be found 
by considering N-1 allocations. 

The earliest starting time ES21 of node $21 for the 
allocation defined by V1 = [ 11, 12 . . . . .  l(k-1), lml ,  
lm 2 ..... lmj ] is given by the maximum of 

(a) the earliest finish time 

E F l l ,  12 . . . . .  l(k-1), lml ,  lm2 .. . . .  lms 

for the same-level nodes S 1 1, S 12 . . . . .  S 1 (k- 1), 
S l m l ,  S l m 2  . . . . .  S l m s w h e n  these nodes are 
allocated to the same processor and 

(b) all the sums 

EFl j  + Clj,21 k _< j _< NI, j * ml ,  j # m2,...,j # ms 

since the execution of node $21 will start only after 
its processor has received all the data from the 
predecessors allocated to different processors. 

Thus 

ES21 ( 11, 12 .. . . .  l(k-1), lml ,  lm2 .. . . .  l m j )  = 

= max { E F l l ,  12 . . . . .  l(k-1), lm l ,  lm2 .. . . .  lms, 

max [ EFlj  + Clj,21 ] } 

fo rk  _<j _< N1 andj  # ml ,  j ~: m2 ..... j # ms. 

For the first level nodes Sl l ,  S12 . . . . .  Sl(k-1), 
S lml ,  Slm2 . . . . .  Slms we have 

E F l l ,  12 . . . . .  l(k-1), lm l ,  lm2 . . . . .  lms = 
-- E l l  + El2 + ... + El(k-l) + Elml + Elm2 + Elmts 

and from (3) 

max [ EFlj  + Clj,21 ] = EFlk + Clk,21 

for k <_ j <_ Ni and j # ml ,  j * m2 .... .  j ¢ ms. Thus, 

ES21 ( 11, 12 .. . . .  l(k-1), lml ,  lm2 .. . . .  l m j )  = 

= max { E F l l ,  12 . . . . .  l(k-1), lm l ,  lm2 . . . . .  lms, 

EFlk  + Clk,21 } = 

= max { El l  + El2 + ... + El(k-l) + Elm1 + Elm2 

+ E lmls ,  EFlk + Clk,21 } (4) 

Consider now the allocation given by the vector 

B l ( j2 )  = [ 1 1 . , .  

where bli = 0 for i > (k-l) and 

1 0 . . . 0  ] 

1" 1" 

k-1 k 

V i ( J 2 )  = [11 ,12  ..... l(k-1)] 

Then ES21 [ V  1 ( j 2 ) ] ~  ES21 (11,  12 . . . . .  l(k-1)) 
which is the earliest starting time of node $21 for 
allocation Vl ( J2 ) is given by 

ES21 ( 11, 12 ..... l (k-1))  = 

= max { EF l l ,  12 .. . . .  l(k-1), EFlk + Clk,21 }= 

= max { E l l  + El2 + ... + El (k- l ) ,  

EFlk  + Clk,21 } (55) 

By comparing (4) and (5) we obtain 

ES21 ( 1 l, 12 .. . . .  l(k-1), lml ,  lm2 . . . . .  lmj ) 
-> ES21 ( 11, 12 ... . .  l (k-1))  

Therefore, the search space for the optimal schedule is 
limited to the following N1 allocations: 
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B i ( 1 )  = [ 1  0 0 ... 0 ]  
B1 ( 2 )  = [ 1  1 0 ... 01 

(6) 
"B, '(k)"="["I"l ' . - ' - ' I- ' ---  - - - - " ' ' "  0 . . .  0 ] 

T 

k 
o .  . . . .  . °  . . . .  . °  . . . . .  * *  . . . .  . ,  . . . . .  . . . . .  

BI(Ni) = [1 1 1 ... 11 

where each of the above vectors has N l elements. 

We can now compute the earliest starting time of 
node $21 over all possible schedules of its predecessors as 
follows: 

ES2i = min { ES21(I1), ES2 i ( l l ,  12) . . . . .  

ES2I ( l l ,  12 . . . . .  1N1 ) } 
where 
ES21(11) 

ES21(ll ,  12) 

o o o ° +  

ES21(11, 12, I(Ni-1)) = 

= max {EF11, 12 ..... 1(N1-1), EF1Ni+ C1N1,21 } 

(7) 

= max {EF11, EF12 + C12,21} 

= max {EFll ,12,  EF13 + C13,21} 
+ . . ° +  

(8) 

ES21(ll ,  12, 1N1) = EFl l ,  12 ..... IN 1 

Excluding the time required for sorting, we need 
O(N) amount of time to compute ES21(1 I), ES21(I I, 
12) ..... ES21(11, 12 ... . .  1N1) according to Equations (8) 
and then compute the minimum of these N1 = N-1 terms 
according to Equation (7). 

This concludes the proof of Claim 1. 

Critical Predecessors of the Root Node and 
Optimal Allocation 

If 

ES21(ll,  12, 1D21 ) = 

= min { ES21(ll),  ES21(11, 12) ..... ES21(ll ,  12, IN1) 

for some integer D21 ( 1 _< D2i <_ N1 ), then we will 
refer to the subtasks S l l ,  S12 .. . . .  S1D21 as the crit ical  
predeces sors  of $21. Then the optimal allocation is 
given by 

V l *  = [ 1 1 , 1 2  . . . . .  1D21]  

and it assigns 

a) S2i and its critical predecessors S l l ,  S12 ... . .  SID21 
to the same processor and 

b) each of the other predecessors to a separate processor. 

We then define as the critical list of node $21 the 
ordered list of  nodes S l l ,  S12 ... . .  S1D21 and denote it 

as critical-list(S2l)= (Sl l ,  S12 ..... S1D21, $21) 

CLAIM 2: T h e  search  space  is reduced  to k* 
a l l o c a t i o n s .  

Equations (8) have the form 

ES21(11, 12 .. . . .  lk) = 

= max { EFll.12 ..... lk, EFI(k+I) + C1(k+1),21 },  

for k= 1, 2 ..... NI-1. Let us introduce two cost functions 

and 
F(k) = EFll,12 ..... lk 

G(k) = EFI(k+I) + Cl(k+l),21 

where k is the allocation index. 
now be written as 

H(1) -= ES21(ll)  = max {F(1),  G(1)} 

H(2) --- ES2i ( l l ,  12) = max {V(2), G(2)} 

l_<k_<N 1 

l_<k_<Nt-1 

Equations (8) can 

o + *  

H (k) ~ ES21(11, 12 ..... Ik) =max {F (k), O (k)} 

° ° ,  

H (Ni-I) ~- ES21(ll,  12 .. . . .  I(Ni-1)) = 

= max { F (Ni-1), G (Ni-1) } 

(8) 

H (N1) --- ES21(11, 12 . . . . .  1N1) = F (N1) 

while equation (7) becomes 

ES21 = min { H (1), H (2) ... . .  H (N1) } 

Inequalities (2) imply that F(k) is a m o n o t o n i c a l l y  
increasing function of k, while the node ordering 
indicated by (3) implies that the cost function G(k) is a 
m o n o t o n i c a l l y  d e c r e a s i n g  func t ion  of  k. 

If F(1) >_ G (1), then F (k) _> G (k) for a n y k >  1 
since F increases monotonically with k and G decreases 
with k. Therefore, H(k) = F(k) for 1 _< k <_ N 1 and 

ES21 = min { H (1), H (2) ..... H (N1) } = 
= H(1) -- F(1) = EFl l  

292 



If F(1) _> G (1), therefore, the optimal solution can be 
found by computing only the earliest starting time for one 
allocation ( the one defined by V1 (1) = [ 11 ] ). 

If F(1) <_ G (1) and F(2) >_ G (2), then F (k) >_ G (k) 
for any k > 2. Therefore 

and 

H(1) = G(1) 
H(k) = F(k) for 2 _< k _< N 1 

ES21 = min { H(1), H(2) } 

If F(1) <_ G (1) and F(2) >_ G (2), therefore, the optimal 
solution can be found by computing only the earliest 
starting times for the two allocations defined by Vl (I) = 
[11] and V 1 (2) = [11, 12]. 

Since F increases monotonically w i ~  it and G 
decreases with k, we can determine a k* (1 _< k* _< N1 ) 
such that F ( k ) < G ( 1 0  for k < k *  and F ( k ) _ > G ( k )  
for any k >_ k*. Then 

H(k) = G(k) for 0 <_ k < k* 
H(k) = F(k) for k* <_ k <_ N1 

Figure 2A shows one of the two possible cases for 
intersections of the cost curves F(k) and G(k) for k* > 1, 
while Figure 2B shows the corresponding H(k) function. 
We observe that the minimum of the H(k) curve can occur 
either for k = k* - 1 (case of Figure 2) or for k = k*. Thus, 

ES21 = min { H(k*-l), H(k*) } (9) 

or equivalently 

ES21 = min { ES21(ll ,  12 .. . . .  l(k*-l)), 
ES21(11, 12 . . . . .  lk*) } (10) 

The above equation implies that if 

ES21(ll ,  12 ... . .  l(k*-l)) = 
= tuin {ES21(11,12 . . . . .  l(k*-l)), ES21(ll,  12 ... . .  lk*) } 

then the number of critical predecessors is 

while if 
D21 = k*-  1 (11) 

ES21(l l ,  12 .. . . .  lk*) = 
= min {ES21(11,I2 . . . . .  l(k*-l)), ES21(11,12 .. . . .  lk*) } 

then 
D21 = k* (12) 

u~ 
o 0 

( A )  

G(k) 

F(k) 

r k* 

I I I I I I I I I I I I I I I I I I I 

0 5 1 0  1 5  2 0  
Allocation Index 

o O 

H(k) 

k, 

0 
I I I I I I I I I I I I I I I I I I I 

5 10 15 20 
Allocation Index 

Figure 2: An example showing (A) the intersection of 
the cost functions F(k) and G(k) and (B) the 
corresponding H(k) function. 

Computational Requirements 

If we include the time required for sorting, the 
computation of the optimal solution from equation (9) for 
the two level tree requires O ( N log2N ) time. 

Note that k* could be as small as 1 and as large as N- 
1. We must also emphasize that k* may in many cases 
be a small integer even when N is large. This depends on 
the initial values o fF( l )  and G(1) and on the magnitude of 
the "slopes" of the two curves AF(k) = F(k+l) - F(k) and 
AG(k) = G(k+l) - G(k). The savings in time provided by 
equation (9) over equation (7) depends on how small k* is. 
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As N1 --~ 00, k* remains finite if the two curves F(k) 
and G(k) intersect for some finite value of k. There are, 
however, some families of  curves F(k) and G(k) for which 
a finite k* does not exist. 

Consider first the family of  F(k) curves that have a 
horizontal asymptote defined by y = F .  where F ,  is an 
arbitrary constant. Consider also the family of  G(k) 
curves that have a horizontal asymptote defined by y = G .  
where G** is another arbitrary constant. If the asymptotic 
value of the G(k) curve is greater than or equal to the 
asymptotic value of the F(k) curve, then the two curves 
will not intersect at a finite value of  k. Due to the 
monotonicity of the F(k) and G(k) curves, it is easy to 
~ that the conditions 

and 

F(k)--> F** as k---> 00 
G(k ) -~  G .  as k--> ,,0 
G . _ > F .  

are necessary and sufficient for not having a finite k*. 

3.  O P T I M A L  S C H E D U L I N G  FOR A 
GENERAL K-LEVEL TREE 

The optimal algorithm we developed for the K-level 
tr,~ proceeds by levels .Starting with the second level,it 
continues to the K-th level as follows. For every 2-nd 
level node we compute its earliest starting time,earliest 
finish time as well as its critical list.Then for every node 
of  the i-th 0=2 ...... K) level we compute its earliest 
starting time ,earliest finish time and its critical list from 
the earliest finish times and the critical lists of its 
immediate predecessors.We have proved that to compute 
the earliest finish time and critical list of a node of any 
level we do not need to consider all the possible 
allocations of  its predecessors and we have reduced 
significantly the search space for the optimal solution. 
Claims 3 and 4 establish the feasibility of this reduction 
of the search space for the 3-level tree. The proof that the 
algorithm is optimal is performed by induction.An 
algorithm is presented for the 3-level tree that is proved 
Oa be optimal .Then assuming that we have an optimal 
solution for the (K-1)th level tree we get the optimal 
solution for the K-th level tree. 

3 . 1 .  A 3-LEVEL TREE 

Figure 3 shows an example of  a 3-level tree with NI 
nodes at the first level and N2 nodes at the second level. 
An allocation for the 3-level tree is described by two 
boolean vectors: one vector giving the allocation of the 
first level nodes and a second vector giving the allocation 
of the second level nodes. The vectors B 2 with the 
allocations of the second level nodes are given by: 

0 _ < j  _< 2 N 2 - 1  B2 (J) = [ b21, b22 .. . . .  b2N2 ] 

where for l _< i _< N2 

b2i = 1 if S2i is allocated to the same processor as 
its successor $31 on the third level 

and 

b2i = 0 if S2i is not allocated to the same processor 
as its successor $31 on the third level. 

Sll Siz SIN! 

Figure 3: An example of a three-level tree. 

The allocation vector B 1 for the first level nodes has 
now a more complicated form. Each 2-nd level node with 
its first-level predecessors defines a subtree. The allocation 
vector B 1 should thus provide for each subtree with root 
node S2i (1 _< i _< N2) all the information about 
whether each predecessor of S2i is allocated to the same 
processor with the root node or to a different one. In 
analogy to the notation we used in the previous section, 
this information will be provided by a boolean subvector 

131,2i(j) = [ 131,~2 ..... [~N2i] 

with 

1 if Slr  is allocated to the same processor as 
its successor S2i on the second level 

13 r = 0 if Slr is not allocated to the same processor 
as its successor S2i on the third level 

where N2i is the number of predecessors of node S2i and 
1 _< r _< N2i. The allocation vectors B 1 for the first 
level nodes can be expressed as follows: 

B1 (J) = [ ~1,21 , ~1,22 .. . . .  ~1,2N2 ] 0 <_ j _< 2 NI- 1 
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and an exhaustive search would require us to consider 
2N1 + N2 allocations. 

Each allocation of the 3-level tree, which we will 
denote by B --- ( B1, B2 ) or V -= ( Vl ,  V2 ), defines a 
schedule as follows: 

(a) The vector !i2 gives the 2nd-level nodes that are 
allocated to the same processor as node $31. These 
2nd-level nodes are scheduled according to the order 
imposed by their earliest starting times which are 
computed for the particular allocation of the first level 
nodes indicated by the vector B 1 . 

Since the earliest starting times for the first level 
nodes are all the same (and equal to zero), these nodes 
may be scheduled in any order. 

The following definitions are also necessary for the 
discussion of the three-level tree. 

ES2i ( [31,2i ) is the earliest starting time of node S2i 
for the allocation 131,2i of its predecessors. 

ES2i is the earliest starting time for second-level node 
S2i over all possible allocations of its first-level 
predecessors. 

critical-list ( S2i ) is the set of nodes consisting of 
node S2i and all the first level nodes that have to be 
allocated on the same processor as node S2i in the 
optimal allocation. 

ES31 ( B1, B2 ) is the earliest starting time of node 
S31 for the allocation of its first- and second-level 
predecessors defined by ( B 1, B2 ). 

ES31 ( B 2 )  is the earliest starting time of node $31 
over  all possible al locat ions of its first-level 
predecessors when the allocation of its second-level 
predecessors is defined by B 2. 

ES31 is the earliest starting time of node S31 over  
all possible al locat ions of its first- and second- 
level predecessors. 

critical-list(S31) is the set of all the nodes consisting 
of node $31 as well as the first and second level nodes 
that have to be allocated on the same processor as node 
$31 in the optimal allocation. 

EF21, 22 ..... 2k ( B 1 (J)) is the earliest finish time of 
the second level nodes S21, $22 .. . . .  S2k when they 
are assigned to the same processor for a given 
allocation B1 (J) of their first-level predecessors. 

EF21, 22 . . . . .  2k is the earliest finish time of the 
second level nodes $21, S22 . . . . .  S2k when they are 
assigned to the same processor over all possible 
allocations of their first-level predecessors. 

critical-list ($21,$22 ..... S2k ) is the set of nodes 
consisting of $21,$22 ..... S2k as well as all the first 
level nodes that have to be allocated on the same 
processor as nodes $21,$22 ..... S2k for an optimal 
EF21, 22 ..... 2k • 

Theorem 2 summarizes the main results we obtained 
for a 3-level tree. 

THEOREM 2: Consider a 3-level tree with N nodes. 
For each node S2i, 1 _< i <_ N 2 of the 2-nd level, we 
compute the earliest starting and finish times ES2i and 
EF2i , as well as the critical-list (S2i).  As before, we 
order the nodes on the 2-rid level so that they satisfy the 
inequalities 

EF21 + C21,31 >- EF22 + C22,31 >- 

-> -.- -> EF2N2 + C2N2,31 03) 

Then the following statements are true: 

(a) The optimal allocation and the critical-list of node 
$31 can be determined in 

O((D21 + 1 ) (D22 + 1 ) ... (D2D31 + 1 )) 

amount of t ime,  ( 1_< 1)31 _< N 2 ). Nodes that do 
not belong in the critical-list of node $31 should be 
allocated as follows: 
Each 2-nd level node that is not an immediate critical 
predecessor of node S31,namely each of the nodes 
$2(D31+1 ), $2(D31+2) ' ..., S2N 2 is allocated to a 
different processor. We consider each of the nodes 
$2(D31+1), $2(D31+2), ..., S2N 2 as the root of an 
independent  2- leve l  tree and assign their 
predecessors in an optimal way as indicated by 
Theorem 1. 

(b) On a given processor, the nodes are scheduled in 
order of increasing earliest starting times. 

© The optimal allocation requires N - SD 1 number of 
processors where SD1 is the total number of critical 
nodes on the first level (i.e. SD 1 = D21 + D22 + ... 
+ D2D31 ). The algorithm, however, does not 
guarantee this to be the minimum number of 
processors. 

Proof of Theorem 2 : We have proved that the 
critical list of node S31 consists of 
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(a) D31 2-nd level nodes ,namely nodes S21, S22, ..., 
S2D31 ( 1 <_ D3I -< N2 ) that will be referred to as 
the immediate critical predecessors of node 
$31, and 

0~ first level nodes that are critical predecessors of the 
immediate critical predecessors of node S31. For 
each 2nd-level node S2k ( 1 <_ k <_ D31 ) that is an 
immediate critical predecessor of $31, we determine 
which fwst-level nodes will be assigned to the same 
processor as the one that executes $21, $22, ..., 
$2D31 and $31. 

Claims 3 and 4 presented below establish that to compute 
ES31 and the critical list of node $31 we do not need to 
consider all the possible allocations of the 2-nd and 1-st 
level nodes but only 

O ( ( D 2 1 + l ) ( D 2 2 +  1 ) . . . ( D 2 D 3 1 + l ) )  

possible allocations. Due to the limitations in the length 
of this communication, we will not present here the proof 
"of these claims. 

CLAIM 3," The earliest starting and finish time ES31 
and EF31 of node $31 over all possible allocations of its 
predecessors can be computed by considering for the 2-nd 
level nodes only those k31* allocations ( k31* -< N2 ) for 
which 
(a) node $31 and nodes $21, $22 ..... S2k, 1 _< k _< 

k31* are allocated to the same processor and 
(b) each remaining node S2(k+l), $2(k+2) ..... $2N2 is 

allocated to a different processor. 

CLAIM 4: Let B2(Jl ) be an allocation that assigns 
the second level nodes $21, $22 ..... S2j ..... S2k to the 
same processor as node $31. Let also S2j 1 _< j <_ k k = 
2 ..... k31* be one of the 2-nd level nodes assigned to 
the same processor with node $31. Then the following 
are true: 

a) 

b) 

Only nodes of the critical list of node S2j should be 
assigned to the same processor with S2j. 
If m2j (immediate) critical predecessors of S2j ( 0 _< 
m2j _< D2j ) are also allocated to the same processor 
as S2j, then these should be the first m2j critical 
predecessors according to the ranking defined by the 
inequalities (3). 

We say then that node S2j has D2j immediate critical 
predecessors from the second level point of view and 
denote it by D2j(2) and m2j immediate critical 
predecessors from the third level point of view and denote 
it by D2j(3 ). We have 

D2j(2)= D2j and D2j(3 ) = m2j -<D2j(2). 

Algorithm for the 3-level tree 

This procedure consisting of stepsl-5 computes ES31 and 
critical-list(S31) from the earliest finish times and the 
critical lists of all the second level nodes. 

. We first compute EF2i ,  i = 1, 2 ..... N2 for each 
second-level node according to Theorem 1 and order 
these nodes so that the following inequalities are 
satisfied 

EF21 + C21,31 -> EF22 + C22,31 >- ... 
>- EF2N2 + C2N2, 31 

2.  CASE I: I f E F 2 1  -> EF22 + C22,31, the  
search for the optimal solution stops. Then 

ES31 = EF21 + E31 
and 

critical-list ($31) = critical-list ($21) t J  $31 

CASE II: I f E F 2 1  < EF22 + C22,31, w e  
proceed to compute EF21,22 and the critical-list 
($21,S22) as shown in Step 5 below. 

3.  CASE I: If E F 2 1 , 2 2  -> EF23 + C23,31, 
the search for the optimal solution stops. Then 

ES31 = min { max ( EF21 , EF22+C22,31 ), 

max ( EF21,22, EF23+C23,31)} = 

= min { EF22+C22,31 , EF21,22 } 

If 
min { 

then 

max ( EF21, EF22+C22,31 ), 

max ( EF21,22,EF23 + C23,31) } = 
= EF22 + C22,31 

critical-list ( $31 ) = critical-list ($21) t.j $31 

If 

min { 

then 

max ( EF21 , EF22 + C22,31 ), 

max ( EF21,22,EF23 + C23,31) } = 
= EF21,22 

critical-fist ($31) = critical-fist ($21,$22) k..) $31 

CASE II: If E F 2 1 , 2 2  < EF23 + C23,31,  
however, we proceed to compute EF21 ' 22, 23 and 
critical-list ($21 ,$22 ,$23)  as shown in Step 5 
below. 
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. This procedure is repeated until we find an integer 
k31* such that 
EF21,22 ..... 2k31" >- EF2k31*+I + C2k31" +1,31 

Then the search for the optimal solution stops and 

ES31 = min { 
max (EF21,22 ..... 2k31._1, EF2k31, +C2k31.,31 ), 

max (EF21,22 ..... 2k31"  EF2k31*+I +C2k31 *+1,31) } = 

= rain { EF2k31, +C2k31,,31 , EF21,22 ..... 2k31, } 

If min { 

max (EF21,22 ..... 2k31._1, EF2k31. + C2k31.,31 ), 

max (EF21,22 ..... 2k31., EF2k31*+I +Ck31.+1,,31) }= 

= EF2k31 * +C2k31 *,31 
then 

critical-list ($31) = 

= critical-list ($21, $22 ......... $2k31._1 ) U $31 

If min { 

max (EF21,22 ..... 2k31"-1, EF2k31* + C2k31",31), 

max (EF21,22 ..... 2k31", EF2k31*+I + Ck31"+1,,31)} = 
= EF21,22 ..... 2k31. 
then 

critical-list ( $31 ) = 

= critical-list ( $21, $22 ......... $2k31. ) L) $31 

. C o m p u t a t i o n  
c r i t i c a l . l i s t  

• .. ,  k 3 1 *  

o f  EF21 ' 22, ..., 2k a n d  o f  t h e  
( $ 2 1 , $ 2 2 ,  . . . . . .  S 2 k ) ,  k = 1, 2, 

To compute EF21, 22 ..... 2k as well the critical-list 
($21,$22 ....... S2k) k = 1, 2 .....  k31* we need to 
consider the following allocation for the 2-nd level 
nodes 

B 2 0 )  = [  1 1 . . .  1 0 0 ... 0 ] 
1" 
k 

An exhaustive search would have required to consider 
all 2 N21+ N22+'"'+N2K possible allocations 

B I ( j )  = [ B1,21 ,131,22 ..... B1,2N 2 ] 

where 0 <_ j <_ 2 N21+ N22+""+N2K o 1 for the first 
level nodes. According to claim 4, however, we need 
only consider the following ( D2i + 1 ) allocations 
for each of  the boolean subvectors 131,2i 1 _< i _< k 

[ 0 0 . . .  0 . . . 0  ] 

[ 1 0 . . ,  0 . . . 0  ] 

[ 1 ] . . .  0 . . . 0  ] 

[ 1 1 . . .  1 . . . 0  ] 

T 

Thus for the derivation of EF21,22 ..... 2k and the 
critical-list ($21,$22 ....... S2k ) we need to consider 
totally only 

(O21 + 1 ) ( D 2 2 +  1 ).. .  (D2D31 + 1 ) 
possible allocations of the predecessors of $21, $22, 
.... S2k and 
EF21,22 ..... 2k = 
= min { EF21, 22 ..... 2k ( 1~1,21, [31,22 ..... ~31,2k) } 

over all possible allocations ~1,2i given by (16). 

(16) 

3.2 A K-LEVEL TREE 

l " h o o r o m  3 :  Consider a K-level tree with N nodes. 
For each node S(K-1)i, 1 _< i _< NK_ 1 of  the (K-l) level, 
we compute the earliest starting and finish times ES(K-1)i 
and EF(K_I)i ( 1 _< i _< NK-1 ), as well as the critical list 
of nodes S(K-1)i .As before, we order the nodes on the 
(K-I) level so that they satisfy the inequalities 

EF(K.1)i + C(K.1)i,K1 -> EF(K.1) 2 + C(K.1)2,K1 
>- ... >- EF(K-1)N(K.1),K1 + C(K-1)N(K_i), K1 

Then the following statements are true: 

(i) The optimal allocation and the critical list of node 
SKI can be determined in 

O ( ( D 2 1 + l ) ( D 2 2 +  1 ) . . . ( D 2 S D 2 + I ) )  

amount of  time where SD 2 is the total number of 
critical nodes of ate second level. 

We should allocate all nodes that do not belong to the 
critical list of node SK1 in an optimal allocation as 
follows: 
Each node of  the (K-1)st level which is not an 
immediate critical predecessor of node SKi,namely 
each of the nodes S(K.1)(DKi+i ), S(K_i)(DKi+2), ..., 
S(K-1)N K. 1 ,is allocated to a different processor. 
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We consider each of the nodes S(K-1)(DKi+I), S(K- 

1)(DKi+2), ..., S(K.1)N(K.I) as the root of  an 
independent tree with K-1 levels and assign 
their predecessors in an optimal way. 

(ii) On a given processor, the nodes are scheduled in 
order of increasing earliest starting times. 

(iii)The number of processors needed for the optimal 
schedule is N - SD1, where SD1 is the total number 
of critical nodes on the first level. The algorithm, 
however, does not guarantee this to be the minimum 
number of processors. 

We should emphasize that even when N1 ~ oo and 
N2 --~ oo, the numbers D21, D22 ..... D2SD2 as well 
as SD2 can be small and the algorithm very efficient. 

4. CONCLUSIONS 

An optimal algorithm was developed that minimizes 
the processing time for a computation that can be 
represented by a tree and executed on a parallel system 
with communication delays when there is no restriction 
on the number of  processors used.The algorithm is 
efficient in terms of computation time as well the number 
of processors it requires for the optimal solution. 
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