
AN OPTIMAL ALGORITHM FOR SCHEDULING A COMPUTATIONAL TREE
ON A PARALLEL SYSTEM WITH COMMUNICATION DELAYS

Pauline Markenscoff and Yong Yuan Li
Department of Electrical Engineering

University of Houston
Houston, Texas 77204-4793

A B S T R A C T

We consider the problem of optimally scheduling the
subtasks of a computational task modeled by a tree on
parallel systems with identical processors. Execution of
the subtasks must satisfy precedence constraints that are
met via data exchanges among processors which introduce
communication delays. The optimization criterion used is
the minimization of the processing time and we assume
that there is no restriction on the number of processors
needed. We first show that the optimal scheduling
problem can be solved in polynomial amount of time
when the computational graph is a two-level tree. We then
present an algorithm for the general tree that significantly
reduces the search space and can work very fast in many
cases. The number of processors needed for the optimal
schedule is also computed.

1. INTRODUCTION

The optimal scheduling of the subtasks comprising a
computational task to the individual processors of parallel
systems with communication delays is an important
design problem [1,2]. When fast real-time response is
required, the optimal task scheduling must be determined
by minimizing the processing time. Stone [3] used this
criterion to study the allocation problem for a task with
no parallelism and a non-homogeneous system of
processors. In previous studies [4, 5], we considered the
allocation problem for a task exhibiting parallelism. This
task was modeled by a directed acyclie graph whose nodes
(or subtasks) were executed on a system that had a fixed
number of processors. Our approach involved the
development of suboptimal algorithms using heuristics.

Permission to copy without fee all or part of this material is granted pro-
vialed that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

© 1991 ACM 089791-382-5/91/0003/0289 $1.50 289

Here, we study the problem of optimally scheduling
the subtasks of a computational task on parallel systems
with identical processors, when there is no restriction in
the number of processors. Execution of the subtasks
must satisfy precedence constraints that are met via data
exchanges among processors which introduce
communication delays. We consider a task that can
be modeled as a tree whose nodes correspond to the
subtasks. A specific weight equal to the execution time
of the corresponding subtask is assigned to each node.
Communication costs are assigned to each arc and they are
equal to the time required for the necessary data
transmission when the two subtasks on this arc are
allocated to different processors.

The communication costs are functions of the amount
of data involved in a given transmission and depend on the
particular parallel system. We assume, however, that the
communication costs do not depend on the allocation
scheme and do not vary when two tasks are allocated to
different pairs of processors. Note that in some systems
the communication costs will depend on the allocation
scheme. In the original iPSC INTEL ttypercube
implementation, for example, communication costs
depended on the "distance" between processors and were
smallest when the communicating processors were
neighbors. This limitation was alleviated in the current
iPSC-2 machines where data transmission costs are
virtually independent of the "distance" between
communicating processors.

We will develop the optimal algorithm for the general
tree using induction. The 2-level tree is analyzed first and
we show that the optimal schedule requires

O(N log2N)

time. We then consider the 3-level tree case which requires
a non-trivial extension of the 2-level tree results. Finally,
we assume that we have computed the solution for a tree
with (K-1) levels and develop the optimal algorithm for
the K-level tree.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F327164.327283&domain=pdf&date_stamp=1991-04-01

2. OPTIMAL SCHEDULING FOR
A 2-LEVEL TREE

Figure 1 gives an example of a two-level tree. If ESli
arid EFli (1 _< i _< Ni) are the earliest starting and finish
thnes respectively of the first level nodes, then

ESl i = 0 1 _< i _< N 1
EFl i = Eli 1 _< i _< Nz

S21

Sl Sl Sl N S1 1 2 02 1 1

Figure 1: An example of a two-level tree

A f'mst-level node may or may not be allocated to the
processor executing node $21. By not allocating a node
S, l j to the same processor as node $21, we add a
communication overhead equal to Clj,21. Also, if two
first-level nodes Slj and Slrn are not allocated to the
same processor as node $21, we will allocate each of
these nodes to a different processor. If we allocated S lj and
Slm to the same processor, we might delay the earliest
starting time ES21 of node $21 since the execution of
$21 would start only after both Slj and Slm were
sequentially executed on the same processor and their
zesults were transmitted.

With this assumption, an allocation of the two-level
tree is completely defined by the boolean vector

B1 (j) = [b l l , b12 blN1]
where

:tnd

bli = 1

bli = 0

if f'wst-level node Sli is allocated to the same
processor as node $21 (1 _< i _< N 1).

if first-level node Sli is not allocated to the
same processor as node $21 (1 _< i _< N 1).

The cardinality of the set of all possible allocations is
2 N-l, that is 0 _< j _< 2 N1 - 1 m 2 N - 1 _ 1.

An allocation B 1 (J) can also be uniquely defined by
a vector V1 (j) whose components are the locations of
the l's of the boolean vector B 1 (j) . For example, if

Bi(Jl)=[I ... l 0 ... 0 1 0 ... 0 1 0 ...
TT T T

k-I k ml ms

then

V1 (J l) = [11, 12 l(k-1), lml , lm2 lms]

The two vectors B 1 (J) and V l (J) are equivalent and
fully interchangeable descriptions of the same allocation.

Each allocation B1 (j) = [b11, b12 blN1]

defines a schedule.

B1 defines all the first level nodes Slj that must be
executed on the same processor with node $21 (these
are all the nodes for which blj = 1). All these nodes
Slj can be executed in any order before node $21.

Each of the other nodes (for which bl j = 0) is
executed on a separate processor and the results are
transmitted before the execution of $21 can start.

For each allocation B 1 we can compute an earliest
starting time for node $21 that we will denote by
ES21(B1) or ES2i (V1). Similarly, the earliest finish
times EF21 (B1) or EF21 (V1) can be defined for the
specific allocation. Note that EF21 (B1) = ES21 (B1)
+ E21. We can now define the earliest starting time for
$21 over all possible allocations of its predecessors by

ES21=min {ES21 (B i (j)) } V j = 0 , 1 , 2 2 N I - 1

Similarly

EF2 1 = mi n { E F 2 1 (B I (j)) } V j = 0 , 1 , 2 2 N I - 1

Finally, let EF11, 12 lk be the earliest finish
time for the same-level nodes S l l , S12 Slk when
these nodes are assigned to the same processor. For the
first level nodes of a tree

EF l l , 12 lk = E l l + E 1 2 + . . - + E l k (1)

where k = 1, 2 N1. The definition of EFll, 12, lk
implies that

E F l l -< EFl l , 12 -< ... -< EFl l , 12 1N1 (2)

THEOREM 1: Consider a 2-level tree with N nodes
and order the N 1 (N1 = N - 1) first level nodes so that
the following inequalities are satisfied

290

Then:

E F l l + C l l , 2 1 _> EF12+C12,21 _> ... _>
-> EF1,NI+C1N1, 21 (3)

(a) The optimal allocation (that is the allocation
providing the minimum processing time) is obtained
by assigning
• subtask $21 and D21 of its predecessors $11,

S12 S1D21 (1 _< D21 _< N1) to one processor
lind

• each one of the remaining subtasks Si(D21+i),

Si(D21+i) S1N 1 to a separate processor.

Nodes $11, S12 S1D21 will be referred to as
the critical predecessors of node $21 and the
optimal allocation requires N-D21 processors. The
number D21 can be as small as 1 (i.e. $21 has
only one critical predecessor) or as large as N1. In
the latter case, all nodes should be executed on the
same processor.

(b) The search space is reduced to k* allocations, where
k* _< N 1. Note that k* = D21 or k* = D21 + 1 and
k* may be small even when N 1 ---~ ~.

(c) The cardinality k* of the search space, the number
D21 of critical predecessors, and the optimal schedule
can be determined in O(N log2 N) amount of time.

Proof of Theorem 1:

CLAIM 1: The optimal schedule can be found
by considering N-1 allocations.

The earliest starting time ES21 of node $21 for the
allocation defined by V1 = [11, 12 l(k-1), lml ,
lm 2 lmj] is given by the maximum of

(a) the earliest finish time

E F l l , 12 l(k-1), lml , lm2 lms

for the same-level nodes S 1 1, S 12 S 1 (k- 1),
S l m l , S l m 2 S l m s w h e n these nodes are
allocated to the same processor and

(b) all the sums

EFl j + Clj,21 k _< j _< NI, j * ml , j # m2,...,j # ms

since the execution of node $21 will start only after
its processor has received all the data from the
predecessors allocated to different processors.

Thus

ES21 (11, 12 l(k-1), lml , lm2 l m j) =

= max { E F l l , 12 l(k-1), lm l , lm2 lms,

max [EFlj + Clj,21] }

fo rk _<j _< N1 andj # ml , j ~: m2 j # ms.

For the first level nodes Sl l , S12 Sl(k-1),
S lml , Slm2 Slms we have

E F l l , 12 l(k-1), lm l , lm2 lms =
-- E l l + El2 + ... + El(k-l) + Elml + Elm2 + Elmts

and from (3)

max [EFlj + Clj,21] = EFlk + Clk,21

for k <_ j <_ Ni and j # ml , j * m2 j ¢ ms. Thus,

ES21 (11, 12 l(k-1), lml , lm2 l m j) =

= max { E F l l , 12 l(k-1), lm l , lm2 lms,

EFlk + Clk,21 } =

= max { El l + El2 + ... + El(k-l) + Elm1 + Elm2

+ E lmls , EFlk + Clk,21 } (4)

Consider now the allocation given by the vector

B l (j2) = [1 1 . , .

where bli = 0 for i > (k-l) and

1 0 . . . 0]

1" 1"

k-1 k

V i (J 2) = [11 ,12 l(k-1)]

Then ES21 [V 1 (j 2)] ~ ES21 (11, 12 l(k-1))
which is the earliest starting time of node $21 for
allocation Vl (J2) is given by

ES21 (11, 12 l (k-1)) =

= max { EF l l , 12 l(k-1), EFlk + Clk,21 }=

= max { E l l + El2 + ... + El (k- l) ,

EFlk + Clk,21 } (55)

By comparing (4) and (5) we obtain

ES21 (1 l, 12 l(k-1), lml , lm2 lmj)
-> ES21 (11, 12 l (k-1))

Therefore, the search space for the optimal schedule is
limited to the following N1 allocations:

291

B i (1) = [1 0 0 ... 0]
B1 (2) = [1 1 0 ... 01

(6)
"B, '(k)"="["I"l ' . - ' - ' I- ' --- - - - - " ' ' " 0 . . . 0]

T

k
o ° ° * * ,

BI(Ni) = [1 1 1 ... 11

where each of the above vectors has N l elements.

We can now compute the earliest starting time of
node $21 over all possible schedules of its predecessors as
follows:

ES2i = min { ES21(I1), ES2 i (l l , 12)

ES2I (l l , 12 1N1) }
where
ES21(11)

ES21(ll , 12)

o o o ° +

ES21(11, 12, I(Ni-1)) =

= max {EF11, 12 1(N1-1), EF1Ni+ C1N1,21 }

(7)

= max {EF11, EF12 + C12,21}

= max {EFll ,12, EF13 + C13,21}
+ . . ° +

(8)

ES21(ll , 12, 1N1) = EFl l , 12 IN 1

Excluding the time required for sorting, we need
O(N) amount of time to compute ES21(1 I), ES21(I I,
12) ES21(11, 12 1N1) according to Equations (8)
and then compute the minimum of these N1 = N-1 terms
according to Equation (7).

This concludes the proof of Claim 1.

Critical Predecessors of the Root Node and
Optimal Allocation

If

ES21(ll, 12, 1D21) =

= min { ES21(ll), ES21(11, 12) ES21(ll , 12, IN1)

for some integer D21 (1 _< D2i <_ N1), then we will
refer to the subtasks S l l , S12 S1D21 as the crit ical
predeces sors of $21. Then the optimal allocation is
given by

V l * = [1 1 , 1 2 1D21]

and it assigns

a) S2i and its critical predecessors S l l , S12 SID21
to the same processor and

b) each of the other predecessors to a separate processor.

We then define as the critical list of node $21 the
ordered list of nodes S l l , S12 S1D21 and denote it

as critical-list(S2l)= (Sl l , S12 S1D21, $21)

CLAIM 2: T h e search space is reduced to k*
a l l o c a t i o n s .

Equations (8) have the form

ES21(11, 12 lk) =

= max { EFll.12 lk, EFI(k+I) + C1(k+1),21 },

for k= 1, 2 NI-1. Let us introduce two cost functions

and
F(k) = EFll,12 lk

G(k) = EFI(k+I) + Cl(k+l),21

where k is the allocation index.
now be written as

H(1) -= ES21(ll) = max {F(1), G(1)}

H(2) --- ES2i (l l , 12) = max {V(2), G(2)}

l_<k_<N 1

l_<k_<Nt-1

Equations (8) can

o + *

H (k) ~ ES21(11, 12 Ik) =max {F (k), O (k)}

° ° ,

H (Ni-I) ~- ES21(ll, 12 I(Ni-1)) =

= max { F (Ni-1), G (Ni-1) }

(8)

H (N1) --- ES21(11, 12 1N1) = F (N1)

while equation (7) becomes

ES21 = min { H (1), H (2) H (N1) }

Inequalities (2) imply that F(k) is a m o n o t o n i c a l l y
increasing function of k, while the node ordering
indicated by (3) implies that the cost function G(k) is a
m o n o t o n i c a l l y d e c r e a s i n g func t ion of k.

If F(1) >_ G (1), then F (k) _> G (k) for a n y k > 1
since F increases monotonically with k and G decreases
with k. Therefore, H(k) = F(k) for 1 _< k <_ N 1 and

ES21 = min { H (1), H (2) H (N1) } =
= H(1) -- F(1) = EFl l

292

If F(1) _> G (1), therefore, the optimal solution can be
found by computing only the earliest starting time for one
allocation (the one defined by V1 (1) = [11]).

If F(1) <_ G (1) and F(2) >_ G (2), then F (k) >_ G (k)
for any k > 2. Therefore

and

H(1) = G(1)
H(k) = F(k) for 2 _< k _< N 1

ES21 = min { H(1), H(2) }

If F(1) <_ G (1) and F(2) >_ G (2), therefore, the optimal
solution can be found by computing only the earliest
starting times for the two allocations defined by Vl (I) =
[11] and V 1 (2) = [11, 12].

Since F increases monotonically w i ~ it and G
decreases with k, we can determine a k* (1 _< k* _< N1)
such that F (k) < G (1 0 for k < k * and F (k) _ > G (k)
for any k >_ k*. Then

H(k) = G(k) for 0 <_ k < k*
H(k) = F(k) for k* <_ k <_ N1

Figure 2A shows one of the two possible cases for
intersections of the cost curves F(k) and G(k) for k* > 1,
while Figure 2B shows the corresponding H(k) function.
We observe that the minimum of the H(k) curve can occur
either for k = k* - 1 (case of Figure 2) or for k = k*. Thus,

ES21 = min { H(k*-l), H(k*) } (9)

or equivalently

ES21 = min { ES21(ll , 12 l(k*-l)),
ES21(11, 12 lk*) } (10)

The above equation implies that if

ES21(ll , 12 l(k*-l)) =
= tuin {ES21(11,12 l(k*-l)), ES21(ll, 12 lk*) }

then the number of critical predecessors is

while if
D21 = k*- 1 (11)

ES21(l l , 12 lk*) =
= min {ES21(11,I2 l(k*-l)), ES21(11,12 lk*) }

then
D21 = k* (12)

u~
o 0

(A)

G(k)

F(k)

r k*

I I I I I I I I I I I I I I I I I I I

0 5 1 0 1 5 2 0
Allocation Index

o O

H(k)

k,

0
I I I I I I I I I I I I I I I I I I I

5 10 15 20
Allocation Index

Figure 2: An example showing (A) the intersection of
the cost functions F(k) and G(k) and (B) the
corresponding H(k) function.

Computational Requirements

If we include the time required for sorting, the
computation of the optimal solution from equation (9) for
the two level tree requires O (N log2N) time.

Note that k* could be as small as 1 and as large as N-
1. We must also emphasize that k* may in many cases
be a small integer even when N is large. This depends on
the initial values o fF(l) and G(1) and on the magnitude of
the "slopes" of the two curves AF(k) = F(k+l) - F(k) and
AG(k) = G(k+l) - G(k). The savings in time provided by
equation (9) over equation (7) depends on how small k* is.

293

As N1 --~ 00, k* remains finite if the two curves F(k)
and G(k) intersect for some finite value of k. There are,
however, some families of curves F(k) and G(k) for which
a finite k* does not exist.

Consider first the family of F(k) curves that have a
horizontal asymptote defined by y = F . where F , is an
arbitrary constant. Consider also the family of G(k)
curves that have a horizontal asymptote defined by y = G .
where G** is another arbitrary constant. If the asymptotic
value of the G(k) curve is greater than or equal to the
asymptotic value of the F(k) curve, then the two curves
will not intersect at a finite value of k. Due to the
monotonicity of the F(k) and G(k) curves, it is easy to
~ that the conditions

and

F(k)--> F** as k---> 00
G(k) -~ G . as k--> ,,0
G . _ > F .

are necessary and sufficient for not having a finite k*.

3. O P T I M A L S C H E D U L I N G FOR A
GENERAL K-LEVEL TREE

The optimal algorithm we developed for the K-level
tr,~ proceeds by levels .Starting with the second level,it
continues to the K-th level as follows. For every 2-nd
level node we compute its earliest starting time,earliest
finish time as well as its critical list.Then for every node
of the i-th 0=2 K) level we compute its earliest
starting time ,earliest finish time and its critical list from
the earliest finish times and the critical lists of its
immediate predecessors.We have proved that to compute
the earliest finish time and critical list of a node of any
level we do not need to consider all the possible
allocations of its predecessors and we have reduced
significantly the search space for the optimal solution.
Claims 3 and 4 establish the feasibility of this reduction
of the search space for the 3-level tree. The proof that the
algorithm is optimal is performed by induction.An
algorithm is presented for the 3-level tree that is proved
Oa be optimal .Then assuming that we have an optimal
solution for the (K-1)th level tree we get the optimal
solution for the K-th level tree.

3 . 1 . A 3-LEVEL TREE

Figure 3 shows an example of a 3-level tree with NI
nodes at the first level and N2 nodes at the second level.
An allocation for the 3-level tree is described by two
boolean vectors: one vector giving the allocation of the
first level nodes and a second vector giving the allocation
of the second level nodes. The vectors B 2 with the
allocations of the second level nodes are given by:

0 _ < j _< 2 N 2 - 1 B2 (J) = [b21, b22 b2N2]

where for l _< i _< N2

b2i = 1 if S2i is allocated to the same processor as
its successor $31 on the third level

and

b2i = 0 if S2i is not allocated to the same processor
as its successor $31 on the third level.

Sll Siz SIN!

Figure 3: An example of a three-level tree.

The allocation vector B 1 for the first level nodes has
now a more complicated form. Each 2-nd level node with
its first-level predecessors defines a subtree. The allocation
vector B 1 should thus provide for each subtree with root
node S2i (1 _< i _< N2) all the information about
whether each predecessor of S2i is allocated to the same
processor with the root node or to a different one. In
analogy to the notation we used in the previous section,
this information will be provided by a boolean subvector

131,2i(j) = [131,~2 [~N2i]

with

1 if Slr is allocated to the same processor as
its successor S2i on the second level

13 r = 0 if Slr is not allocated to the same processor
as its successor S2i on the third level

where N2i is the number of predecessors of node S2i and
1 _< r _< N2i. The allocation vectors B 1 for the first
level nodes can be expressed as follows:

B1 (J) = [~1,21 , ~1,22 ~1,2N2] 0 <_ j _< 2 NI- 1

294

and an exhaustive search would require us to consider
2N1 + N2 allocations.

Each allocation of the 3-level tree, which we will
denote by B --- (B1, B2) or V -= (Vl , V2), defines a
schedule as follows:

(a) The vector !i2 gives the 2nd-level nodes that are
allocated to the same processor as node $31. These
2nd-level nodes are scheduled according to the order
imposed by their earliest starting times which are
computed for the particular allocation of the first level
nodes indicated by the vector B 1 .

Since the earliest starting times for the first level
nodes are all the same (and equal to zero), these nodes
may be scheduled in any order.

The following definitions are also necessary for the
discussion of the three-level tree.

ES2i ([31,2i) is the earliest starting time of node S2i
for the allocation 131,2i of its predecessors.

ES2i is the earliest starting time for second-level node
S2i over all possible allocations of its first-level
predecessors.

critical-list (S2i) is the set of nodes consisting of
node S2i and all the first level nodes that have to be
allocated on the same processor as node S2i in the
optimal allocation.

ES31 (B1, B2) is the earliest starting time of node
S31 for the allocation of its first- and second-level
predecessors defined by (B 1, B2).

ES31 (B 2) is the earliest starting time of node $31
over all possible al locat ions of its first-level
predecessors when the allocation of its second-level
predecessors is defined by B 2.

ES31 is the earliest starting time of node S31 over
all possible al locat ions of its first- and second-
level predecessors.

critical-list(S31) is the set of all the nodes consisting
of node $31 as well as the first and second level nodes
that have to be allocated on the same processor as node
$31 in the optimal allocation.

EF21, 22 2k (B 1 (J)) is the earliest finish time of
the second level nodes S21, $22 S2k when they
are assigned to the same processor for a given
allocation B1 (J) of their first-level predecessors.

EF21, 22 2k is the earliest finish time of the
second level nodes $21, S22 S2k when they are
assigned to the same processor over all possible
allocations of their first-level predecessors.

critical-list ($21,$22 S2k) is the set of nodes
consisting of $21,$22 S2k as well as all the first
level nodes that have to be allocated on the same
processor as nodes $21,$22 S2k for an optimal
EF21, 22 2k •

Theorem 2 summarizes the main results we obtained
for a 3-level tree.

THEOREM 2: Consider a 3-level tree with N nodes.
For each node S2i, 1 _< i <_ N 2 of the 2-nd level, we
compute the earliest starting and finish times ES2i and
EF2i , as well as the critical-list (S2i). As before, we
order the nodes on the 2-rid level so that they satisfy the
inequalities

EF21 + C21,31 >- EF22 + C22,31 >-

-> -.- -> EF2N2 + C2N2,31 03)

Then the following statements are true:

(a) The optimal allocation and the critical-list of node
$31 can be determined in

O((D21 + 1) (D22 + 1) ... (D2D31 + 1))

amount of t ime, (1_< 1)31 _< N 2). Nodes that do
not belong in the critical-list of node $31 should be
allocated as follows:
Each 2-nd level node that is not an immediate critical
predecessor of node S31,namely each of the nodes
$2(D31+1), $2(D31+2) ' ..., S2N 2 is allocated to a
different processor. We consider each of the nodes
$2(D31+1), $2(D31+2), ..., S2N 2 as the root of an
independent 2- leve l tree and assign their
predecessors in an optimal way as indicated by
Theorem 1.

(b) On a given processor, the nodes are scheduled in
order of increasing earliest starting times.

© The optimal allocation requires N - SD 1 number of
processors where SD1 is the total number of critical
nodes on the first level (i.e. SD 1 = D21 + D22 + ...
+ D2D31). The algorithm, however, does not
guarantee this to be the minimum number of
processors.

Proof of Theorem 2 : We have proved that the
critical list of node S31 consists of

295

(a) D31 2-nd level nodes ,namely nodes S21, S22, ...,
S2D31 (1 <_ D3I -< N2) that will be referred to as
the immediate critical predecessors of node
$31, and

0~ first level nodes that are critical predecessors of the
immediate critical predecessors of node S31. For
each 2nd-level node S2k (1 <_ k <_ D31) that is an
immediate critical predecessor of $31, we determine
which fwst-level nodes will be assigned to the same
processor as the one that executes $21, $22, ...,
$2D31 and $31.

Claims 3 and 4 presented below establish that to compute
ES31 and the critical list of node $31 we do not need to
consider all the possible allocations of the 2-nd and 1-st
level nodes but only

O ((D 2 1 + l) (D 2 2 + 1) . . . (D 2 D 3 1 + l))

possible allocations. Due to the limitations in the length
of this communication, we will not present here the proof
"of these claims.

CLAIM 3," The earliest starting and finish time ES31
and EF31 of node $31 over all possible allocations of its
predecessors can be computed by considering for the 2-nd
level nodes only those k31* allocations (k31* -< N2) for
which
(a) node $31 and nodes $21, $22 S2k, 1 _< k _<

k31* are allocated to the same processor and
(b) each remaining node S2(k+l), $2(k+2) $2N2 is

allocated to a different processor.

CLAIM 4: Let B2(Jl) be an allocation that assigns
the second level nodes $21, $22 S2j S2k to the
same processor as node $31. Let also S2j 1 _< j <_ k k =
2 k31* be one of the 2-nd level nodes assigned to
the same processor with node $31. Then the following
are true:

a)

b)

Only nodes of the critical list of node S2j should be
assigned to the same processor with S2j.
If m2j (immediate) critical predecessors of S2j (0 _<
m2j _< D2j) are also allocated to the same processor
as S2j, then these should be the first m2j critical
predecessors according to the ranking defined by the
inequalities (3).

We say then that node S2j has D2j immediate critical
predecessors from the second level point of view and
denote it by D2j(2) and m2j immediate critical
predecessors from the third level point of view and denote
it by D2j(3). We have

D2j(2)= D2j and D2j(3) = m2j -<D2j(2).

Algorithm for the 3-level tree

This procedure consisting of stepsl-5 computes ES31 and
critical-list(S31) from the earliest finish times and the
critical lists of all the second level nodes.

. We first compute EF2i , i = 1, 2 N2 for each
second-level node according to Theorem 1 and order
these nodes so that the following inequalities are
satisfied

EF21 + C21,31 -> EF22 + C22,31 >- ...
>- EF2N2 + C2N2, 31

2. CASE I: I f E F 2 1 -> EF22 + C22,31, the
search for the optimal solution stops. Then

ES31 = EF21 + E31
and

critical-list ($31) = critical-list ($21) t J $31

CASE II: I f E F 2 1 < EF22 + C22,31, w e
proceed to compute EF21,22 and the critical-list
($21,S22) as shown in Step 5 below.

3. CASE I: If E F 2 1 , 2 2 -> EF23 + C23,31,
the search for the optimal solution stops. Then

ES31 = min { max (EF21 , EF22+C22,31),

max (EF21,22, EF23+C23,31)} =

= min { EF22+C22,31 , EF21,22 }

If
min {

then

max (EF21, EF22+C22,31),

max (EF21,22,EF23 + C23,31) } =
= EF22 + C22,31

critical-list ($31) = critical-list ($21) t.j $31

If

min {

then

max (EF21 , EF22 + C22,31),

max (EF21,22,EF23 + C23,31) } =
= EF21,22

critical-fist ($31) = critical-fist ($21,$22) k..) $31

CASE II: If E F 2 1 , 2 2 < EF23 + C23,31,
however, we proceed to compute EF21 ' 22, 23 and
critical-list ($21 ,$22 ,$23) as shown in Step 5
below.

296

. This procedure is repeated until we find an integer
k31* such that
EF21,22 2k31" >- EF2k31*+I + C2k31" +1,31

Then the search for the optimal solution stops and

ES31 = min {
max (EF21,22 2k31._1, EF2k31, +C2k31.,31),

max (EF21,22 2k31" EF2k31*+I +C2k31 *+1,31) } =

= rain { EF2k31, +C2k31,,31 , EF21,22 2k31, }

If min {

max (EF21,22 2k31._1, EF2k31. + C2k31.,31),

max (EF21,22 2k31., EF2k31*+I +Ck31.+1,,31) }=

= EF2k31 * +C2k31 *,31
then

critical-list ($31) =

= critical-list ($21, $22 $2k31._1) U $31

If min {

max (EF21,22 2k31"-1, EF2k31* + C2k31",31),

max (EF21,22 2k31", EF2k31*+I + Ck31"+1,,31)} =
= EF21,22 2k31.
then

critical-list ($31) =

= critical-list ($21, $22 $2k31.) L) $31

. C o m p u t a t i o n
c r i t i c a l . l i s t

• .. , k 3 1 *

o f EF21 ' 22, ..., 2k a n d o f t h e
($ 2 1 , $ 2 2 , S 2 k) , k = 1, 2,

To compute EF21, 22 2k as well the critical-list
($21,$22 S2k) k = 1, 2 k31* we need to
consider the following allocation for the 2-nd level
nodes

B 2 0) = [1 1 . . . 1 0 0 ... 0]
1"
k

An exhaustive search would have required to consider
all 2 N21+ N22+'"'+N2K possible allocations

B I (j) = [B1,21 ,131,22 B1,2N 2]

where 0 <_ j <_ 2 N21+ N22+""+N2K o 1 for the first
level nodes. According to claim 4, however, we need
only consider the following (D2i + 1) allocations
for each of the boolean subvectors 131,2i 1 _< i _< k

[0 0 . . . 0 . . . 0]

[1 0 . . , 0 . . . 0]

[1] . . . 0 . . . 0]

[1 1 . . . 1 . . . 0]

T

Thus for the derivation of EF21,22 2k and the
critical-list ($21,$22 S2k) we need to consider
totally only

(O21 + 1) (D 2 2 + 1).. . (D2D31 + 1)
possible allocations of the predecessors of $21, $22,
.... S2k and
EF21,22 2k =
= min { EF21, 22 2k (1~1,21, [31,22 ~31,2k) }

over all possible allocations ~1,2i given by (16).

(16)

3.2 A K-LEVEL TREE

l " h o o r o m 3 : Consider a K-level tree with N nodes.
For each node S(K-1)i, 1 _< i _< NK_ 1 of the (K-l) level,
we compute the earliest starting and finish times ES(K-1)i
and EF(K_I)i (1 _< i _< NK-1), as well as the critical list
of nodes S(K-1)i .As before, we order the nodes on the
(K-I) level so that they satisfy the inequalities

EF(K.1)i + C(K.1)i,K1 -> EF(K.1) 2 + C(K.1)2,K1
>- ... >- EF(K-1)N(K.1),K1 + C(K-1)N(K_i), K1

Then the following statements are true:

(i) The optimal allocation and the critical list of node
SKI can be determined in

O ((D 2 1 + l) (D 2 2 + 1) . . . (D 2 S D 2 + I))

amount of time where SD 2 is the total number of
critical nodes of ate second level.

We should allocate all nodes that do not belong to the
critical list of node SK1 in an optimal allocation as
follows:
Each node of the (K-1)st level which is not an
immediate critical predecessor of node SKi,namely
each of the nodes S(K.1)(DKi+i), S(K_i)(DKi+2), ...,
S(K-1)N K. 1 ,is allocated to a different processor.

297

We consider each of the nodes S(K-1)(DKi+I), S(K-

1)(DKi+2), ..., S(K.1)N(K.I) as the root of an
independent tree with K-1 levels and assign
their predecessors in an optimal way.

(ii) On a given processor, the nodes are scheduled in
order of increasing earliest starting times.

(iii)The number of processors needed for the optimal
schedule is N - SD1, where SD1 is the total number
of critical nodes on the first level. The algorithm,
however, does not guarantee this to be the minimum
number of processors.

We should emphasize that even when N1 ~ oo and
N2 --~ oo, the numbers D21, D22 D2SD2 as well
as SD2 can be small and the algorithm very efficient.

4. CONCLUSIONS

An optimal algorithm was developed that minimizes
the processing time for a computation that can be
represented by a tree and executed on a parallel system
with communication delays when there is no restriction
on the number of processors used.The algorithm is
efficient in terms of computation time as well the number
of processors it requires for the optimal solution.

ACKNOWLEDGMENT

This work was supported through a grant by the Texas
Advanced Research Program.

REFERENCES

[11 C.H. Papadimitriou and M. Yannakakis, "Towards an
Architecture-Independent Analysis of Parallel
Algorithms", Procs. STOC, 1988.

H.Jung, L. Kiroussis and P. Spirakis, "Lower Bounds
and Efficient Algorithms for Multiprocessor
Scheduling of Dags with Communication Delays ",
Procs. SPAA, 1989.

[31 H.S. Stone, "Multiprocessor Scheduling with the Aid
of Network Flow Algorithms", IEEE Trans. on
Software Eng., Vol. SE-3, No. 1, January 1977, pp.
85-93.

[4] P. Markenscoff, W. Liaw, "Task Allocation
Problems in Distributed Computer Systems," Procs.
International Conference on Parallel Processing,
August 1986, pp. 953-960.

[51 P. Markenscoff, D. Joe "Computation of Tasks
Modeled by Directed Acyclic Graphs - Allocation
withoout Subtask Replication" Procs 1990 IEEE
International Symposium on Circuits and Systems.

298

