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Abstract 

Contrary to the Relational, Hierarchical, and Network 
Data Models which represent an application's semantics 
implicitly in a particular data structure, Semantic Data 
Models implement well-known data abstractions (i.e. 
aggregation, isa, generalization, specialization, association, 
and collection) in order to represent the semantics explicitly. 
A common formalism represents a framework in which data 
model formalisms can be transcribed and provides a 
uniformity useful for theoretical investigations. In this paper 
a first-order logic is introduced as a common formalism for 
analyzing Semantic Data Models. A schema is viewed as a 
first-order theory and the database as a model of this theory. 

Relations in the logic correspond to the data 
abstractions mentioned and axioms are given which describe 
their properties. Every schema contains these 'general' 
axioms in addition to those specific to the real-world 
application. The presence of the 'general' axioms provides a 
logical environment in which schemas can be developed. 

1.0 Introduction 

Numerous investigations have been made in the data 
model area in order to seek more appropriate formalisms for 
accurately representing the real-world application. These 
investigations have resulted in a relatively new class of data 
models called semantic data models [CHEN76, SMITH77a, 
SMITH77b, CODD79, BRODIESI, HAMMERS1, 
MCLEODS1, SHIPMAN81, HULL84, ABITEBOU87]. 
Semantic data models provide constructs for explicitly 
representing the semantics of the application. In contrast, 
the conventional models, i.e., relational, hierarchical, and 
network, implicitly represent the application semantics in 
their model data structures. The constructs in semantic data 
models implement information modeling tools called data 
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abstractions. These abstractions enable a complex world to 
be examined in terms of a simplified world that incorporates 
the most significant points. Most importantly, data 
abstractions provide the basis for a stepwise design 
methodology for databases [BRODIE81, HAMMER81, 
MCLEOD81 ]. 

Each data model has its own structuring mechanism 
from which to build application schemas. In the 
conventional data models this mechanism is in terms of data 
structures. In the semantic data models this mechanism is in 
terms of semantic structures expressed in some textual 
language or in graph-theoretic terms. A common formalism 
is a unifying framework in which the structural component 
of various data models can be transcribed. A common 
formalism provides a uniform environment that enhances 
theoretical investigations of data models and their schemas. 
Specifically, such formalisms have been used to study the 
relative information capacity between schemas [HULL84], 
update propagation [AB1TEBOU87], view integration, and 
automatic program conversion [JACOBS82]. A common 
formalism has also been used to provide a basis for a 
database language for heterogenous databases as well as an 
environment for developing application schemas 
[RYBINSKI87]. 

First-order predicate logic has several advantages as a 
representation language such as its expressive power, its 
proof theory, and its well-defined semantics provided by its 
foundation in set theory. In a database logic formalism, 
predicates correspond to the relationships between objects in 
the database. The schema is represented by formulas in the 
logic and the database represents the set-theoretic semantics. 

Previously [JACOBS82, KUPER84, RYBINSKI87] 
logic formalisms were introduced which generalize the three 
conventional models. This paper introduces a logic 
formalism for analyzing semantic data models. Schemas in 
these models are expressed as first-order theories and the 
database is a model of this theory. Predicates and relations in 
the logic correspond to the data abstractions common in 
semantic data models. Axioms are given which specify 
properties of these abstractions. These axioms are referred to 
as 'general' axioms and are common to all theories/schemas 
in the logic. 
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The logic formalism provides a unifying theory for 
semantic data models and a logical environment in which 
these models and their conceptual schemas can be analyzed. 

2.0 Data Abstractions 

Abstraction is the process in which the essential 
details of a concept are emphasized and the irrelevant details 
with respect to a particular context are suppressed. Data 
abstraction is the application of this process to database 
design. Our focus here is on the data abstractions which 
provide the basis for a stepwise design methodology for 
databases [SMITH77a, SMITH77b, BRODIE81, 
HAMMER81, MCLEOD81]. Data abstractions exist that 
capture the semantics of relationships that are commonplace 
in the real world. These data abstractions then are used as 
primitives to represent complex database applications. In 
general, these data abstractions can be classified as forms of 
composite-component relationships and subtype-supertype 
relationships. 

2.1 Composite - Component Relationships 

A composite type represents the cartesian product of 
its components. Thus properties of a component type 
become properties of the composite type. For example, the 
'Projects Assigned' type in Figure 1 is the composite of the 
'Employee' and 'Project' types. Properties of these 
component types are properties of 'Projects Assigned' also. 
A 'Projects Assigned' object is characterized by an 
'Emp_name', 'Proj_name', and the other properties of these 
component types. This upward inheritance of properties is 
characteristic of the data abstractions - aggregation, 
association, and collection. 

The composite-component relationship, 'A is a 
component of B', can have two interpretations. Firstly, A 
can be a property of B where a property is an atomic type. 
This relationship between a type and its properties is the 
aggregation abstraction and the composite type is called the 
aggregate. For example in Figure 1, the aggregate 
'Employee' represents the composition of properties that 
describe each employee, i.e., 'Emp_name', 'Emp no', and 
"E_Address'. Secondly, A can be an aggregate component of 
B. This is called the association abstraction. The types 
'Employee', 'Projects Assigned', and 'Project' comprise an 
association representing the relationship between employees 
and projects, i.e., the assignment of projects to employees. 
Previously [SMITH77a] these two interpretations were not 
distinguished. We do so here because it is useful when 
describing their formal properties in the logic. 

The collection abstraction [HULL84] represents a 
restricted form of association, i.e., a unary association. 
Given two types A and B, 'A is a collection of B' if 
instances of A are subsets of instances of B. For example, 

'Class' is a collection of 'Student'. Each 'Class' instance 
contains a subset of the 'Student' instances. Properties for 
type 'Class', i.e. 'Section Number', express a group property 
for the set of 'Student' instances in each 'Class' instance. 

2.2 Subtype - Supertype Relationships 

The sets of instances from two types related in this 
manner are characterized by set inclusion. The instances of 
the subtype are a subset of the instances of the supertype. 
For example in Figure 1, 'Accountant' is a subtype of 
'Employee', and consequently, 'Accountant' instances are 
also 'Employee' instances. Since all subtype intances are 
also supertype instances, properties of the supertype are also 
properties of the subtype. This downward inheritance of 
properties is characteristic of the data abstractions isa, 
generalization, and specialization. 

'A isa B' means 'A is a subtype of B'. In the figure 
'Employee' is the supertype having the subtypes 'Engineer', 
'Accountant', and 'Secretary'. The subtype instances inherit 
the properties of the supertype 'Employee', namely 
'Emp_no', "Emp name', and "E_Address'. Each subtype can 
be viewed as a restriction applied to the supertype, as for 
example, the set of 'Engineer' instances is that subset of 
'Employee' instances who are engineers. 

Generalization and specialization are isa abstractions 
having additional constraints. The constraints given here, 
which distinguish generalization and specialization, follow 
from those given by Abiteboul and Hull in the IFO Data 
Model [ABITEBOU87]. Generalization involves creating a 
supertype from a set of types. The types are generalized to 
construct the supertype whose properties are those shared by 
each type. Additional constraints which characterize 
generalization abstractions are disjointness, union, and 
singular parent. Each subtype's set of instances are disjoint 
from that of the other subtypes in the generalization. The 
union of the subtypes' instances equals the instances of the 
supertype. Lastly, a subtype can have only one supertype, 
i.e., can participate in only one subtype-supertype 
relationship. 

Specialization represents the creation of subtypes of a 
particular type. Thus, unlike generalization, specialization is 
derived in a top-down manner. Each subtype inherits the 
properties of this type, augmenting the set of properties 
peculiar to its 'specialty'. For example, in Figure 1, 'Gov't 
Contracts' is a specialization of 'Project', representing that 
subset of projects that are contracted from the government. 
A constraint which characterizes the specialization 
abstraction is the extension to a common parent 
[ABITEBOU87]. A subtype may participate in more than 
one specialization but the supertype extension (i.e., the 
supertype of this supertype and so on) will lead to a 
common supertype of this specialization hierarchy (Figure 
2). 
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Figure 2. Extension to a Common Parent 
Constraint in Specialization Abstractions 

3.0 Predicate Logic Formalisms 

Consider the set of assertions in Figure 3(a). These 
assertions can be expressed as the first-order logic sentences 
in Figure 3(b). 

1. John is an accountant. 
2. Bill is an engineer. 
3. Every accountant is an employee. 

4. Every engineer is an employee. 
5. Every employee has a salary. 

(a) 

1. ACCOUNTANT (John) 
2. ENGINEER (Bill) 
3. ~/x (ACCOUNTANT (x) ~ EMPLOYEE (x)) 
4. V x (ENGINEER (x) ~ EMPLOYEE (x)) 
5. V x (EMPLOYEE (x) ~ 3 y (SALARY (x, y)) ) 

Co) 

Figure 3 

Thefirst-order language in which this application is 
described consists of countable sets of variables and 
constants, the predicates~relations ACCOUNTANT, 
ENGINEER, EMPLOYEE, and SALARY, and the logical 
operators typical in first-order predicate logic ~ ,  &, v, V, 
3, ~. Atomic formulas in this language are of the form 
P(sl) or P(sl,s2) where P is a predicate/relation and si is a 
variable or constant. Well-formed formulas (abbreviated 
wffs) are constructed from atomic formulas and, in addition, 
sequences of atomic formulas and operators. 

A first-order theory consists of a language, a set of 
logical axioms, a set of non-logical axioms, and inference 
rules. Axioms are a closed wffs (wffs having no free 
variables) that describe various properties. The logical 
axioms are those common to every first-order predicate 
logic. Non-logical axioms express properties specific to an 
application such as those in Figure 3(b). 
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The inference rules provide a mechanism for deriving 
new wffs from the axioms in the theory. Derived wffs are 
called theorems. For example, a theorem in the previous 
example is EMPLOYEE(Bill) which would be derivable 
from axioms 2, 4 and the modus ponens inference rule (see 
4.4). 

4.0 The Logic Formalism 

In this section a first-order theory is introduced which 
expresses axiomatically schemas in semantic data models. 
As previously discussed, data abstractions are useful tools 
for organizing application knowledge and consequently, are 
implemented by semantic data model formalisms. The 
predicates and relations in the logic correspond to the data 
abstractions that are supported in current models. Thus, the 
logic is at least as expressive as these models and provides 
for them a logic-theoretic semantics. 

The first-order database logic, is formally defined to 
consist of the language in 4.1, the terms and well-formed 
formulas defined in 4.2, the set of logical and non-logical 
axioms in 4.3 and the inference rules in 4.4. 

4.1 The Language 

The language L is the alphabet of symbols from 
which formulas in the logic are constructed. Certain 
conventions are used to make clear the sorts of 'things' over 
which the variables range. Let T be the set of types t in the 
application domain. Let P be the set of properties p in the 
domain and let Pt represent the set of properties for a 
particular type t. The symbol x represents an object or an 
instance of a type. The symbol v represents a value or an 
instance of a property. This notation is discussed in detail in 
[VORBACH90] where the interpretation for the language is 
given. 

The language L contains the following sets of denumerable 
constants and variables: 
1) constants {el, c2, c3 .... } 
2) objects {Xl, x2, x3 ....  }; 

3) objects of a particular type t ~ T, {x~ , x~ , x~ .... }; 
4) values {v 1, v 2, v 3 ....  }; 

5) values of particular properties p e P, {v~, v~, v~ ....  }; 
6) variables for types in T {tl, t2, t3 .... }; 
7) variables for properties in P {Pl,P2,P3 .... }. 

The language, L, contains of the following operators: 
1) the logical connectives {&, v, - ,  ~ } ;  
2) the universal quantifier, V, and the existential quantifier 

3. 

The predicates and relations in L are classified into 
four categories. The sorting predicates are used to identify 
'things' as being of a particular class or type. x identifies 
objects of a particular type. 0 identifies values of a particular 
property, a identifies members of the set T. ~ identifies 
members of the set P. The constraint predicates name 
additional properties of particular data abstractions. The 
abstraction relations correspond to the data abstractions 
discussed. The mapping relations correspond to the 
functional relationships that are characteristic of aggregation 
and association. The notation used here for the mapping 
relations is a schema for those which occur in a particular 
applied theory. 

The language, L, contains the following predicates and 
relations: 
1) the sorting predicates x, 0, a ,  and ~ ; 
2) the unary cons~aint predicates UNION, SING, DISJ and 

ESING; 
3) the binary abstraction relations ISA, GISA, SISA, 

PART OF, COL, and PROP; 
4) the binary mapping relations 

{~ttJ i l t i , t j E  T}and{T~  i l p i e  Ph, tJe  T}; 

5) the equality relation = .  

4.2 Definitions of  Terms and Well-Formed 
Formulas  

A term is a variable or constant symbol in L. 

A well-formed formula (wff) is defined as follows: 
1) if Sl and s2 are terms, then the expressions 0(Sl, s2) and 

X(Sl, s2) are wffs; 

2) if s 1 and s2 are terms, Pi E Ptj, and tj e T, then the 

expression 'Y~(Sl,S2) is a wff; 
3) if Sl and s2 are terms and ti, tj e T, then the expression 

~tt~(sl ,s2) is a wff ; 

4) if s is a term, then the expressions a(s), r(s), UNION(s), 
SING(s), DISJ(s) and ESING(s) are wff's; 

5) if Sl and s2 are terms, then the expressions ISA(sl, s2), 
GISA(sl,  s2), SISA(sl, s2), PART_OF(sl,  s2), 
COL(sl,  s2), and PROP(sl,  s2) are wfffs; 

6) if A1 and A2 are wffs,  then ~A1, AlvA2,  AI&A2, 
A I ~ A 2  are wffs; 

7) if s is a term and A is a wff, then Vs A and 3s A are 
wffs; 

8) no other expressions are wffs. 
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4.3 Logical and Non-Logical Axioms 

Let KSDM be the first-order theory utilizing the 
language L with the logical axioms typical in first-order 
predicate logic with identity [cf MENDELSO64], the non- 
logical axioms AX1 through AX14, and the inference rules 
in 4.4. 

The non-logical axioms give properties specific to a 
theory's application. In the context of this work, a subset of 
the non-logical axioms (AX1 through AX14) are classified 
as 'general' axioms and describe properties of the data 
abstractions that apply in all applications. Consequently, 
any schema expressed as a first-order theory using this 
formalism will contain the following axioms within its set 
of non-logical axioms 

AX1 through AX14 characterize ISA and PART OF 
relations. D1 through D7 define 'higher-lever 
predicates/relations in terms of primitives. 

AX1 Type arguments: Vtl,t 2 ISA(tl ,t2) ~ ot(tl) & or(t2) 
This axiom restricts the argument variables in ISA. The 
(x predicate corresponds to a type sort, restricting the 
variables to elements in the set of types T for the 
application. 

AX2 Reflexivity: Vtl ISA(tl,tl) 

AX3 Anti-Symmetry: 
Vtl,t2 (ISA(tl,t2) & (tl~t2) ~ ~ISA(t2,tl)) 
A subtype tl of another type t2 cannot also be a 
supertype of t2. Otherwise a redundancy would exist. In 
other words, if all instances of tl are instances of t2 and 
all instances of t2 are instances of tl then tl = t2. 

AX4 Transitivity: 
Vtl,t2,t3 ((ISA(tl,t2) & ISA(t2,t3)) ~ ISA(tl,t3)) 

AX5 Incompatibility: Vtl,t2 ~(ISA(tl,t2) & PART_OF(tl,t2)) 
This axiom specifies that a subtype tl of a supertype t2 
cannot also be a component tl of a composite type t2. 

AX6 Type Arguments: 
Vpl,tl (PROP(Pl, tl) ~ I¢(Pl) & ~(tl)) 
PROP identifies p as a property of t.The ot predicate as 
previously noted is the type sort predicate and n is the 
property sort predicate. 

AX7 Downward Inheritance: Vtl,t2,Pl ((ISA(tl,t2) & 
PROP(Pl, t2)) ~ PROP(pl, tl)) 

AX8 Type Arguments: 
Vtl,t2 (PART_OF(tl,t2) ~ ct(tl) & or(t2)) 

AX9 Anti-Reflexivity: Vtl ~PART OF(tl,tl) 

AX10 Anti-Symmetry: Vtl,t2 (PART_OF(tl,t2) 
~PART OF(t2,tl)) 

AX11 Transitivity: 
Vtl,t2,t3 ((PART OF(tl,t2) & PART_OF(t2,t3)) 
PART_OF(t1, t3)) 

AX 12 Upward Inheritance: 
Vtl,t2,Pl ((PART_OF(tl,t2) & PROP(P1, tl)) =~ 
PROP(p1, t2)) 

AX13 Mixed Transitivity 1: 
Vtl ,t2,t3 ((PART_OF(tl,t2) & ISA(t 1,t3)) 
PART_OF(t3,t2)) 

AX 14 Mixed Transitivity 2:Vtl,t2,t3 ((PART OF(tl,t2) 
& ISA(t3,t2)) ~ PART_OF(tl,t3)) 

The notation ~ (i.e., A1 ~ A2) in the following 
definitions is an abbreviation for (A 1 ~ A2) & (A2 ~ A1). 
D1 through D4 define the constraint predicates SING, 
ESING, UNION, and DISJ respectively. D5 through D7 
define the abstraction relations GISA, SISA, and COL 
respectively. 

DI: Vtl (SING(t1) -= Vt2,t3 ((ISA(tl,t2) & ISA(tl,t3)) 
(t2 = t3 v ISA(t2,t3) v ISA(t3,t2)))) 
This predicate corresponds to the singular parent 
constraint. The subtype tl is restricted to having only a 
single parent, unless the multiple parents are isa-related 
(i.e., one parent is the subtype of the other). 

D2: Vtl (ESING(tl) -= Vt2,t3 ((ISA(tl ,t 2) & ISA(t 1,t 3) & 
t2 # t3) ~ St4 (ISA(t2,t4) & ISA(t3,t4) & 
Vt5(ISA(t2,t 5) ~ ISA(t5,t4))))) 
The ESING predicate corresponds to the extension to a 
common parent constraint which characterizes 
specialization abstractions. The variable t4 represents 
the common parent of the isa abstractions that contain 
the subtype tl. For all 'intermediate' types, t 5, in these 
isa abstractions, t4 must be a common parent. 

D3: Vtl (UNION(tl) ~. VXl(X(xl,tl) 
3t2(ISA(t2,tl) & tl ~ t2 & X(Xl,t2)))) 
The UNION predicate corresponds to the union 
constraint. It constrains objects, Xl, of supertype tl to 
be objects of a subtype t2 of tl. From the ISA relation, 
the converse holds. Thus the supertype's objects are the 
union of its subtypes' objects. 

D4: Vtl (DISJ(tl) ~ Vt2,t3 ((ISA(t2,tl) & ISA(t3,tl) & 
~ISA(t2,t3) & -ISA(t3,t2)) 
VXl(X(Xl,t2) ~ ~X(Xl,t3)))) 
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The DISJ predicate corresponds to the disjointness 
constraint. It constrains the sets of objects of distinct 
subtypes (t2 and t3) of tl, that are not isa-related, to be 
disjoint. 

D5:Vtl,t2 (GISA(tl,t2) --- (ISA(tl,t2) & UNION(t2) & 
DISJ(t2) & SING(tl) & tl ¢= t2)) 
A generalization abstraction in a schema is represented 
in the formalism by axioms of the form GISA(tl, t2). 
An axiom exists for each subtype in the abstraction. 
The predicates UNION, SING, and DISJ correspond to 
the union, singular parent, and disjointness constraints 
which characterize generalization abstractions. 

D6:Vtl,t2 (SISA(tl,t2) --- (ISA(tl,t2) & ESING(tl) & tl 
t2)) 
A specialization abstraction in a schema is represented 
in the formalism by axioms of the form SISA(tl, t2) 
and an axiom also exists for each subtype in the 
abstraction. The predicate ESING corresponds to the 
extension to a common parent constraint defined 
previously. 

D7:Vtl,t2 (COL(tl,t2) ~ (PART_OF(tl,t2) & ~3t3 
(PART OF(t3,t2) & tl ~ t3 & ~ISA(tl,t3)))) 
A collection abstraction in a schema is represented in 
the formalism by an axiom of the form COL(tl, t2). 
The collection relation COL is defined in terms of the 
association relation PART_OF and the existential 
clause which represents the unary component restriction 
that characterizes collection abstractions. 

4.4 Inference Rules 

The inference rules of KSD M are those typical of 
first-order predicate logic formal systems [cf 
MENDELSO64]. 

Generalization: Given A, assert VxiA where A is a wff 
and xi is a variable term. 

Modus Ponens: Given A1 and A1 ~ A2, assert A2 where 
A1 and A2 are wff's. 

The following two examples illustrate how the 
formalism can express information contained in semantic 
data model schemas and databases. Example 4.1 represents 
the schema in Figure 1 and example 4.2 illustrates a 
database query 

Example 4.1: A first-order theory for a specific database 
application contains the logical axioms common to first- 
order predicate logic and the non-logical axioms 
corresponding to the application. The non-logical axioms 

will contain the 'general' axioms specified in KSDM as well 
as the axioms specific to a given schema. In Figure 4 the 
schema-specific, non-logical axioms are given as well as the 
mapping relations in the language representing the schema 
in Figure 1. 

Example 4.2: The query 'What are the names of the 
employees who have employee numbers 1, 2, or 3 ?' is 
represented in the logic formalism by the wff in Figure 5. 

. . . .  vEmp_name 
This query contains the tree vanaole 1 and is 
interpreted as the set of employee names in a database that 
satisfy the query. 

ISA (Accountant, Employee) 
IS A (Engineer, Employee) 
ISA (Secretary, Employee) 
SISA (Gov't-Contracts, Project) 

PART OF (Employee, Projects Assigned) 
PART OF (Project, Projects Assigned) 

PROP 
PROP 
PROP 
PROP 
PROP 
PROP 
PROP 
PROP 
PROP 
PROP 

(Emp_no, Employee) 
(Emp_name, Employee) 
(E_Address, Employee) 
(Type, Engineer) 
(Section, Accountant) 
(Skill level, Secretary) 
(Gov't Agency, Gov't Contracts) 
(Proj_no, Project) 
(Proj_name, Projec0 
(P_Address, Project) 

• P r o j e c t s  Assigned ~Projects Assigned 
Employee , Project 

,yEmployee ~,Employee ~,Employee 
Emp_no , lEtup_name, SE_Address, 

Engineer . Accountant Secretary 
TType , rsection , YSkill level, 

Gov't Contracts Project _ Project 
Gov't Agency , ~Proj_no, 'YProj_name, 
Project 

'YP_Address 

Figure 4 

5.0 Conclusion 

In this paper a logic formalism was introduced to 
construct first-order theories representing semantic data 
model schemas. This formalism generalizes these models in 
the sense that data abstractions common in these models 
correspond to relations in the logic. The formalism then 
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provides a basis for theoretical investigations of semantic 
data models. 

A designer using this formalism is presented with a 
logical environment with which to develop his or her 
schema in terms of the axioms given which specify 
properties of the data abstractions. Since the logic formalism 

is first-order, the standard theorems of f'~t-order theories are 
applicable. Two specific database issues, i.e. schema 
consistency and relative information content, are examined 
in [VORBACH90] in light of this formalism. 

Employee ~,Employee Employee .,,Employee Emp narne Employee 
3Xl (( Emp_no (1,Xl ) & IEmp-name(Vl ,Xl )) v 

TEEmpI°y ee xEmployee 4,Employee Emp name xEmployee 
mp_no (2, 1 ) & tEmp-name(Vl - , 1 )) v 

~,Employee Employee .~ Employee Emp name Employee 
( Empno  (3,Xl ) & tEmp_name(V 1 ,x 1 ))) 

Figure 5 

6.0 References 

[ABITEBOU87] Abiteboul, S., Hull, R., "IFO: A formal 
semantic database model", A CM Trans. on Database 
Systems,12,4 (Dec. 1987) 525 - 565. 

[BRODIE81] Brodie, M., "Data abstraction for designing 
database-intensive applications", Proc. Workshop on Data 
Abstraction, Databases and Conceptual Modelling, June 23- 
26 1980, Pingree Park, Colorado, 101-103. 

[CHEN76] Chen, P., "The entity-relationship model - 
toward a unified view of data", ACM Trans. on Database 
Systems, 1,1 (March 1976)9-36. 

[CODD79] Codd, E., "Extending the database relational 
model to capture more meaning", ACM Trans. on Database 
Systems, 4,4 (Dec. 1979) 397-434. 

[HAMMER81] Hammer, M., "Data abstractions for 
databases", Proc. Workshop on Data Abstraction, Databases 
and Conceptual Modelling, June 23-26 1980, Pingree Park, 
Colorado, 77-82. 

[HULL84] Hull, R., Yap, C., "The format model: A theory 
of database organization", Journal of the ACM, 31, 3 (July 
1984) 518-537. 

[JACOBS82] Jacobs, B., "On database logic", Journal of the 
ACM, 29, 2 (Apr. 1982) 310-332. 

[KUPER84] Kuper, G., Vardi, M., "A new approach to 
database logic", Proc. 3rd ACM Syrup. on Principles of 
Database Systems, Apr. 2-4, 1984, Waterloo, Ontario, 
Canada, 86-96. 

[MCLEOD81] McLeod, D., Smith, J., "Abstractions in 
databases", Proc. Workshop on Data Abstraction, Databases 
and Conceptual Modelling, June 23-26 1980, Pingree Park, 
Colorado, 19-25. 

[MENDELSO64] Mendelson, E., "Introduction to 
Mathematical Logic," Van Nostrand, NY (1964). 

[RYBINSKI87] Rybinski, H., "On first order logic 
databases", ACM Trans. on Database Systems, 12,3 (Sept. 
1987) 325-349. 

[SHIPMAN81] Shipman, D., "The functional data model 
and the data language DAPLEX", ACM Trans. on Database 
Systems, 6,1 (March 1981) 140-173. 

[SMITH77a] Smith, D., Smith, J., "Database abstractions: 
aggregation", Communications of the ACM, 20,6 (June 
1977) 405-413. 

[SMITH77b] Smith, D., Smith, J.,"Database abstractions: 
aggregation and generalization", ACM Trans. on Database 
Systems, 2,2 (June 1977) 105-133. 

[VORBACH90] Vorbach, J., "A unifying logic-based 
formalism for semantic data models", Ph.D Dissertatation, 
Dept of Computer Science and Statistics, University of 
Rhode Island, Kingston, RI (1990) 

348 


