
A Unifying Logic-based Formalism for Semantic Data Models

James Vorbach
St. John's University
Jamaica, New York

James Kowalski
University of Rhode Island

Kingston, Rhode Island

Abstract

Contrary to the Relational, Hierarchical, and Network
Data Models which represent an application's semantics
implicitly in a particular data structure, Semantic Data
Models implement well-known data abstractions (i.e.
aggregation, isa, generalization, specialization, association,
and collection) in order to represent the semantics explicitly.
A common formalism represents a framework in which data
model formalisms can be transcribed and provides a
uniformity useful for theoretical investigations. In this paper
a first-order logic is introduced as a common formalism for
analyzing Semantic Data Models. A schema is viewed as a
first-order theory and the database as a model of this theory.

Relations in the logic correspond to the data
abstractions mentioned and axioms are given which describe
their properties. Every schema contains these 'general'
axioms in addition to those specific to the real-world
application. The presence of the 'general' axioms provides a
logical environment in which schemas can be developed.

1.0 Introduction

Numerous investigations have been made in the data
model area in order to seek more appropriate formalisms for
accurately representing the real-world application. These
investigations have resulted in a relatively new class of data
models called semantic data models [CHEN76, SMITH77a,
SMITH77b, CODD79, BRODIESI, HAMMERS1,
MCLEODS1, SHIPMAN81, HULL84, ABITEBOU87].
Semantic data models provide constructs for explicitly
representing the semantics of the application. In contrast,
the conventional models, i.e., relational, hierarchical, and
network, implicitly represent the application semantics in
their model data structures. The constructs in semantic data
models implement information modeling tools called data

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

abstractions. These abstractions enable a complex world to
be examined in terms of a simplified world that incorporates
the most significant points. Most importantly, data
abstractions provide the basis for a stepwise design
methodology for databases [BRODIE81, HAMMER81,
MCLEOD81].

Each data model has its own structuring mechanism
from which to build application schemas. In the
conventional data models this mechanism is in terms of data
structures. In the semantic data models this mechanism is in
terms of semantic structures expressed in some textual
language or in graph-theoretic terms. A common formalism
is a unifying framework in which the structural component
of various data models can be transcribed. A common
formalism provides a uniform environment that enhances
theoretical investigations of data models and their schemas.
Specifically, such formalisms have been used to study the
relative information capacity between schemas [HULL84],
update propagation [AB1TEBOU87], view integration, and
automatic program conversion [JACOBS82]. A common
formalism has also been used to provide a basis for a
database language for heterogenous databases as well as an
environment for developing application schemas
[RYBINSKI87].

First-order predicate logic has several advantages as a
representation language such as its expressive power, its
proof theory, and its well-defined semantics provided by its
foundation in set theory. In a database logic formalism,
predicates correspond to the relationships between objects in
the database. The schema is represented by formulas in the
logic and the database represents the set-theoretic semantics.

Previously [JACOBS82, KUPER84, RYBINSKI87]
logic formalisms were introduced which generalize the three
conventional models. This paper introduces a logic
formalism for analyzing semantic data models. Schemas in
these models are expressed as first-order theories and the
database is a model of this theory. Predicates and relations in
the logic correspond to the data abstractions common in
semantic data models. Axioms are given which specify
properties of these abstractions. These axioms are referred to
as 'general' axioms and are common to all theories/schemas
in the logic.

© 1991 ACM 089791-382-5/91/0003/0342 $1.50 342

http://crossmark.crossref.org/dialog/?doi=10.1145%2F327164.327294&domain=pdf&date_stamp=1991-04-01

The logic formalism provides a unifying theory for
semantic data models and a logical environment in which
these models and their conceptual schemas can be analyzed.

2.0 Data Abstractions

Abstraction is the process in which the essential
details of a concept are emphasized and the irrelevant details
with respect to a particular context are suppressed. Data
abstraction is the application of this process to database
design. Our focus here is on the data abstractions which
provide the basis for a stepwise design methodology for
databases [SMITH77a, SMITH77b, BRODIE81,
HAMMER81, MCLEOD81]. Data abstractions exist that
capture the semantics of relationships that are commonplace
in the real world. These data abstractions then are used as
primitives to represent complex database applications. In
general, these data abstractions can be classified as forms of
composite-component relationships and subtype-supertype
relationships.

2.1 Composite - Component Relationships

A composite type represents the cartesian product of
its components. Thus properties of a component type
become properties of the composite type. For example, the
'Projects Assigned' type in Figure 1 is the composite of the
'Employee' and 'Project' types. Properties of these
component types are properties of 'Projects Assigned' also.
A 'Projects Assigned' object is characterized by an
'Emp_name', 'Proj_name', and the other properties of these
component types. This upward inheritance of properties is
characteristic of the data abstractions - aggregation,
association, and collection.

The composite-component relationship, 'A is a
component of B', can have two interpretations. Firstly, A
can be a property of B where a property is an atomic type.
This relationship between a type and its properties is the
aggregation abstraction and the composite type is called the
aggregate. For example in Figure 1, the aggregate
'Employee' represents the composition of properties that
describe each employee, i.e., 'Emp_name', 'Emp no', and
"E_Address'. Secondly, A can be an aggregate component of
B. This is called the association abstraction. The types
'Employee', 'Projects Assigned', and 'Project' comprise an
association representing the relationship between employees
and projects, i.e., the assignment of projects to employees.
Previously [SMITH77a] these two interpretations were not
distinguished. We do so here because it is useful when
describing their formal properties in the logic.

The collection abstraction [HULL84] represents a
restricted form of association, i.e., a unary association.
Given two types A and B, 'A is a collection of B' if
instances of A are subsets of instances of B. For example,

'Class' is a collection of 'Student'. Each 'Class' instance
contains a subset of the 'Student' instances. Properties for
type 'Class', i.e. 'Section Number', express a group property
for the set of 'Student' instances in each 'Class' instance.

2.2 Subtype - Supertype Relationships

The sets of instances from two types related in this
manner are characterized by set inclusion. The instances of
the subtype are a subset of the instances of the supertype.
For example in Figure 1, 'Accountant' is a subtype of
'Employee', and consequently, 'Accountant' instances are
also 'Employee' instances. Since all subtype intances are
also supertype instances, properties of the supertype are also
properties of the subtype. This downward inheritance of
properties is characteristic of the data abstractions isa,
generalization, and specialization.

'A isa B' means 'A is a subtype of B'. In the figure
'Employee' is the supertype having the subtypes 'Engineer',
'Accountant', and 'Secretary'. The subtype instances inherit
the properties of the supertype 'Employee', namely
'Emp_no', "Emp name', and "E_Address'. Each subtype can
be viewed as a restriction applied to the supertype, as for
example, the set of 'Engineer' instances is that subset of
'Employee' instances who are engineers.

Generalization and specialization are isa abstractions
having additional constraints. The constraints given here,
which distinguish generalization and specialization, follow
from those given by Abiteboul and Hull in the IFO Data
Model [ABITEBOU87]. Generalization involves creating a
supertype from a set of types. The types are generalized to
construct the supertype whose properties are those shared by
each type. Additional constraints which characterize
generalization abstractions are disjointness, union, and
singular parent. Each subtype's set of instances are disjoint
from that of the other subtypes in the generalization. The
union of the subtypes' instances equals the instances of the
supertype. Lastly, a subtype can have only one supertype,
i.e., can participate in only one subtype-supertype
relationship.

Specialization represents the creation of subtypes of a
particular type. Thus, unlike generalization, specialization is
derived in a top-down manner. Each subtype inherits the
properties of this type, augmenting the set of properties
peculiar to its 'specialty'. For example, in Figure 1, 'Gov't
Contracts' is a specialization of 'Project', representing that
subset of projects that are contracted from the government.
A constraint which characterizes the specialization
abstraction is the extension to a common parent
[ABITEBOU87]. A subtype may participate in more than
one specialization but the supertype extension (i.e., the
supertype of this supertype and so on) will lead to a
common supertype of this specialization hierarchy (Figure
2).

343

Project

Gov't I
Conlracts

Figure 1. Employee - Project Schema

I Project [

A
Funding I I L%tac~

Residential
Housing

Figure 2. Extension to a Common Parent
Constraint in Specialization Abstractions

3.0 Predicate Logic Formalisms

Consider the set of assertions in Figure 3(a). These
assertions can be expressed as the first-order logic sentences
in Figure 3(b).

1. John is an accountant.
2. Bill is an engineer.
3. Every accountant is an employee.

4. Every engineer is an employee.
5. Every employee has a salary.

(a)

1. ACCOUNTANT (John)
2. ENGINEER (Bill)
3. ~/x (ACCOUNTANT (x) ~ EMPLOYEE (x))
4. V x (ENGINEER (x) ~ EMPLOYEE (x))
5. V x (EMPLOYEE (x) ~ 3 y (SALARY (x, y)))

Co)

Figure 3

Thefirst-order language in which this application is
described consists of countable sets of variables and
constants, the predicates~relations ACCOUNTANT,
ENGINEER, EMPLOYEE, and SALARY, and the logical
operators typical in first-order predicate logic ~ , &, v, V,
3, ~. Atomic formulas in this language are of the form
P(sl) or P(sl,s2) where P is a predicate/relation and si is a
variable or constant. Well-formed formulas (abbreviated
wffs) are constructed from atomic formulas and, in addition,
sequences of atomic formulas and operators.

A first-order theory consists of a language, a set of
logical axioms, a set of non-logical axioms, and inference
rules. Axioms are a closed wffs (wffs having no free
variables) that describe various properties. The logical
axioms are those common to every first-order predicate
logic. Non-logical axioms express properties specific to an
application such as those in Figure 3(b).

344

The inference rules provide a mechanism for deriving
new wffs from the axioms in the theory. Derived wffs are
called theorems. For example, a theorem in the previous
example is EMPLOYEE(Bill) which would be derivable
from axioms 2, 4 and the modus ponens inference rule (see
4.4).

4.0 The Logic Formalism

In this section a first-order theory is introduced which
expresses axiomatically schemas in semantic data models.
As previously discussed, data abstractions are useful tools
for organizing application knowledge and consequently, are
implemented by semantic data model formalisms. The
predicates and relations in the logic correspond to the data
abstractions that are supported in current models. Thus, the
logic is at least as expressive as these models and provides
for them a logic-theoretic semantics.

The first-order database logic, is formally defined to
consist of the language in 4.1, the terms and well-formed
formulas defined in 4.2, the set of logical and non-logical
axioms in 4.3 and the inference rules in 4.4.

4.1 The Language

The language L is the alphabet of symbols from
which formulas in the logic are constructed. Certain
conventions are used to make clear the sorts of 'things' over
which the variables range. Let T be the set of types t in the
application domain. Let P be the set of properties p in the
domain and let Pt represent the set of properties for a
particular type t. The symbol x represents an object or an
instance of a type. The symbol v represents a value or an
instance of a property. This notation is discussed in detail in
[VORBACH90] where the interpretation for the language is
given.

The language L contains the following sets of denumerable
constants and variables:
1) constants {el, c2, c3 }
2) objects {Xl, x2, x3 };

3) objects of a particular type t ~ T, {x~ , x~ , x~ };
4) values {v 1, v 2, v 3 };

5) values of particular properties p e P, {v~, v~, v~ };
6) variables for types in T {tl, t2, t3 };
7) variables for properties in P {Pl,P2,P3 }.

The language, L, contains of the following operators:
1) the logical connectives {&, v, - , ~ } ;
2) the universal quantifier, V, and the existential quantifier

3.

The predicates and relations in L are classified into
four categories. The sorting predicates are used to identify
'things' as being of a particular class or type. x identifies
objects of a particular type. 0 identifies values of a particular
property, a identifies members of the set T. ~ identifies
members of the set P. The constraint predicates name
additional properties of particular data abstractions. The
abstraction relations correspond to the data abstractions
discussed. The mapping relations correspond to the
functional relationships that are characteristic of aggregation
and association. The notation used here for the mapping
relations is a schema for those which occur in a particular
applied theory.

The language, L, contains the following predicates and
relations:
1) the sorting predicates x, 0, a , and ~ ;
2) the unary cons~aint predicates UNION, SING, DISJ and

ESING;
3) the binary abstraction relations ISA, GISA, SISA,

PART OF, COL, and PROP;
4) the binary mapping relations

{~ttJ i l t i , t j E T}and{T~ i l p i e Ph, tJe T};

5) the equality relation = .

4.2 Definitions of Terms and Well-Formed
Formulas

A term is a variable or constant symbol in L.

A well-formed formula (wff) is defined as follows:
1) if Sl and s2 are terms, then the expressions 0(Sl, s2) and

X(Sl, s2) are wffs;

2) if s 1 and s2 are terms, Pi E Ptj, and tj e T, then the

expression 'Y~(Sl,S2) is a wff;
3) if Sl and s2 are terms and ti, tj e T, then the expression

~tt~(sl ,s2) is a wff ;

4) if s is a term, then the expressions a(s), r(s), UNION(s),
SING(s), DISJ(s) and ESING(s) are wff's;

5) if Sl and s2 are terms, then the expressions ISA(sl, s2),
GISA(sl, s2), SISA(sl, s2), PART_OF(sl, s2),
COL(sl, s2), and PROP(sl, s2) are wfffs;

6) if A1 and A2 are wffs, then ~A1, AlvA2, AI&A2,
A I ~ A 2 are wffs;

7) if s is a term and A is a wff, then Vs A and 3s A are
wffs;

8) no other expressions are wffs.

345

4.3 Logical and Non-Logical Axioms

Let KSDM be the first-order theory utilizing the
language L with the logical axioms typical in first-order
predicate logic with identity [cf MENDELSO64], the non-
logical axioms AX1 through AX14, and the inference rules
in 4.4.

The non-logical axioms give properties specific to a
theory's application. In the context of this work, a subset of
the non-logical axioms (AX1 through AX14) are classified
as 'general' axioms and describe properties of the data
abstractions that apply in all applications. Consequently,
any schema expressed as a first-order theory using this
formalism will contain the following axioms within its set
of non-logical axioms

AX1 through AX14 characterize ISA and PART OF
relations. D1 through D7 define 'higher-lever
predicates/relations in terms of primitives.

AX1 Type arguments: Vtl,t 2 ISA(tl ,t2) ~ ot(tl) & or(t2)
This axiom restricts the argument variables in ISA. The
(x predicate corresponds to a type sort, restricting the
variables to elements in the set of types T for the
application.

AX2 Reflexivity: Vtl ISA(tl,tl)

AX3 Anti-Symmetry:
Vtl,t2 (ISA(tl,t2) & (tl~t2) ~ ~ISA(t2,tl))
A subtype tl of another type t2 cannot also be a
supertype of t2. Otherwise a redundancy would exist. In
other words, if all instances of tl are instances of t2 and
all instances of t2 are instances of tl then tl = t2.

AX4 Transitivity:
Vtl,t2,t3 ((ISA(tl,t2) & ISA(t2,t3)) ~ ISA(tl,t3))

AX5 Incompatibility: Vtl,t2 ~(ISA(tl,t2) & PART_OF(tl,t2))
This axiom specifies that a subtype tl of a supertype t2
cannot also be a component tl of a composite type t2.

AX6 Type Arguments:
Vpl,tl (PROP(Pl, tl) ~ I¢(Pl) & ~(tl))
PROP identifies p as a property of t.The ot predicate as
previously noted is the type sort predicate and n is the
property sort predicate.

AX7 Downward Inheritance: Vtl,t2,Pl ((ISA(tl,t2) &
PROP(Pl, t2)) ~ PROP(pl, tl))

AX8 Type Arguments:
Vtl,t2 (PART_OF(tl,t2) ~ ct(tl) & or(t2))

AX9 Anti-Reflexivity: Vtl ~PART OF(tl,tl)

AX10 Anti-Symmetry: Vtl,t2 (PART_OF(tl,t2)
~PART OF(t2,tl))

AX11 Transitivity:
Vtl,t2,t3 ((PART OF(tl,t2) & PART_OF(t2,t3))
PART_OF(t1, t3))

AX 12 Upward Inheritance:
Vtl,t2,Pl ((PART_OF(tl,t2) & PROP(P1, tl)) =~
PROP(p1, t2))

AX13 Mixed Transitivity 1:
Vtl ,t2,t3 ((PART_OF(tl,t2) & ISA(t 1,t3))
PART_OF(t3,t2))

AX 14 Mixed Transitivity 2:Vtl,t2,t3 ((PART OF(tl,t2)
& ISA(t3,t2)) ~ PART_OF(tl,t3))

The notation ~ (i.e., A1 ~ A2) in the following
definitions is an abbreviation for (A 1 ~ A2) & (A2 ~ A1).
D1 through D4 define the constraint predicates SING,
ESING, UNION, and DISJ respectively. D5 through D7
define the abstraction relations GISA, SISA, and COL
respectively.

DI: Vtl (SING(t1) -= Vt2,t3 ((ISA(tl,t2) & ISA(tl,t3))
(t2 = t3 v ISA(t2,t3) v ISA(t3,t2))))
This predicate corresponds to the singular parent
constraint. The subtype tl is restricted to having only a
single parent, unless the multiple parents are isa-related
(i.e., one parent is the subtype of the other).

D2: Vtl (ESING(tl) -= Vt2,t3 ((ISA(tl ,t 2) & ISA(t 1,t 3) &
t2 # t3) ~ St4 (ISA(t2,t4) & ISA(t3,t4) &
Vt5(ISA(t2,t 5) ~ ISA(t5,t4)))))
The ESING predicate corresponds to the extension to a
common parent constraint which characterizes
specialization abstractions. The variable t4 represents
the common parent of the isa abstractions that contain
the subtype tl. For all 'intermediate' types, t 5, in these
isa abstractions, t4 must be a common parent.

D3: Vtl (UNION(tl) ~. VXl(X(xl,tl)
3t2(ISA(t2,tl) & tl ~ t2 & X(Xl,t2))))
The UNION predicate corresponds to the union
constraint. It constrains objects, Xl, of supertype tl to
be objects of a subtype t2 of tl. From the ISA relation,
the converse holds. Thus the supertype's objects are the
union of its subtypes' objects.

D4: Vtl (DISJ(tl) ~ Vt2,t3 ((ISA(t2,tl) & ISA(t3,tl) &
~ISA(t2,t3) & -ISA(t3,t2))
VXl(X(Xl,t2) ~ ~X(Xl,t3))))

346

The DISJ predicate corresponds to the disjointness
constraint. It constrains the sets of objects of distinct
subtypes (t2 and t3) of tl, that are not isa-related, to be
disjoint.

D5:Vtl,t2 (GISA(tl,t2) --- (ISA(tl,t2) & UNION(t2) &
DISJ(t2) & SING(tl) & tl ¢= t2))
A generalization abstraction in a schema is represented
in the formalism by axioms of the form GISA(tl, t2).
An axiom exists for each subtype in the abstraction.
The predicates UNION, SING, and DISJ correspond to
the union, singular parent, and disjointness constraints
which characterize generalization abstractions.

D6:Vtl,t2 (SISA(tl,t2) --- (ISA(tl,t2) & ESING(tl) & tl
t2))
A specialization abstraction in a schema is represented
in the formalism by axioms of the form SISA(tl, t2)
and an axiom also exists for each subtype in the
abstraction. The predicate ESING corresponds to the
extension to a common parent constraint defined
previously.

D7:Vtl,t2 (COL(tl,t2) ~ (PART_OF(tl,t2) & ~3t3
(PART OF(t3,t2) & tl ~ t3 & ~ISA(tl,t3))))
A collection abstraction in a schema is represented in
the formalism by an axiom of the form COL(tl, t2).
The collection relation COL is defined in terms of the
association relation PART_OF and the existential
clause which represents the unary component restriction
that characterizes collection abstractions.

4.4 Inference Rules

The inference rules of KSD M are those typical of
first-order predicate logic formal systems [cf
MENDELSO64].

Generalization: Given A, assert VxiA where A is a wff
and xi is a variable term.

Modus Ponens: Given A1 and A1 ~ A2, assert A2 where
A1 and A2 are wff's.

The following two examples illustrate how the
formalism can express information contained in semantic
data model schemas and databases. Example 4.1 represents
the schema in Figure 1 and example 4.2 illustrates a
database query

Example 4.1: A first-order theory for a specific database
application contains the logical axioms common to first-
order predicate logic and the non-logical axioms
corresponding to the application. The non-logical axioms

will contain the 'general' axioms specified in KSDM as well
as the axioms specific to a given schema. In Figure 4 the
schema-specific, non-logical axioms are given as well as the
mapping relations in the language representing the schema
in Figure 1.

Example 4.2: The query 'What are the names of the
employees who have employee numbers 1, 2, or 3 ?' is
represented in the logic formalism by the wff in Figure 5.

. . . . vEmp_name
This query contains the tree vanaole 1 and is
interpreted as the set of employee names in a database that
satisfy the query.

ISA (Accountant, Employee)
IS A (Engineer, Employee)
ISA (Secretary, Employee)
SISA (Gov't-Contracts, Project)

PART OF (Employee, Projects Assigned)
PART OF (Project, Projects Assigned)

PROP
PROP
PROP
PROP
PROP
PROP
PROP
PROP
PROP
PROP

(Emp_no, Employee)
(Emp_name, Employee)
(E_Address, Employee)
(Type, Engineer)
(Section, Accountant)
(Skill level, Secretary)
(Gov't Agency, Gov't Contracts)
(Proj_no, Project)
(Proj_name, Projec0
(P_Address, Project)

• P r o j e c t s Assigned ~Projects Assigned
Employee , Project

,yEmployee ~,Employee ~,Employee
Emp_no , lEtup_name, SE_Address,

Engineer . Accountant Secretary
TType , rsection , YSkill level,

Gov't Contracts Project _ Project
Gov't Agency , ~Proj_no, 'YProj_name,
Project

'YP_Address

Figure 4

5.0 Conclusion

In this paper a logic formalism was introduced to
construct first-order theories representing semantic data
model schemas. This formalism generalizes these models in
the sense that data abstractions common in these models
correspond to relations in the logic. The formalism then

347

provides a basis for theoretical investigations of semantic
data models.

A designer using this formalism is presented with a
logical environment with which to develop his or her
schema in terms of the axioms given which specify
properties of the data abstractions. Since the logic formalism

is first-order, the standard theorems of f'~t-order theories are
applicable. Two specific database issues, i.e. schema
consistency and relative information content, are examined
in [VORBACH90] in light of this formalism.

Employee ~,Employee Employee .,,Employee Emp narne Employee
3Xl ((Emp_no (1,Xl) & IEmp-name(Vl ,Xl)) v

TEEmpI°y ee xEmployee 4,Employee Emp name xEmployee
mp_no (2, 1) & tEmp-name(Vl - , 1)) v

~,Employee Employee .~ Employee Emp name Employee
(Empno (3,Xl) & tEmp_name(V 1 ,x 1)))

Figure 5

6.0 References

[ABITEBOU87] Abiteboul, S., Hull, R., "IFO: A formal
semantic database model", A CM Trans. on Database
Systems,12,4 (Dec. 1987) 525 - 565.

[BRODIE81] Brodie, M., "Data abstraction for designing
database-intensive applications", Proc. Workshop on Data
Abstraction, Databases and Conceptual Modelling, June 23-
26 1980, Pingree Park, Colorado, 101-103.

[CHEN76] Chen, P., "The entity-relationship model -
toward a unified view of data", ACM Trans. on Database
Systems, 1,1 (March 1976)9-36.

[CODD79] Codd, E., "Extending the database relational
model to capture more meaning", ACM Trans. on Database
Systems, 4,4 (Dec. 1979) 397-434.

[HAMMER81] Hammer, M., "Data abstractions for
databases", Proc. Workshop on Data Abstraction, Databases
and Conceptual Modelling, June 23-26 1980, Pingree Park,
Colorado, 77-82.

[HULL84] Hull, R., Yap, C., "The format model: A theory
of database organization", Journal of the ACM, 31, 3 (July
1984) 518-537.

[JACOBS82] Jacobs, B., "On database logic", Journal of the
ACM, 29, 2 (Apr. 1982) 310-332.

[KUPER84] Kuper, G., Vardi, M., "A new approach to
database logic", Proc. 3rd ACM Syrup. on Principles of
Database Systems, Apr. 2-4, 1984, Waterloo, Ontario,
Canada, 86-96.

[MCLEOD81] McLeod, D., Smith, J., "Abstractions in
databases", Proc. Workshop on Data Abstraction, Databases
and Conceptual Modelling, June 23-26 1980, Pingree Park,
Colorado, 19-25.

[MENDELSO64] Mendelson, E., "Introduction to
Mathematical Logic," Van Nostrand, NY (1964).

[RYBINSKI87] Rybinski, H., "On first order logic
databases", ACM Trans. on Database Systems, 12,3 (Sept.
1987) 325-349.

[SHIPMAN81] Shipman, D., "The functional data model
and the data language DAPLEX", ACM Trans. on Database
Systems, 6,1 (March 1981) 140-173.

[SMITH77a] Smith, D., Smith, J., "Database abstractions:
aggregation", Communications of the ACM, 20,6 (June
1977) 405-413.

[SMITH77b] Smith, D., Smith, J.,"Database abstractions:
aggregation and generalization", ACM Trans. on Database
Systems, 2,2 (June 1977) 105-133.

[VORBACH90] Vorbach, J., "A unifying logic-based
formalism for semantic data models", Ph.D Dissertatation,
Dept of Computer Science and Statistics, University of
Rhode Island, Kingston, RI (1990)

348

