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A b s t r a c t  
Star graphs have been proposed as network topolo- 

gies for the interconnection of multicomputer sys- 
tems. They have been shown to compare very favorably 
with binary n-cubes networks (hypercubes) in terms of 
degree, diameter, fault-tolerance and applicability in 
VLSI design. 

In this paper we study some fault-tolerance proper- 
ties of star graphs with a specific focus on their network 
resilience. Network resilience is a measure of the ro- 
bustness of a network that is based on the probability of 
occurrence of a network partition as a result of multi- 
ple node failures. We derive an approximate analytical 
expression for the probability of a network disconnec- 
tion in star graphs that is verified using a Monte.Carlo 
simulation. 

The results are compared and contrasted with those 
obtained for hypercubes and other networks[4]. These 
results show that, unlike other networks, the resilience 
of star graphs stays constant as the network size is 
increased. 

1 Introduction 

The recent development in VLSI technology have 
spurred increased research in the various aspects of 
large scale or massively parallel multieomputer sys- 
tems. A multicomputer system consists of a large 
number of identical independent processing elements 
which communicate among each over an interconnec- 
tion network. The application programs are modeled 
as collection of concurrently executable and commu- 
nicating tasks. As the number of processing elements 
or nodes increases, so does the failure rate, and con- 
sequently the system reliability as well as availability 
become important issues in the design of such systems. 
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Excellent analyses of different issues involved in 
designing reliable parallel systems can be found in 
[7, 8]. In traditional reliable or fault-tolerant architec- 
tures the objective of failure-free operation is achieved 
mainly by hardware replication or redundancy. But in 
case of a large scale parallel computing system, this 
redundancy is provided inherently in the design of the 
interconnection topology and the system is allowed to 
degrade gracefully under conditions of failure down to 
the lowest acceptable performance level. Hence the de- 
sign of the interconnection network becomes the most 
important issue in the design of large-scale systems. 

The underlying topology of an interconnection net- 
work is modeled as a symmetric graph where the nodes 
represent the processing elements and the edges (arcs) 
represent the bi-directional communication channels. 
Design features for an efficient interconnection topoi- 
ogy include properties like low degree, regularity, small 
diameter, high connectivity, efficient routing algo- 
rithm, high fault tolerance, low fault diameter etc. 
Since more and more processors must work concur- 
rently in a large-scale system, the criteria of high fault 
tolerance and strong resilience [1, 2, 3] have become 
increasingly important. A computer system is said to 
be k-fault tolerant if it can allow up to k failures with 
continuing operations; k is called the fault tolerance 
of the system. Network fault tolerance has been de- 
fined as the maximum number of elements that can fail 
without inducing a possible disconnection in the net- 
work [8]. For example, in a regular graph with degree 
rn, the network fault tolerance is rn - 1. 

Whenever a node fails, the fault tolerant routing 
algorithm bypasses the failed node. But when suc- 
cessive failures lead to a state of network disconnec- 
tion whereby one or more healthy nodes are cut out 
from the rest of the system, distributed recovery is 
not possible because the state of the computation in 
the isolated nodes is unreachable. This situation is a 
failure state since distributed fault detection, recovery 
and restart procedures depend on graph connected- 
ness. If we define coverage factor as the probability of 
a successful recovery from failure, then this coverage 
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factor will depend on the disconnection probability of 
the graph. In this paper we attempt to analyze this 
dependence for star graphs. 

In section 2 we present the necessary background 
information about star graphs and introduce certain 
graph theoretic definitions. Section 3 deals with the 
theoretical and experimental analyses of disconnection 
probability for star graphs while section 4 presents the 
analysis of resilience of star graphs and effects of dis- 
connection probability on star graph resilience. Sec- 
tion 5 concludes the paper. 

n-cubes and star graphs. 
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2 Star  G r a p h s  and H y p e r c u b e s  

2.1 Background 

In this section we briefly discuss the background infor- 
mation about star graphs and compare their network 
properties to those of binary n-cubes. Graph theoretic 
terms not defined here can be found in [9]. An exten- 
sive discussion of the properties of star graphs can be 
found in [I, 2]. 

A star graph Sn, of order n, is defined to be a sym- 
metric graph G = (V, E)  where V is the set of n! ver- 
tices each representing a distinct permutation of n el- 
ements and E is the set of symmetric edges such that  
two permutat ions (nodes) are connected by an edge iff 
one can be reached from the other by interchanging 
its first symbol with any other symbol. For example 
in $3, the node representing permutation ABC will 
have edges to two other permutations (nodes) BAC 
and CBA. Figure 1 shows $3 and $4. The diameter 
of S,~ is given by [3(n - 1)/2J and an efficient rout- 
ing algorithm exists for such star graphs to compute 
the minimal path [1, 2]. Let A(G: v) or simply A(v) 
(when G is understood from the context) denote the 
set of vertices adjacent to vertex v in graph G. For 
any subset X C V, A(X) is defined as t.J~exA(v) - X. 
Then IA(Sn : v)l = n - 1 = d(v), Yv E Sn, i.e., S ,  is 
a (n - 1)-regular graph, where d(v) denotes the de- 
gree of vertex v. The vertex connectivity of a graph 
G is defined to be the least IxI for a subset X C V 
such that  G - X  is disconnected. It has been shown 
in [1] that  the vertex connectivity of star graph Sn is 
n - 1, i.e., S,~ is optimally or (n - 2)-fault tolerant in 
the sense that  whenever an arbitrary set of (n - 2) or 
fewer vertices are removed the remaining graph is still 
connected. 

Table 1 summarizes the network properties of binary 
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Figure 1: Star Graphs of order 3 and 4 

Property [I Star 
degree 

number of nodes 
diameter [3n/2J 

Binary Cube 
n 

(n + 1)! 2 n 
n 

Table 1: Properties of binary n-cubes and star graphs 
with the same degree 

2.2 Some Network Properties 
Let Sn = G(V, E) represent a star graph of order n as 
defined earlier and Cn = G(V, E) a binary n-cube of 
dimension n. An m-cluster is any connected subset 
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Xm of M nodes in G. R,n is the number of neighbor 
nodes to an m-cluster Xm, i.e., Rm = [A(Xm)[. Also 
let N(m)  be the number of m-clusters in G. 

L e m m a  1 For an arbitrary edge (u,v) in Sn, we have 
{A(u) - v} O {A(v) - u} = ~. 

P r o o f  : Let the first symbol in u and v be X and Y 
respectively. For all vertices in A ( v ) -  u, the symbol Y 
is in the same position as in v, say j .  Now Y is in the 
first position of u and vertices in A(u) are generated by 
interchanging Y with any other symbol in u. To bring 
Y to the j - th  position will lead to vertex v. Thus the 
vertices in A(u) - v cannot have Y in the j - th  position. 
Hence the result. Q 

C o r o l l a r y  1 For any arbitrary u, v E Sn, [A(v) O 
A(u)l < 1. 

Lemma 1, and its Corollary, essentially state that  there 
are no cycles of size 3 in Sn. These results can also be 
derived for Ca. 

L e m m a  2 Consider two edges (u, v) and (v, w) in Sn. 
Then {A(u) - v} I-I {A(w) - v} = O. 

P r o o f  : Similar to tha t  of lemma 1. t:3 

C o r o l l a r y  2 Any edge e = (u, v) in Sn is a t-cluster 
and hence I{A(u) - v} u {A(v) - u}l = 2n - 4. 

Lemma 2, and its Corollary, state that  there are no 
cycles of size 4 in Sn. These results, however, do not 
hold for C,~; C~ being a trivial case of a cycle of size 4. 

3 Disconnection Probability of 
Star Graphs 

In this section we present an analytical evaluation 
of the disconnection probability of a star graph that  
is verified using a Monte-Carlo simulation approach. 
The model is a homogeneous, nonreconfigurable, large- 
scale system based on star graphs. This model is simi- 
lar to the one used in [4, 5] to analyze hypercubes and 
cube-connected cycles. 

3 . 1  T h e o r e t i c a l  A n a l y s i s  

D e f i n i t i o n  1 A system is in a disconnected state if 
and only if there exists a cluster of size m that is dis- 
connected from the system and m > 1. 

D e f i n i t i o n  2 P ( i )  = Probability that the system is 
disconnected exactly after i-th failure. 

D e f i n i t i o n  3 Q(i) = Probability that a disconnected 
graph results with N - i  nodes at the i.th node removal 
provided that no disconnection occurred until the i.th 
node removal. 

D e f i n i t i o n  4 Q,n(i) = Probability that a disconnected 
re.cluster results in a graph with N - i  nodes by remov- 
ing a single node from a connected graph with N - i +  1 
nodes. 

It readily follows from these two definitions [4] that 

and 

i - I  

P(i) = Q(i) H ( 1  - Q(j ) )  
j = l  

(l) 

Q(i) = E Qm(i) (2) 
rn> l 

It is now evident that  to compute the disconnec- 
tion probability of a star graph for a given number 
of node removal, we have to enumerate all possible 
m-clusters of the graph. This is combinatorially an 
almost intractable problem. We try to develop an in- 
sight into the problem first by computing the number 
of m-clusters for smaller values of m. 

L e m m a  3 For a star graph Sn, 

0, i < n - 1  
P ( i ) =  QI(i ) ,  i = n - 1  (3) 

P r o o f  : S,~ is a regular graph of degree n - 1 and 
hence there cannot be any disconnection as long as 
the number of faults is less than n - 1. And also when 
i = n -  1 disconnection of only a single node is possible 
(i.e., a 1-cluster) since the graph is n -  1 regular.; this 
can happen when all these failed nodes are the only 
adjacent nodes of the disconnected node. c] 

L e m m a  4 For a given S , ,  Ql(n  - 1) = g / ( , ~ l )  

P r o o f  : In Sn, there are N = n! nodes which can 
be disconnected and there are (,t~l) ways to select a 

subset of n - 1 nodes, o 

L e m m a  5 For a given Sn, 

0 ~  i < 2n - 4 
Q2(i )= , i = 2 n - 4  (4) 

P r o o f  : In order to disconnect a 2-cluster i.e., an 
edge, all of the neighbors must fail and by lemma 2 
and its corollary, any edge in Sn has 2n - 4 neighbors. 
We can choose an edge in n!(n - 1)/2 ways in S .  since 

n! there are only that  many edges and (2,~-4) represents 
the number of ways one can choose a subset of (2n-4) 
vertices out of n! ones. O 
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L e m m a  6 Consider two connecting edges (u,v)  and 
(u ,w)  in Sn. Then [A(X)[ = 3 n - 7  where X = 
{ u , v , w } .  

P r o o f  : Lemmas 1 and 2 indicate that  A ( u ) -  {v, w}, 
A(v) - u, and A(w)  - u are pairwise mutually disjoint. 
Since each vertex has degree n - 1, the result readily 
follows, o 

L e m m a  7 For a given Sn, 

0 ~  i < 3n - 7 
Q 3 ( i ) =  - , i = 3 n - 7  (5) 

P r o o f  : To disconnect a 3-cluster (i.e., two adjoin- 
ing edges), all the neighbors of this 3-cluster must be 
failed. By lemma 6 the number of such neighbors is 
3n - 7. For a given node we can choose two incident 
edges in (n~l) ways and there are n! nodes; hence 

n!("~ 1) gives the number of possible 3-clusters. We 
can choose a subset of (3n - 7) vertices out  of n! in 
(3,~:7) ways. I=1 

Computing Qm for m > 3 becomes increasingly in- 
volved. Instead, for simplicity we consider only those 
cases where m is a factorial of some integer and the 
cluster is an order-k star graph, m = k!. This will 
indeed provide an indication of the variation of Q,n(i) 
as a function of m. This approach can be justified by 
the fact that  of all the possible configurations of an m 
node cluster, a star graph St ,  k! = m, has the lowest 
number of neighbors and hence the highest probability 
of disconnection. 

L e m m a  8 The number Rm of neighbors of a m- 
cluster, m = k!, in a star graph Sn, is given by 

= (n - k)k 

P r o o f  : There are k! nodes in a subgraph St .  Each 
of these nodes has n -  1 neighbors, k -  1 of which 
belong to the subgraph itself and n - k are "external 
neighbors". 

L e m m a  9 The number off distinct substar graphs St  
of order k in a given S . ,  when k _< n -  2, is given by 

N(k!)= (:) (n-l)! (6) 

P r o o f  : Each node is represented by a permutat ion 
of n symbols. Also the nodes in a subgraph St  must 
have (n - k) symbols in the same positions. We can 
choose k symbols out of n in (~) ways and then place 
the remaining (n - k) symbols in different possible po- 
sitions to get different subgraphs. For example the 

first of the (n - k) symbols can be placed in k differ- 
ent positions in a string of k symbols (we cannot place 
the new symbol at the beginning since if the leading 
symbol is fixed in position no edge can be generated). 

Hence the ( n - k )  symbols can be placed in ~ ways 
and hence the result. [2 

T h e o r e m  1 The disconnection probability of a star 
subgraph of size k (consisting of m = k! nodes) in a 
star graph Sn of n! nodes is given by 

0 ~  i < R r n  
Q,n(i) = , i = (7) 

P r o o f  : The disconnection can occur when the num- 
ber of failures is less than the number of neighbors 
of the subset to be disconnected. The probability of 
a disconnection when the number of failures i is less 
than the number of neighbors Rrn is zero. For larger 
values of i, the probability of a disconnection of a sub- 
set of size m is proportional to the number of possible 
subsets which can be so disconnected. The disconnec- 
tion of each of these subsets can occur when a specific 
Rm out of a total of n! nodes failed. Thus, the total 
probability of disconnection is the ratio of two values. 

O 
At this point we want to note that it was conjec- 

tured in [4] tha t  in any regular graph Ql(i)  >> Qm(i), 
for m > 1 provided that  for any m-cluster the graph 
satisfies the relation 1 < m < N/2  ~ Rm > n where 
N is number of nodes in the graph and n is the degree 
of each node. Authors in [4] also gave an intuitive 
justification for their conjecture. While it seems ex- 
tremely hard to prove the conjecture rigorously, our 
following examples and subsequent experimental re- 
sults on star graphs lend further strong credibility to 
this conjecture. 
E x a m p l e  : Consider a star graph $6 with n = 6 and 
the number of nodes N = 6! = 720. 

~20 01(5)  = 720/ 5 ) = 45.27 x 10 -11 720 02(8)  = 2 x ~  = 10"449x10-16 

Q3(11) = 720x  10/(Zl~ °) = 5 x  10 -20 
(s) 

This example shows that  when the connection of a 2- 
node cluster is possible at i = 2n - 4, the probability 
of a prior single node disconnection event is about half 
a million times larger and similarly when a disconnec- 
tion of a 3-node cluster is possible at i = 3n - 7, the 
probability of a prior 2-node disconnection is twenty 
thousand times larger. This example, although it does 
not prove the said conjecture of [4], is a further demon- 
stration of the rationale behind the conjecture as was 
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shown in [4] with examples from hypercubes, cube con- 
nected cycles etc. 

Now we propose to give an approximate analytical 
expression for P(i) based on the above mentioned re- 
sults. We cannot give an exact expression for P(i) 
but try to give an indication of its magnitude (and 
later verify it experimentally) by using the approxi- 
mation Q(i) ~ Ql(i) which is based on the conjecture 
Qt(i) >> Qm(i) for a l l  m > 1. Hence 

i - 1  

P(i) = Q1(i) H(1 - QI(J)) 
j= l  

O) 

To evaluate P(i) for our star graphs, we need an ex- 
pression for Q1 (i) for i > n - 1. 

T h e o r e m  2 The conditional probability of discon- 
necting a single node after i failures, where n - 1 < 
i < 2n - 3, is given by 

1)N( i_ ,+ , )  (10) Qi(i)  = ( n -  N-n 
( N -  i + 1)(,N1) 

P r o o f  : By definition, no disconnection occurred at 
the ( i -  1)st failure and hence the probability that  
one occurs at the i-th failure is the probability that  
some node had all but one of its neighbors failed and 
that  neighbor was the i-th failure. (iN1) represents the 
possible combinations of i - 1 failures among N = n! 
nodes, n-1 (n-2) = n - 1 is the possible choices of n - 2 

failed neighbors among n - 1 neighbors while (i_~'~1) 
is the combination of the remaining i - n + 1 failure 
in the rest of the system, where N is the number of 
nodes that  can be isolated. Lastly 1/ (N - i + 1) is the 
probability that  the last remaining neighbor fails. D 

Equation 10 corresponds to the single node discon- 
nection probability when more than n - 1 nodes have 
failed. For i > 2 n - 3 ,  it is possible to have two or more 
single node disconnection. However, the probability of 
multiple single node disconnection is of the same order 
as that  of a cluster disconnection when m > 1. There- 
fore, using the approximation Q(i) ~ Ql(i), we can 
extend the range of i in 10 to i > n - 1. We obtain 

Q x ( i > n - 1 ) =  ( n - 1 ) ( N - n ) ! ( i - 1 ) ! ( N - i )  (11) 
(i - n + 1)!(N - 1)! 

From equation 11, we can write that  

Q l ( i+  1) i N -  i -  1 i 
= (12)  

Ql(i) i - n + 2  N - i  i - n + 2  

This proves that  the relation Ql(i+ 1) > Ql(i) holds 
for i > n -  1. Thus the approximation analysis for P(i) 
of a star graph is complete. 

3 . 2  M o n t e - C a r l o  S i m u l a t i o n  

The objective of our simulation experiment was to 
measure the values of P(i) for star graphs of differ- 
ent sizes and to compare those with similar results for 
hypercubes [4]. A program has been developed which 
simulates the failure of nodes and checks eventual dis- 
connection in the graph. Each iteration stage of the 
simulation consisted of the following : 

Randomly choose any one of the remaining ( N -  i) 
vertices and remove the vertex from the graph 
along with all the incident edges. 

• Record the number and size of the connected com- 
ponents of the remaining graph. 

If more than one components are found, record 
the iteration number and size of the component 
and exit, else repeat. 

In each case the number of samples were higher than 
2000. 

3.2.1 F r e q u e n c y  o f  D i s c o n n e c t i o n  

Table 1 shows the frequency of occurrence of discon- 
nections of different sized clusters for different sized 
star graphs. Table 1 also includes similar results for 
binary hypercubes and cube-connected cycles for com- 
parison purposes; those are taken from [1]. Let F , t (K)  
denote the probability that  the disconnected cluster 
is of size K provided disconnection occurred in the 
star graph. Similarly Fee(K) and Fbe(K) are defined. 
These values are shown in table 1 for K = 1, 2, 3, 4 as 
obtained by our simulation experiment. We make the 
following observations : 

For all values of N (number of nodes in the star 
graph), F,,(1),  frequency of single node discon- 
nection is larger than 50 percent and F,t(1) always 
increases with increasing N. Similar observations 
can be made about binary cubes and cube con- 
nected cycles [1]. 

• Dominance of the single node disconnection in- 
creases with increasing node degree n. 

The above results do not give any indication of the 
value of P(i) itself, only of its composition. In the 
following section we give the analytical (obtained by 
using the expressions derived in the earlier section) 
as well as simulation (obtained by our Monte-Carlo 
simulation) results for P(i) of star graphs of different 
sizes. 
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3 . 2 . 2  Resul ts  for P(i) 
Figures 2, 3, and 4 show the analytical and simulation 
plots of P(i) versus the percentage of failed nodes (i/N 
percent) for a star graph of order 4, 5 and 6 respec- 
tively. We make the following observations : 

• The curves are narrower for higher order star 
graphs and the discrepancy between analytical 
and simulation results is never beyond 20 percent. 

• If Pma~ represents the maximum value of P(i) 
and ipeak represents the corresponding value of 
i, there is a very close correlation in the value 
of ipeak between the simulation results and the 
analytical model. Also the value of ireat tends to 
be lesser for higher order star graphs and ipea~ for 
star graphs is always less than 50 percent. It may 
be recalled from [1] that ipeak for binary cubes 
was near 50 percent. 

• The variation in the value of Praa~ is due to the 
approximation in the analytical model as well as 
to the statistical error in simulation experiment. 

• Pmar steadily falls with increasing size of the star 
graph. 

• We can conclude that N is the dominant factor in 
determining the value of Pma=. 

4 N e t w o r k  R e s i l i e n c e  

We have seen that a network disconnection can im- 
pede the recovery mechanism in a gracefully degrad- 
able system. Hence the probability of no disconnection 
is a multiplicative coefficient of the coverage factor, the 
probability of successful recovery. In other words, the 
coverage factor at i-th failure is (I - P(i)) times the 
coverage factor in a fully connected network graph. 
The range of values of Pma~ as obtained from the fig- 
ures is very high compared to acceptable values of cov- 
erage factor. In order to allow enough failures without 
reaching high values of P(i), we use the concept of 
network resilience which was used in [4] to study hy- 
percubes. 

Network Resilience NR(p) of a distributed system is 
defined as the maximum number of node failures that 
can be sustained while the network remains connected 
with a probability (1 - p). It is formally defined as 

N 

RP(i) _< p (13) 
i=I 

(1- p) is therefore the certainty factor of no discon- 
nection after NR(p) failures. The measure of relative 

network resilience RNR(p) is defined as NR(p)/N. 
Table 2 shows the values of NR(p) and RNR(p) for 
the star graph, hypercubes and cube connected cycle 
cases and for p = 0.01. The values for the hyper- 
cubes and cube connected cycles are taken from [1] 
for comparison purposes. These values represent the 
maximum number of nodes that can fail with less than 
1 percent chance of network disconnection. The plots 
of RNR(O.O1) are shown in Figure 5. We make the 
following observations : 

Relative network resilience decreases for cube con- 
nected cycles while it increases for star graphs and 
hypercubes. 

The network resilience in all cases increases with 
increase in number of nodes in the network, i.e., 
larger systems allow a larger number of degrada- 
tion states irrespective of the topology. 

When the degree of nodes remain constant the rel- 
ative network resilience decreases with increasing 
N. 

A sublogarithmic increase in node degree, such as 
in a star graph results in a slight increase of the 
RNR and a logarithmic increase in node degree 
such as in hypercube results in more increase in 
relative network resilience. 

5 C o n c l u s i o n  

In this paper we have studied the robustness of star 
graphs using the probability of disconnection as a 
probabilistic measure of network fault tolerance. An 
approximate analytical expression for the probability 
of a network partition was derived. The expression 
was further verified using a Monte-Carlo simulation of 
node failures. 

The measure of network resilience was used as a 
criterion for the comparative evaluation of network 
fault-tolerance in star graphs, binary n-cube, the cube- 
connected-cycles and the mesh topologies. The results 
show that star graphs maintain a constant network re- 
silience as the size of the network is increased. The hy- 
percube, on the other hand, has an increasing network 
resilience. This, however, comes with the additional 
cost of a much larger node degree for large networks. 

Our study lends further proof to two major points: 
disconnection probability can be used as a very mean- 
ingful criterion to measure network resilience in real 
life applications and the star graphs seem to be a very 
attractive alternative to hypercubes in VLSI design. 
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Figure 2: Probability of Disconnection for $4, N = 24 

355 



Graph 
Star 

Binary 
Cube 

Cube- 
Connected- 

Cycles 

[ . N ,I NR(p)[RNR(p) 
24 

120 
720 

5040 
40320 

32 
64 

128 
256 
512 

1024 
2048 
4096 
8192 

16384 
32768 

24 
48 
96 

192 
384 
768 

1536 
3072 
6144 

12288 
24576 
49152 

2 8,33 
13 10.83 
80 11.11 

577 11.45 
4667 11.57 

8 25.0 
17 26.56 
36 28.12 
77 30.08 

161 31.45 
337 32.91 
700 34.18 

1445 35.28 
2971 36.27 
6083 37.13 

12418 37.90 

2 8.33 
3 6.25 
5 5.21 
8 4.17 

12 3.12 
19 2.47 
29 1.89 
46 1.5 
73 1.19 

116 0.94 
183 0.74 
290 0.59 

p(i) 

0.04 

0.03 

0.02 

0,01 

I Star n=5 I 
• : Simulation 
• : Analytical 

? 

i. 

.% 
; b 

• t '  

P 
i 

i 

w 

i 

¢ 

~t 

] 
10 20 30 40 50 60 70 80 90 100 

Figure 3: Probability of Disconnection for $5, N = 120 

Table 3: Resilience and Relative Resilience for p = 
0.01 
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