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A B S T R A C T .  Elementary features are  detected 

by calculating the number of objects inside partly over- 

lapping windows fixed in an image plane. Each win- 

downs contents is processed by  a s e p a r a t e  p r o c e s s i n g  

element (PE) on a SIMD grid or pyramid architecture. 

Two neighboring f e a t u r e  chunks  a re  merged by adja- 

cent PEs, and the merged &ature chunks are joined in 

each next lth parallei step by every 21 tb PE possessing 

complementary and adjacent feature. The shape coding 

terminates if a complete set of features (such as curve 

bounds, tips, corners ,  s e g m e n t s ,  regions forks a n d  j u n c -  

tions) making a whole object meet together on one PE. 

This complete se t  is defined and proved to  be  sufficient 

to terminate the shape coding. Hierarchy of elementary 

features for a merging process is established to recog- 

nize object bounds and more primitive features first to 

have a complete feature set adequate for consideration 

by the termination condition at  a given level of paralleI 

i m a g e  recognition (i.e,, primal sketch,  2½D sketch and 

3D world model ) .  T h e  approach has the property of 

mapping of image segments directly into phrases and 

English sentences. 
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1. I n t r o d u c t i o n  

Many present ,day computer vision systems analyze 

shapes sequentially. Can a computer see the entire picture 

at once? If so, how one processor analyzing one small im- 

age fragment will know about the processing performed 

by many other processors attached to all other image frag- 

ments? The first pyramid computers process in parallel [8, 

16, 19] pieces of contours detected by template matching. 

We approach parallel shape analysis using a SIMD grid ar- 

chitecture by merging elementary features detected during 

the calculation of the number of objects within a window. 

Propagation component labeling [2] determines, in par- 

allel, the connectedness of pixels of the same gray level 

(assuming that each pixel has its own processor). Given 

an N x N image, the row-major label N i  + j with i, j = 

0, 1, ..., ] V -  1 is assigned to each image pixel. Two neigh- 

boring pixels (or subregions) of the same (or similar) gray 

level receive the same (the smallest) label• Initially, only 

the pixel at (0~0) has its own label if it is of a grey level 

looked for. All adjacent pixels with the same gray level 

will assume that label in each new iteration. The final 

label is the smallest label of any of the connected mem- 

bers. Execution is complete when there are no more label 

changes. Before propagation labeling is completed, it is 

not known which label is the minimum (i.e., permanent). 

Labeling of a spiral (the worst case) will take N 2 steps. 

Propagation component labeling does not provide any 

information about shape. It is also sensitive to accidental 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F327164.327301&domain=pdf&date_stamp=1991-04-01


discontinuities. The re-assignment of the labels in each 

new step is time consuming. One improvement would be 

to record addresses of all pixels tentatively labeled (i.e., in 

the previous step), and then to propagate the new mini- 

mum label to the known addresses of PEs. However, very 

long strings of addresses would have to be broadcast to 

PEs together with the labels. 

It will be shown in this paper, that shape codes can be 

handled more efficiently than by recording and broadcast- 

ing the addresses of pixels. Shape can be recognized di- 

rectly from window gray levels. Our algorithm with shape 
coding is faster than the propagation component labeling: 

it does not waste time re-labeling pixels and broadcasting 

addresses of individual pixels. Instead, shape codes are 

transmitted carrying all the necessary information about 

the shape components. Information about individual pix- 

els is involved implicit in shape code. 

Sollin's component algorithm for graphs [6] uses a 

divide-and-conquer strategy. This algorithm is based on 

a quadtree decomposition on image plane. The image is 

divided into quadrants. Each quadrant (greater than 1 

pixel) is labeled recursively (i.e., by dividing each subse- 

quent quadrant into quadrants up to 1 pixel quadrant). 

Minimum label is passed through the adjacent quadrant 

boundaries in each recursive step. The divide-and-conquer 

strategy is of a logarithmic complexity, but each re-labeling 

step is very long, as in the propagation component la- 

beling. Re-labeling takes place at fixed quadrant bound- 

aries. Some PEs can specialize in broadcasting labels: 

single pixel quadrants communicate with single pixels, 4- 

pixel quadrants with 4-pixel quadrants, 4n-pixel quadrants 

with 4n-pixel quadrants. Broadcast of addresses of pixels 

having uniform labels can be efficiently organized, e.g., 

incorporating a pyramid architecture. But addresses of 

all individual plxels carrying the same label must still be 

handled. 

Methods for finding extreme pixels in each quadrant 

may ignore a discontinuity inside a quadrant and as a re- 

sult may merge two or more disjoint objects into one en- 

tity, a drawback of the all-components extreme point ap- 

proach [20, 21]. Improving this approach, extreme points 

of separate objects in a quadrant should be found as a 

result of segmentation by the divide-and-conquer strategy 

or by propagation component labeling. Extreme points of 

individual objects can be found sequentially by an effective 

algorithm in a contour tracking process [25]. 

Neither the divide-and-conquer strategy nor the prop- 

agation component labeling are capable of coding shapes. 

Even the improved version (suggested above, by propaga- 

tion of addresses for re-labeling) can handle only addresses 
of individual pixels, because shapes of re-labeled blobs are 

not coded. The approaches count adjacent pixels of a sim- 

ilar gray level only and extract them from an image: in 

addition, they must be followed by a shape approximation 

process if a shape representation is required. 

A pyramid technique for parallel detection of smooth 

curves [8] depends on a bottom-up analysis of the adja- 

cency of elementary curve elements in neighboring blocks 

(windows) by a higher-level pyramid cell. Each cell of the 

pyramid records the position and slope of a curved strip 

and positions of endpoints of the strip. Higher-level cells 

record more distant endpoints (since a larger block of in- 

put image is covered by a hlgher-level cell). Some higher- 

level cell will be a root recording a consistent smooth 

curve. The pyramid architecture designates certain cells 

in advance to identify many possible occurrences of fea- 

tures. The coordinates of endpoints go directly up the 

pyramid making a computational burden for some higher 

level pyramid cell if several curves are detected in the same 

large field belonging to the cell. The time complexity 

for such computations is O(number_of_curves). For in- 

stance, two nearly parallel curves must be handled by the 

same cell at some level. This higher-level cell will be a bot- 

tleneck for more lines found in its field. A search is needed 

to match endpolnts of strips found in adjacent subfields 

at a lower level. Doubling back of the same curve will also 

require the same cell at some level for identification. 

In a process of collecting features such as forks, junc- 

tions, regions, corners and curve bounds connected through 

edges, a node is capable of making a decision whether to 
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look around for some missing features in the image or 

to complete the image recognition. Classes of objects are 

composed of some specific numbers of these features. For 

example, polygons have only one region. A corner view 

of a cube has three regions, four forks, nine edges and 

three corners. The termination condition for a recogni- 

tion process may be based on the graph theory concepts 

using some relations between object components. Eulez.~s 

Theorem [5, 15] defines relation between the number e 

of edges, the number v of vertices in a planar graph, and 

the number r of regions (including one unbounded region 

external to the graph), using the equation: r = e -  v-I- 2. 

The Handshaking Theorem 2e = ~ v e v  deg(v) [5, 15] 

expresses the relation between the number of edges e and 

the degree dog of all vertices V making a graph. The 

above two Theorems can be used in computer vision as a 

termination condition after disregarding an unbounded re- 

gion and assigning a meaning 'corner' to a vertex of degree 

2, 'fork' to a vertex of degree 3, etc., and 'object edge' to 

graph edge, and 'image region' to the graph region. 

Euler's Theorem does not classify vertices (i.e., does 

not distinguish between corner, tip, fork, junction, etc.), 

and the Handshaking Theorem does not consider regions, 

which would be disadvantageous for a termination condi- 

tion of recognition procedures in computer vision. Com- 

bination of them both treats all vertices as equally signif- 

icant. However, in computer vision the line tips are the 

least meaningful and should be easily disregarded if a con- 

tour is blurred in the image. In general, recognition levels 

called primal sketch, 2½D sketch and 3D world model 

are distinguished in literature [3, 14, 18, 22, 23] and should 

be considered by termination conditions in shape process- 

ing. 

We describe relations between the numbers of lines 

(i.e., straight segments or curves) and corners, forks, junc- 

tions and regions for computer vision purposes in a way 

different from that used in the literature [3, 10, 14, 18, 22, 

23] . Tips are not considered explicit in our termination 

conditions, but any line is constrained to being delimited 

by either tips, or corners, or curve bounds, or forks, or 

junctions or by combinations on them. In this way tips 

are implicit in the number of lines in our termination con- 

ditions. 

As in [8], the merging of adjacent features is performed 

by the nodes one level higher. The image plane is divided 

into quadrants. We propose a SIMD architecture similar 

to [8], with the following differences: a) We use special 

termination conditions for every node to know whether 

the parallel shape coding is completed when having some 

set of features. For instance, the resulting approximation 

is sent one level up if a complete set of features has not 

been found yet. b) A few termination conditions are set 

up, each appropriate for making the primal sketch, 2½D 

sketch and 3D world model in parallel, c) The termi- 

nation condition for the primal sketch has the highest 

priority. The 2½D sketch has a lower priority, and the 

lowest priority is for the 3D (3-dimensional) world model. 

d) The detection of the elementary features is done by 

calculation of the window objects instead of by template 

matching, e) The approach has the property of mapping 

image segments directly into words and phrases, 
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2. F e a t u r e  D e t e c t i o n  a n d  F e a t u r e  M e r g i n g  

Elementary features are detected in a window using 

the numbers of window objects [24-26]. Different combi- 

nations of the numbers are characteristic to specific image 

features (as segment, fork, tip, junction, discontinuity). 

For instance, the name "segment" is achieved if the num- 

ber Ivo of objects equals 1 inside the window and the num- 

ber Io of background parts is 2 (Fig. 1). For a junction, 

Iw=l and Io=4. For a fork, ./,0=1 and Io=3. The same 

numbers are obtained for all possible rotations of the same 

feature inside the window and for variable thicknesses of 

the feature. Only one single analysis of window contents 

(gray levels) is necessary. 

In our method, elementary features, especially seg- 

ments, detected in parallel by PEs of a grid or a pyra- 

mid net are merged into chunks by higher level nodes. 

When merging, every two consecutive nodes are replaced 

by one node when the corresponding segment slopes are 



[0=2 t 

(a) (b) (c) 

(d )  (e )  

Fig.1. Window approximation by mapping of win- 

dow gray levels into feature name using the number Ivo 

of window objects and the number Io of window back- 

ground parts. The symbolic window approximations 

are: a) segment, b) two segments; c) interior; d) tip; e) 

fork; f) junction 

similar. Reduction of elementary segments to a straight 

line or to a curve is performed in this way (Fig.2). The 

merged chunks are united in turn into greater pieces, and 

so on, until the entire shape has been coded in parallel 

[9]. Maximum of 2 n/l merging operations can be done in 

each subsequent /th parallel step for a linear feature oc- 

cupying 2 n = N contiguous PEs. In order to know where 

to look for some missing chunks to match some already 

detected object fragments to one of the termination con- 

ditions, slopes of the possessed feature pieces are used. 

The missing feature chunks are looked for in the expected 

directions. Knowledge on the maximum size of the pieces 

looked for is also available at a given stage of parallel pro- 

cessing: feature size does not exceed the quadrant size 

belonging to the node at a current level of processing. 

In our method, names of features and thei r parameters 

(including the count of pixels of the same property) are 

handled instead of propagating a label having nothing in 

common with the shape name. In particular, a rough set 

composed of elements consisting of feature names with 

attached attributes and parameters [24] is broadcast to 

fixed-address nodes (PEs). The receivers identify more 

complex features, based on feature adjacency, expecta- 

tions and constraints. A rough approximation of larger 

pieces of shapes is done to reduce to a minimum the 

amount of information representing an object. The rough 

approximations deal both with symbols (names of features 

and objects) and with quantitative representations (e.g., 

with positions, slopes and dimensions of features). Instead 

of a long process of re-labeling of many pixels, merging 

of features is performed. A rough grammar [29, 30] can 

be applied to support the divide-and-conquer strategy. A 

data-driven execution can guide the parallel shape coding: 

every leaf PE will wait until the window gray levels will be- 

come available for the detection of elementary features. 

r_A(X+Y) = ~ : A_Y = A(X+Y) = segment, 
if s x ~ s  Y and .~X : A Y = segment. 

where: 
SX '~  sy < : >  [sx- syI <~s  ; 

r denotes the reduction; ~s is an admissible tolerance for  

s (slope). 

rA(X+Y) = AX + attributes . parameters = 

= AX + (mass,position, length,slope).(m,(x,y),l,s), 

if Sx~S Y and A._X = A Y = segment. 

where: 
m : mx+m Y 

x = ( x x + x y ) / 2  

y : (VX+Yy)/2 
I = IX+I  Y 

s = (sx+sy)/2 

No reduct ion:  

rA(X+Y) = AX + AY, if A X ~ segment or AY ~ segment. 

Fig.2. Symbolic approximation A(X  U Y)  of two 

partly overlapping windows containing segment and ap- 

proximation A( X U Y)  of the reduced two-window seg- 

ment involving both the symbolic and a required quan- 

titative window approximation 
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3. A P a r a l l e l  C o d i n g  o f  E d g e s  a n d  R e g i o n s  

A rooted tree structure is used. At the bo t t om level 

of parallel processing, the leaves are the contents of the 

windows fixed in the image plane, and then the nodes are 

the ancestors of the lower level sub-trees. Data received 

from the 4-children is used for merging of segments, tips, 

curve bounds, forks and junctions, if the object approxi- 

mation is not complete. A complete shape approximation 

is transferable to a host. 

At the bottom (first)level, all the nodes (PEs) de- 
tect their elementary features in parallel by calculating 

the numbers of window objects [24-26]. Each window 

(Fig. 3) is under the control of a separate PE. Feature 

name and its particular quantitative parameters (e.g., seg- 

ment coordinates, slope, length, mass and thickness) are 

detected by each PE. The same pixels will belong to a 

number of overlapping windows. To prevent a single ob- 

ject fragment from multiple processing by several PEs, 

each window sends its feature approximation to its neigh- 

bors in directions different from the slope of the possessed 

segment. Among the selected neighbors sharing the same 

object fragment, one window is chosen having the highest 

Ivu (the number of objects). From among a few overlap- 

ping windows with the same (highest) Itu, a window is 

chosen with a feature of the maximum mass. 

Fig.3. Overlapping windows for parallel s h a p e  coding 

Any PE staying active sends its feature approximation 

to its parent. This feature approximation is merged by the 

receiver to feature chunks received from other children. 

The result of merging is sent to the ancestor examining 

its four children, provided coding of the entire object was 

not completed yet. Getting a full set of the features, a 

parent completes the object recognition. 

Example 1. PEs#(4,11) and #(5,10) send their el- 

ementary features to their parent PE#(5,11) at the first 

level of parallel processing of OBJECT 5 in Fig.4. The 

PE#(5,11) does not have two tips of the possessed chunk, 

so it does not announce recognition of a whole object, but 

sends its approximation to its ancestor, PE#(7,11). 
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Fig.4. Examples of  simple drawings on a grid con- 

f igura t ion .  Each squa re  r ep resen t s  a PE. To involve the 

functions of  a pyramid, some selected grid nodes are  as- 

signed also the functions of nodes of higher level pyra- 

mid nodes. Squares with one dot represent both the 

leaves and the second level nodes o f  a pyramid, squares  

with one do t  and  circle r ep re sen t  both the leaves, the 

second  level nodes  a n d  the third level nodes  
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Example 2. PE#(2,8) in Fig.4 sends its tip approxi- 

mation to the parent PE#(3,9). At the 3rd level of parallel 

processing, the PE@(3,7) merges the tip detected by the 

#(1,6) (and received through 2rid level #1,7)) to the seg- 

ment detected by PE#(2,7). The merging of the three 

element curve (OBJECT 1) involves 5 levels of parallel 

processing on a pyramidal architecture, because OBJECT 
2 is located on the border of different quadrants. The 

4th level PE#(7,7) still will not receive the tip detected 

by #(2,8), but the 5th level PE#(15,15) will announce 

recognition of OBJECT 1, because one segment continu- 

ous with two tips constitutes a full set of features for the 

simplest object. 

In general, the results of merging are sent to a nearest 

doubly odd PE # (2~ i -  1, 2 t j -  1), ( 2 t i -  1, 2 1 j -  1) 

e {{1,2,..., N -  1},{1,2,..., N - 1}}. N = 2 '~, on a 

grid configuration, where merging is done on any couple 

of adjacent segments (Fig.2) by execution of a(fown U 

fneighbor, S}, where s is a merging operation, f is a fea- 

ture approximation [24], a is a requested approximation 

of merged features (qualitative A or quantitative A, see 

Fig.2), and I is the level of parallel processing. Merging is 

skipped if two feature chunks do not match each another. 

Example 3. At the third parallel processing level (Fig.4), 

the ancestor PE#(7,7) merges three feature chunks re- 

ceived from its children PEs#(3,3), #(3,7) and #(7,7). 

The chunks involve two tips and make a full set of fea- 

tures, so PE #(7,7) announces identification of the entire 

curve (OBJECT 3). 

Example 4. On the second level of parallel processing, 

the nodes #(13,1) #(13,3) and #(15,3) send approxima- 

tions of their chunks to their parent PE#(15,5). The 3rd 

level PE#(15,5) and PE#(15,7) send their features to 4th 

level PE#(15,7) which performs merging and having two 

tips and a one line announces identification of the curve 

(OBJECT 2). 

A formal specification of the termination condition for 

parallel shape coding is helpful for appropriate control of 

execution of programs by nodes (e.g., to know, when seg- 

mentation of a single object is completed when having 

several distinct objects). 

T H E O R E M  1. Parallel coding of shapes involving 

only tips, straights, curves and corners (without regions, 

forks or junctions) is completed, if: 

L = C + 1, (1) 

where C is the number of corners or curvature bounds 

(such as upper, lower, left and right bounds), L is the 

number of curves or segments with two endings (e.g., 

connecting: corner- corner, bound- bound, corner- tip, 

bound - tip, corner - bound, tip - tip). 

P R O O F  (inductive). Consider Figs. 4 and 5.a as 

examples of simple drawings. Having no corners nor cur- 

vature bounds we have L = 1 (i.e., in the basis step there 

is only one tip - tip connection). When incrementing L by 

one, the first and the last segment (or curve) must have a 

tip (because in this THEOREM a drawing is assumed to 

be without forks, junctions and regions). In the inductive 

step let us notice, that any new single corner or curvature 

bound (denoted by C) increments L by one, and then the 

true equation (L + 1) = (C + 1) + 1 reducing to Eq.(1) 

is achieved when assuming the truth of the inductive hy- 

pothesis (Eq. (1)). 

~) b) 

Fig.5. A few simple drawings satisfying: a) Eq.(1); 

b) Eqs.(2) and (4) (the last 3D object with shading 

having: L=24 lines, C = 5  corners, R =  7 regions, F = 9  

forks, J = I features4[ = 1 junctions and If  eaturess[ = 

1 and yielding: L = 24 = [featuress[ * 4 + J * 3 + F * 

2 + C . 5 + 1 - 7  = 1 . 4 + 1 . 3 + 9 " 2 + 5 + 1 - 7  

Any element which does not have the entire object 

(i.e., with a complete set of tips, curvature bounds and 
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lines (THEOREM 1)) sends the possessed object approx- 

imation one level up to its ancestor. 

Example 5. OBJECT 5 in Fig.4 has one corner (or 

right bound represented by PEs #(10,6) and #(10,7)) two 

tips and two lines, so L = 1 + 1 = 2. The 5th level ances- 

tor (root), PE#(15,15), receives two tips from 4th level 

children, PEs #(7,7) and #(7,15), and detects one right 

bound based on approximations received from 4th level 

PEs #(15,7) and #(15,15). The 4th level PE#(7,15) 

does not announce identification of an entire object, be- 

cause it has only one tip. The 5th level PE#(15,15) has a 

complete set of features, hence it announces recognition 

of the entire OBJECT 5. 

Many horizontal or vertical segments do not form ob- 

ject bounds and then they do not affect the counters C 

and L in Eq.(1). Any horizontal segment ended by a 

non-homogeneous ending (e.g., either by a left-lower and 

right-upper bounds (Fig.6.a), or by upper-left and lower- 

right bounds (Fig. 6,b)) does not form curve bounds and 

as such does not increment L nor C. 

A 

/ 
J 

A B d) 

Fig.6. Different type endings A, B era  flat segment: 

a), b) non-homogeneous signify no curve bound; c), d) 

homogeneous endings signify a curve bound 

LEMMA 1. Any flat segment (horizontal or vertical) 

delimited by a nonhomogeneous ending (see Fig.6) can be 

taken apart from a curve bound. 

PROOF. Let A and B be nonhomogeneous endings 

of a flat segment. Approximations of the two nonhomo- 

geneous endings meet at some level of parallel processing 

contradicting a bound of a horizontal segment (Fig. 6.a) 

or a bound of a vertical edge (Fig.6.b). Only homoge- 

neous endings (i.e., either lower-left and lower-right, or 

upper-left and upper-right (Fig.6.c), or upper-right and 

lower-right (Fig.6.d), or upper-left and lower-left) meet- 

ing at some node of the processing tree and delimiting the 

same segment form a curve bound. • 

LEMMA 2. Complexity of the detection of a flat 

nonhomogeneous segment or a curvature bound is log2 

(flat _segment _length) or log2 (curve _bound ..length) 

steps. 

PROOF. Endings of the same flat segment (hypoth- 

esized bound) occur to be contradictory after log2 ( f lat  

..segment ..length) steps, and information about this con- 

tradiction is utilized or transferred up instantly. Informa- 

tion about noncontradictory segments is processed in the 

same way. • 

Any horizontal or vertical segment may be coded in 

parallel according to the method presented in [28] (see 

Fig. 7). The described above parallel processing associ- 

ated with the primal sketch goes through levels until the 

entire continuous linear object has been collected (i.e., 

until Eq.(1) is satisfied), accessing the children distant by 

21 or by ~ -f.. 2 2z nodes in each lth level of processing. 

Any fetched feature ehunkl is merged with the match- 

ing possessed feature chunk2 by executing a(chunkl U 

chunk2, s), where a denotes the symbolic or quantitative 

approximation of the operands listed in the parentheses 

(compare F ig) ) ,  and s is the merging operation. 

THEOREM 2, Parallel coding of shapes involving 

tips, straights, curves, corners and regions and without 

forks or junctions is completed, if: 

L = C + 1 -  R, (2) 

where R is the number elementary regions, L and C have 

the same meanings as in Eq.(1). 

P R O O F  (inductive). For an object without regions, 

forks and junction the Eq.(2) reduces to Eq.(1). For an 

dbject consisting of one region only (i.e., for a circle) we 
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0 1 2 3 4 5 6 7 8 g 10 1I 12 13 14 lS 

(.) 

(b) 

(c) 

Fig.7. Stages of parallel shape coding of two disjoint horizontal (or vertical) segments on a two- 

dimensional array  of PEs [25]. Dots represent presence of elementary segment detected by a PE, arcs 

show the transfers of messages containing feature chunks, mark L ' denotes a segment bound or tip: a), b), 

e) merging at the second, third and fourth levels of the parallel processing. PE#15 receives full set of the 

short  segment in ~he third stage of parallel processing, and the long segment in the fifth stage (d) 

(d) 

have L=4, C=4 and R=i ,  so the basic step is proved. 

For the inductive step observe, that any new single region 

decrements L by 1 changing the inductive hypothesis (2) 

to  L - 1 = C + 1 - (R  + 1) and satisfying directly Eq.(2). 

@ 

Example 6. There are no tips in the OBJECT 4 in 

Fig.& In the 2nd level of processing, the PEs #(15,11) 

and :~(13,11) send their approximations to 3rd level PE 

~(15,11), and PEs #(15,13) and #(13,13) to 3rd level 

PE #(15,15). These 3rd level PEs detect the upper and 

lower object bounds, but they do not have the full sets 

of features. The 4th level PE#(15,15) detects the region 

and two bounds more: left and right. It has the full set 

of features satisfying Eq.(2), so it announces recognition 

of the circular object. 

4. I n v o l v i n g  F o r k s  a n d  J u n c t i o n s  

Tips are given the highest priority in merging to ad- 

jacent features, because tips are not counted by Eqs.(1, 

2). Somewhat lower E~riorities should be assigned to cur- 

vature bounds, corners and horizontal or vertical nonho- 

mogeneous segments when merging them with oblique 

segments when making the primal sketch when collect- 

ing patches or blobs using Eq.(1). When detecting re- 

gions from patches, the patches are expected to be recon- 

structed already from bounds, corners and curves. Patches 

should have a lower priority than regions when making the 

2½D sketch using Eq.(2). One approach in processing 

shapes is to assume that the priorities of processing forks 

andjunctlons are lower than those for regions and patches, 

because forks and junctions form 3D objects from the 2½D 

sketch. Then any regions and patches are merged to 

forks and to junctions. Forks and junctions incur more 
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complexity. Shapes involving forks and junctions are also 

amenable to a rule checking a full collection of primitive 

components of 3D objects as shown below. 

THEOREM 3. Parallel coding of shape involving 

forks and junctions is completed if the following termi- 

nations condition is satisfied: 

L =  J , 3 j r  F , 2 + C  jr l - R,  (3) 

where J is the mumber of junctions; F is the number of 

forks; L, C, R have the same meanings as in Eq.(2). 

PROOF (inductive). We assume the truth of Eq.(2) 

for the basis step. Let Eq.(3) be the inductive hypothesis. 

Any single fork increments L by two giving L --I- 2 = J * 

3 -t- (F  Jr 1) • 2 --I- C Jr 1 - R and reducing to Eq.(3), 

and any single new junction increments L by three giving 

L Jr 3 = (J  + 3) * 3 jr F * 2 jr C + l - R and reducingto 

Eq.(3). • 

The lines L, bounds O, forks F, junctions J and re- 

gions R (i.e. delimited by closed curves) are counted by 

ancestors on each level of parallel processing. Because of 

a higher complexity and lowest priority of forks and junc- 

tions, Eq.(3) can be checked only at nodes detecting forks 

and junctions. Partial approximations of object fragments 

adjacent to the forks and junctions will be sent to these 

nodes. 

T H E O R E M  4. Parallel coding of shape involving any 

elementary features detectable by the numbers Io and -!vo 

of window objects (Fig.l) is completed if: 

L = E I f ea tu~e~s l*  Y + x - R (4) 
]eatures.f 

where I f  e a t u r e s f l  is the mumber of features of the order 

f .  The feature order f is defined by the number Io of 

window background parts minus one, i.e.: 

f = I o -  t (5) 

For example, I f e a t u r e s f l  = F for f = 2 is the num- 

ber of forks, and ) f ea turesy]  = C for f = 1 is the number 

of corners or curve bounds. 

P R O O F  ( induc t i ve ) .  We assume the truth of Eq.(3) 

for the basis step (i.e., when having 0 features of orders 

f > 2). Let Eq.(4) be the inductive hypothesis. Assuming 

the presence of only the features of one selected order 

f > 2 and junctions J, forks F, corners of bounds C with 

possible regions, any new single f-order feature, f > 2, 

increments L by f yielding L + f = ( [ f e a t u r e s  j[ • f Jr 

1) Jr J * 3 + F • 2 + C + 1 - R and reducing to Eq.(4). 

The same is true for features of any order f .  • 

D E F I N I T I O N  1. An object is said to be recognized 

if the numbers L, C, F ,  2, I f e a t u r e s / I ,  R satisfy one 

of the Eqs.(1), (2), (3) or (4), and if each of its lines 

contains two endings, such as tip-tip, or tip-bound, or 

bound-bound, or tip-fork, or bound-junction, etc. 

THEOREM 5. When shape coding of an object is 

terminated, the root of the parallel computation has a 

complete set of features (i.e., one of Eqs.(! ), (2), (3) o~: 

(4) is satisfied at the root). 

PROOF. In each step of parallel processing the num- 

ber of branches of any computation tree decreases be- 

cause of the merging processes. Because of different pri- 

orities, Eq.(1) is checked first to detect all 2D drawings 

and patches. If the drawings are part of regions or are ad- 

jacent to regions and planes, then Eq.(1) is not satisfied 

because it does not consider regions. If image regions are 

considered, then the regions may be a part of 3D objects 

or adjacent to them, and then Eq.(2) is not satisfied be- 

cause it does not consider forks and junctions formed by 

regions or planes. Hence, Eq.(3) must be used, or even 

(4). Only two cases are possible: a) A node processing one 

object contains a partial set of features (e.g., the shape 

coding is not completed yet or an object is only partly 

located in the image plane), or b) a node is a root and 

has a complete set of features. • 

THEOREM 6. Any feature or object merged and 

collected by a node in the last step of a completed parallel 

processing is continuous. 

P R O O F .  If there is a full set Of features collected by 

the node then all the features must make one entity. Any 

disjoint set of features (in the image plane) has its own 
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full set of features (satisfying one of Eqs. (1) to (4)). • 

LEMMA 3. The complexity of the parallel shape cod- 

ing is O(log2(object_rnaximum_length)) parallel stages. 

PROOF. When collecting (and merging) features of 

an object of the maximum length N, 2/-1 < N < 2/, 

each new step involves 2 times nodes less, where l is the 

level of parallel processing. • 

5. Conc lus ions  

The step of parallel shape coding entails collecting ad- 

jacent feature segments and merging them together ac- 

cording to partly known object chunks. In general, the 

parallel shape coding creates a topological graph of the 

absolute or relative positions of features and their partic- 

ular parameters. The graph nodes are labeled by feature 

names, and arcs represent relations on the features. Thus, 

the feature names and their parameters are determined 

and localized through the object shape. 

The approach follows the criterion of simplicity: a 

generalization of the Gestalt laws saying that the least in- 

formation is more likely to be the best [18]. The least 

information becomes representation of the most regular 

shapes derived from the picture and assumes the names 

for the shapes. The least information must be on the 

symbolic level, because only symbolic information is inde- 

pendent of possible orientations of the pattern in the field 

of observation [24, 26]. The symbolic representations of 

features is shown to be invariant in the space of observa- 

tion. The approach has the property of mapping an image 

fragment directly into words and phrases. Mathematical 

calculus for the proposed parallel shape recognition can be 

based on the concept of the rough sets [24, 12, 2g, 30]. 

Template matching (see [18]) is a time consuming, 

rotation-dependent and ambiguous. Hong, Shneier, Hart- 

ley and Rosenfeld [8] merge in parallel small feature pieces 

into entities on a pyramid architecture, to speed up the 

recognition of image edges from matched templates. They 

exploit good continuation of adjacent window edges to 

remedy the ambiguity in interpretation of edges matched 

by single (separate) templates. The proposed parallel 
shape coding method is less ambiguous when compared to 

template matching (because feature names are detected 

in a deterministic, and not in a statistical way) and when 

compared to chain coding (because is resistant to variable 

thickness and discontinuities of objects). Parallel relax- 

ation [17, 13] can improve the algorithms to cope with 

the problem of discontinuities in the analyzed figures. 

Our symbolic and quantitative evaluation of window 

contents and merging of elementary features into wholes 

is also a remedy to the problem of ignoring feature conti- 

nuity by pure clustering methods. For example, the Hough 

transform [4] in some cases may lose the track of good 

continuity of edge by treating collinear strips far away from 

each other as proximate segments. The good continuity is 

not lost, however, if a separate Hough transform is made 

for different window contents (extremely helpful when the 

number of background parts is 1). 

Our termination conditions of shape coding is appli- 

cable not only to the 'block world', but also to objects 

with curved surfaces. The up-to-date experience with the 

sequential implementation of the shape detection method 

[24-26] prove the following: there is much less ambigu- 

ity in interpretation of elementary and complex features, 

when compared with template matching. The method is 

resistant to variable thickness and discontinuities of edges. 

Is not sensitive to a variety of disturbances. A window is 

analyzed only once. Particular parameters of features are 

determined with great precision. Underlying subroutines 

have already been tested on complicated patterns consist- 

ing of lines, arcs, corners and forks, and with very good 

results [24-26]. The termination conditions has been suc- 

cessfully applied for sequential shape coding, too. 
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