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ABSTRACT 
This paper presents a multilayered artificial 

neural network model to recognize numerals 
independent of their sizes, positions, and orientations. 
We used a modified backpropagation algorithm to train 
the network. We preprocessed the numerals for 
"feature" extraction by calculating their moments. The 
moments are invariant under translation, scaling, and 
rotation transformations. We used the moments as 
input to the network rather than the digitized pattern 
itself. The network was able to recognize transformed 
and slightly deformed numerals. Parallel 
computational capability of the network makes it an 
attractive alternative for real-time commercial 
applications. 

1. INTRODUCCrlON 
The recognition of numerals has several practical 

applications including optical page readers, and mail 
sorters. In order to provide a practical system the 
recognition algorithm should be tolerant of small 
distortions and possible transformations. Developing 
such algorithm is a difficult problem in designing 
pattern-recognition systems. Many authors [ 
1,2,3,5,9,16 ] have tried to solve this problem but no 
satisfactory general theory exists. Often, the methods 
are based on extracting "features" which are invariant 
under transformations. The main difficulty in using the 
conventional techniques is that they are not fault 
tolerant. Neural networks have been found to be fault 
tolerant in pattern recognition[ 3,4,5,6,7,8,9,12 ]. 
Fukushima and Miyaki [3] used a multilayered neural 
network, called "neocognitron," to recognize numerals. 
Their method is tolerant of small distortions and shifts 
in position but it is quite difficult to train a 
"neocognitron" to include rotational invariance as well. 
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Burr[4] used neural networks to design a text reader. 
The pre-processing done by Burr to produce a compact 
input pattern requires a substantial computation time. 
Rajavelu, Musavi and Shirvaikar[5] used Walsh 
functions to extract pattern features which were inputs 
to a neural network. In this paper we have investigated 
the possibility of using invariant moment functions as 
input to a neural network in recognizing hand written 
numerals. Kulkarni, Yap, and Bayers [6] used moments 
as input to neural networks for analyzing aircraft 
images. We used backpropagation [11,13] algorithm to 
train a multilayered neural network. 

2. SYSTEM CONFIGURATION 
Numbers 0 to 9 were digitized on a grid of 50 * 60. 

A contour polygon was made for each number and 
then it was filled using a polygon filling algorithm. A 
pixel was weighted as one if it was inside the polygon, 
otherwise it was weighted as zero. 
We preprocessed the image for feature extraction. Pre- 
processing has several advantages including: 
1) It reduces the network size and requires less 
memory space to process information. 
2) It reduces the training time and increases the 
chances for convergence. 
3) It extracts features which are invariant under 
transformations. This is important for building a 
practical pattern recognition system. 

The preprocessor calculates a set of seven moments 
which are invariant under transformations. These 
moments represent "features" of the image. We used a 
multilayered network with one hidden layer ( fig. 1 ). 
There are seven neurons in the input layer, one for 
each moment. The network output was matched against 
a target vector representing the numeral being 
considered. We experimented with two target vectors 
for each numeral, one using unary and the other 
binary representation ( fig. 2 ). The output layer 
consists of ten and four neurons in unary and binary 
targets respectively. 
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figure 1 
The selection of the number of neurons in the hidden 

layer was based on experimenting with several cases 
starting with the sum of the input and output layers, 
and later reducing it until optimal. There are 14 and 10 
neurons in the hidden layer of unary and binary targets 
respectively. The binary representation took less 
training time but it was not as accurate in recognizing 
an unknown pattern as unary representation. 

representation 

digit unary binary 

4 
5 
6 
7 
8 
9 

0000000000 
0000000001 
0000000010 
0000000100 
0000001000 
0000010000 
0000100000 
0001000000 
0010000000 
0100000000 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
i000 
1001 

Figure 2 

3. BACKGROUND INFORMATION 
3.1 Baekpropagation Model: 

The back propagation model employs an iterative 
gradient descent algorithm designed to follow the slope 
of the error surface, constantly adjusting the weights to 
minimize the mean square error between the actual 
output of a multilayer network and the desired output. 
To explain this model we are following the notations 
and methodology given in Wasserman [10]. 

Ol Wlj 

Let us consider the neuron j shown in figure 3. If the 
vector O = (O~, 02, 03.. .0,) represents an input to 
neuron j, and W~j represents a weight for the signal 
going to neuron j from input i, then the output is given 
by 

OUTj = F(NETj) = 1/(1 + e "szrj) where 

n 

i - 1  

The function F(x) = 1/(1 + e x ) is a sigmoidal logistic 
function. 

A network of  three layers is shown in figure 1. We 
apply a set of known inputs and adjust the weights of 
the hidden layer and the output layer such that error 
is minimum. The error is calculated by comparing the 
actual output with the desired output. Once the 
network is trained with known input-output pairs, it 
can recognize unknown input patterns. At the start of  
the training process, all the weights are initialized with 
random values between -1 to + 1. 

Let us consider figure 4 to explain the 
calculations involved in backpropagation algorithm. 
Let i,j,and k be the input, hidden and output  layers 
respectively, and let Ni, Nj, and N k be the number of 
elements in layers i, j, and k respectively. Let r be an 
element in layer i, p be an element in layer j and q be 
an element in layer k. The other notations are: 

 Tq- -I i 

figure 3 
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OUTr, ~ = output of element r in layer i, 
Ww.j = Weight of layer j for the signal going from 
element r to element p, 
Eq,~ = Error in element q in layer k, 
TARGETq = Target value of element q, 
8q.~ = Error function for element q in layer k. 

We follow the following steps to train the 
network. 
1. Apply an input vector from the training pair to the 
network input layer. Output of input layer is the same 
as its input. 
2. Calculate the output of hidden layer for each 
neuron using equation (1). Output of input layer is 
input to hidden layer. 
3. Calculate the output of the output layer for each 
neuron using equation (1). Output of hidden layer is 
input to output layer. 
4. Compare the calculated output with the target 
output for each neuron in output layer, and calculate 
the error. 
5. If error is less than the tolerance for each neuron 
then go to step 11 and exit. The tolerance may be set 
to 0.1. 
6. Calculate the error function 8q,k for each neuron q 
in output layer k using the following equation (3) 
Eq, k = (TARGETq - OUTq,)0 (2) 
8q,, = OUTq,, (1-  OUTqx ) Eq,k (3) 
7. Calculate the error function of 8p,j for each element 
p in the hidden layer j using equation (4). 

6p, j = otrrp.j ( z - o~rrp,) 

N~ 

( ~ ,Sq.j, wpq,~ ) 
q-l.  

(4) 

8. Adjust the weights for output layer k using equation 
(6) in one of the following cases. 
CASE 1: Basic Algorithm. 
AWpq.k = n ~q,~ OUTpj (5) 
Wry,, (N+I)  = W~.k(N ) + aWm, k (6) 
where n is learning rate parameter which can be set to 
0.5 at the start and later on adjusted. 
CASE 2: With Momentum Term Added. 
AWm, k (N+I)=~ 1 (Sq, k OUT,j)+=[  A Wm,t (N)] (5) 
Wpq.k (N+I)  = Win, k (N) + a Wm,~ (N+I)  (6) 

where ~x = momentum parameter. 
CASE 3: With Exponential Smoothing Term Added. 
,A Wm,q ( N + I ) = ~  ,A Win, k (N)+(I  - [~)Sq, k OUTpj (5) 
Wm,k (N+l)=Wm.k (N)+rl A Wm,k (N+I)  (6) 

where 13 = exponential smoothing parameter. 
9. Adjust the weight for the hidden layer j by using 
equation(8). 
Wq,,i = n6p, i OUTr,~ (7) 
Wq~,j(N+I) = Wqpj(N) + AWq,,j (8) 
10. Go to step 2. 
11. Stop iteration and exit. 

3.2 Feature Extraction: 
The recognition of geometrical patterns 

independent of position, size, and orientation can be 
accomplished using moment invariants. These 
moments uniquely determine a piecewise continuous 
function f(x,y) which has non-zero values only in a 
finite part of the x-y plane. If f(x,y) be a digital image 
in two dimensional space, then the moments of 
order (p+q) can be defined by [15] 

x y 

for p,q= 0,1,2... (9) 

The central moments can be expressed as 
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~pq = 
x y 

( Y - Yc ) q f(x,y) (10) 

where xo = M l o / M o o  , Yc ---- M0~/M0o (11) 
The normalized central moments Npq can be defined 

a s  

Npq = ~pq / (I.t0o) v (12) 
where 7 = (p+q)/2  + 1 for p + q  = 2,3,.. (13) 

Hu [16] has shown that a set of seven moments can be 
derived which are invariant to translation, rotation, and 
scaling transformations. These seven moments are: 
~1 = Nz0+ N02 
~2 = (N2o- N02) ~ + 4Nn 2 
¢3 = (N3o - 3N12)2 + (3N21 - No3) 2 
4)4 = (N3o + N~z) 2 + (N2~ + No3) 2 
q55 =(N3o-aN,2)(N3o+N~z)[(Nao+N~z) 2 - 3(Nz~+N03) a] 

+ (3NzrNo3)(Nz~+No3)I3(N3o+N~z)2-(N2~ + No3) 21 
06 = (N2o- Noz)[(N3o + N~z)' - (N2~ + No3) 2] 

+ 4Nu(N3o + Ntz)(Nz, + No3) 
¢7 = (3Nz~-N3o)(N3o+N,z)[(N3o+N~2) 2 -3(Nz~+No3) 2] 

+ (3Niz-N3o)(N21+No3)13(N3o+N,z)2-(N2~ + No3) 2] 
A statistical program based on these moments  can be 
developed and it can recognize numerals but the 
problem is that if noise is introduced into the image, 
the results are not reliable. It is known that neural 
networks are not sensitive to noise so if moment 
invariants are used as preprocessed inputs to neural 
networks, results are expected to be more reliable. 

4. N E T W O R K  TRAINING AND TESTIN G  
Invariant moments for the digits were calculated 

using the formula given in section 3.2. The moments 

have very small values so we took their logarithmic 
values (Table 1). These moments were used as inputs 
to a multilayered neural network. The network was 
trained with the original patterns of  numerals. To test 
the accuracy of the network in the recognition phase 
we calculated the moments of  patterns under scaling, 
translational and rotational transformations using 
normalized coordinates. The moments of  the original 
and transformed images for digits 2 and 3 are given in 
Table 2 for example. It shows that the moments are 
invariant under transformations. Figure 5 shows the 
numbers 2 to 9 under different transformations. 

We programmed three cases of  backpropagation 
algorithm: 

1: Basic algorithm [11] 
2: Momentum factor added to the basic algorithm in 
calculation of the change in weights. [11] 
3: Exponential smoothing factor added to the basic 
algorithm in calculation of  change in weights [12]. 

Z 2 % 3  
44 5 
6 6  Co7 
8 8 % 9  

3 3 " 5  
5 5 5  
7 7 q  

Figure 5 

Digit, ~ 1 ~ 2 ~ 3 ~ 4 ~ 5 ~ 6 ~ 7 

0 0.2896724 1.8912424 3.0816103 3.7079442 7.5324230 5.0186122 7.1350254 

1 0.1444406 0.3163917 2.4561373 2.6496310 5.2045640 2.8246001 6.2161687 

2 0.1888211 1.0409897 2.0096739 2.5034514 5.8645744 3.1086389 4.7613598 

3 0.1359538 0.6528863 1.3220851 1.9685698 3.7222681 2.2983096 3.8167549 

4 0.3861797 1.6341399 1.3707669 2.0140326 3.7101914 2.9756539 4.5891420 

5 0.2674511 1.0449647 3.3698149 2.9255948 6.1242224 3.4484834 6.4131852 

6 0.2606826 1.3939269 1.6738422 2.0245292 4.0946032 5.1211048 3.9711671 

7 0.1560557 0.6918714 0.6640617 1.2505373 2.3567873 1.6665286 2.3599277 

8 0.3214875 1.4899748 4.3306973 4.3140626 9.3234240 5.1549184 8.6458210 

9 0.2938891 1.2640356 1.7301497 1.9389643 3.9419327 2.9566812 3.9075031 

Table 1 
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Digits 2t 

Pattern # 1 # 2 # 3 # 4 # 5 # 6 # 7 

original 0.1782108 0.7956657 2.5284379 2.6516904 5.2936189 4.9121131 5.5781130 

t r a n s .  0 .2  0 .1797515 0.7981299 2.5391998 2.6334396 5.2583461 4.1897512 5 .6139249 

scale 0.8 0.2000648 0.8591732 2.3372206 2.9122016 7.0309660 3.4452000 5.5371360 

rotate n/6 0.1739678 0.7466299 2.2755938 2.5223495 4.9918835 4.3518786 5.1997384 

Digits 3z 

Pattern ~ I # 2 # 3 ~ 4 # 5 # 6 ~ 7 

original 0.1359530 0.6528863 1.3220851 1.9685698 3.7222681 2.2983096 3.8167549 

trans. 0.2 0.1359538 0.6528863 1.3220851 1.9685698 3.7222681 2.2983096 3.8167549 

scale 0.8 0.1598016 0.6907020 1.4942709 2.1207083 3.9784019 2.4663624 4.2708248 

rotete ~/6 0.1032646 0.5299899 1.3127608 1.9181933 3.6848698 2.4416071 3.6835031 

For each of the above cases we experimented with 
two methods to encode a target vector: 1) Unary 
representation, and 2) Binary representation. In order 
to observe how the iterations are converging, we 
calculated root-mean-square error E: 
E = {[(Ti - OUTi)' + (Tz- OUTz)' + ... (T n - 

OUTo)'I/n} ½ 

where 
T = (T1 Tz ... T,) = Target Vector 
OUT = (OUT~, OUTz ... OUT,) = Output Vector 

Each time we ran our training session we 
calculated the error (E) at the starting iteration of each 
round and plotted E vs N, where N = round number. 
In each round the system converged for all the digits 
under consideration one by one. We ran our 
experiments on an Intel 80386 microprocessor based 
microcomputer running at 20 MHz. We wrote the 

Table 2 

network software in Turbo Pascal. We ran our 
experiments first with only three digits 0, 1, and 2, and 
after studying the network behavior extended it to 10 
digits. Some of our observations with three digits are 
given below, for example: 
EXAMPLE 1: BINARY REPRESENTATION OF 
TARGET 
Momentum parameter ( a ) = 0.9 
Exponential smoothing parameter ( I~ ) = 0.5 
Learning rate ( n ) = 0.2 
Error tolerance limit ( e ) = 0.2 
Number of input layer neurons ( N i ) = 7 
Number of hidden layer neurons ( Nj ) = 10 
Number of output  layer neurons ( Nk ) = 4 
Convergence data is shown in Table 3. 

Algorithm 

Basic 

algorithm 

With momentum 

term 

With exp. 

smoothing term 

number of 

iterations 

2311 

1429 

3883 

number of 

rounds 

169 

144 

Time in 

minutes 

2.65 

1.83 

Error 

curve 

k_ 
191 5.51 

Table 3 
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Algorithm number of number of 

iterations rounds 

Basic algorithm 2059 157 4.36 

With momentum 1604 168 4.13 

With exp. smoothing 3171 165 9.8 

Time in 

minutes 

Table 4 

EXAMPLE 2: UNARY REPRESENTATION OF 
TARGET 
Momentum parameter ( ~ ) = 0.9 
Exponential smoothing parameter ( ~ ) = 0.5 
Learning rate ( n ) = 0.2 
Error tolerance limit ( ~ ) = 0.2 
Number of input layer neurons ( N i ) = 7 
Number of hidden layer neurons ( Nj ) = 14 
Number of output layer neurons ( Nk ) = 10 
Convergence data is shown in Table 4. 

The basic backpropagation algorithm 
converged but it was taking a longer time and error 
curve was oscillating. By adding momentum term into 
the basic algorithm for weights adjustment we got 
faster convergence and smoother error curve. By 
adding the exponential smoothing term into the basic 
algorithm we got a smoother error curve but there was 
no saving in training time. On the basis of these 
observations we concluded that for our case the basic 
algorithm with momentum term was the best choice. 
We also experimented with different number of 
neurons (Nj) in the hidden layer. We found that the 
best results were obtained with Nj = 10 for the case of 
binary representation and Nj = 14 for the case of unary 
representation. We included all digits 0 to 9 and 
trained our network with both representations. It takes 
a shorter time to train with binary representation than 
with unary representation. After the training when we 
tested the accuracy of our network in recognizing 
transformed and slightly deformed patterns, we found 
that unary representation was accurate 96% times and 
binary representation was accurate 88% times. Here is 
our final data to train the network for all digits 0 to 9. 
FINAl.., CONVERGENCE DATA: 
Target representation = Unary 
Momentum parameter ( tz ) = 0.9 
Learning rate ( ~q ) = 0.1 
Error tolerance limit ( e ) = 0.1 
Number of input layer neurons ( N, ) = 7 
Number of hidden layer neurons ( Nj ) = 14 
Number of output layer neurons ( N k ) = 10 

Total number of iterations = 19465 
Total number of rounds = 572 
Time taken to converge = 51 minutes. 

5. CONCLUSION 
We have demonstrated that a neural network 

using backpropagation training algorithm and a set of 
seven invariant moments can recognize numerals 
independent of their size, position, and orientation. 
The results show that inclusion of momentum term for 
weights adjustment improves the convergence time and 
makes the error curve smoother. A unary 
representation of the target takes a longer time to 
converge and needs more neurons in the output layer 
but its accuracy in recognizing untrained patterns is 
better than that of a binary representation. Slight 
variations in the input pattern do not affect the 
recognition accuracy of the network. 
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