
TRANSFORMATIONS AND DISTORTIONS TOLERANT RECOGNITION O F NUMERALS USING

NEURAL NETWORKS

R. P. SRIVASTAVA

Towson State University, Towson, Maryland

ABSTRACT
This paper presents a multilayered artificial

neural network model to recognize numerals
independent of their sizes, positions, and orientations.
We used a modified backpropagation algorithm to train
the network. We preprocessed the numerals for
"feature" extraction by calculating their moments. The
moments are invariant under translation, scaling, and
rotation transformations. We used the moments as
input to the network rather than the digitized pattern
itself. The network was able to recognize transformed
and slightly deformed numerals. Parallel
computational capability of the network makes it an
attractive alternative for real-time commercial
applications.

1. INTRODUCCrlON
The recognition of numerals has several practical

applications including optical page readers, and mail
sorters. In order to provide a practical system the
recognition algorithm should be tolerant of small
distortions and possible transformations. Developing
such algorithm is a difficult problem in designing
pattern-recognition systems. Many authors [
1,2,3,5,9,16] have tried to solve this problem but no
satisfactory general theory exists. Often, the methods
are based on extracting "features" which are invariant
under transformations. The main difficulty in using the
conventional techniques is that they are not fault
tolerant. Neural networks have been found to be fault
tolerant in pattern recognition[3,4,5,6,7,8,9,12].
Fukushima and Miyaki [3] used a multilayered neural
network, called "neocognitron," to recognize numerals.
Their method is tolerant of small distortions and shifts
in position but it is quite difficult to train a
"neocognitron" to include rotational invariance as well.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

Burr[4] used neural networks to design a text reader.
The pre-processing done by Burr to produce a compact
input pattern requires a substantial computation time.
Rajavelu, Musavi and Shirvaikar[5] used Walsh
functions to extract pattern features which were inputs
to a neural network. In this paper we have investigated
the possibility of using invariant moment functions as
input to a neural network in recognizing hand written
numerals. Kulkarni, Yap, and Bayers [6] used moments
as input to neural networks for analyzing aircraft
images. We used backpropagation [11,13] algorithm to
train a multilayered neural network.

2. SYSTEM CONFIGURATION
Numbers 0 to 9 were digitized on a grid of 50 * 60.

A contour polygon was made for each number and
then it was filled using a polygon filling algorithm. A
pixel was weighted as one if it was inside the polygon,
otherwise it was weighted as zero.
We preprocessed the image for feature extraction. Pre-
processing has several advantages including:
1) It reduces the network size and requires less
memory space to process information.
2) It reduces the training time and increases the
chances for convergence.
3) It extracts features which are invariant under
transformations. This is important for building a
practical pattern recognition system.

The preprocessor calculates a set of seven moments
which are invariant under transformations. These
moments represent "features" of the image. We used a
multilayered network with one hidden layer (fig. 1).
There are seven neurons in the input layer, one for
each moment. The network output was matched against
a target vector representing the numeral being
considered. We experimented with two target vectors
for each numeral, one using unary and the other
binary representation (fig. 2). The output layer
consists of ten and four neurons in unary and binary
targets respectively.

© 1991 ACM 089791-382-5/91/0003/0402 $1.50 402

http://crossmark.crossref.org/dialog/?doi=10.1145%2F327164.327311&domain=pdf&date_stamp=1991-04-01

Moments

P
[Feature J

attern! . !
~extractlonl--@

La °=it h- 1 . ,

Input Hidden Output
layer layer layer

figure 1
The selection of the number of neurons in the hidden

layer was based on experimenting with several cases
starting with the sum of the input and output layers,
and later reducing it until optimal. There are 14 and 10
neurons in the hidden layer of unary and binary targets
respectively. The binary representation took less
training time but it was not as accurate in recognizing
an unknown pattern as unary representation.

representation

digit unary binary

4
5
6
7
8
9

0000000000
0000000001
0000000010
0000000100
0000001000
0000010000
0000100000
0001000000
0010000000
0100000000

0000
0001
0010
0011
0100
0101
0110
0111
i000
1001

Figure 2

3. BACKGROUND INFORMATION
3.1 Baekpropagation Model:

The back propagation model employs an iterative
gradient descent algorithm designed to follow the slope
of the error surface, constantly adjusting the weights to
minimize the mean square error between the actual
output of a multilayer network and the desired output.
To explain this model we are following the notations
and methodology given in Wasserman [10].

Ol Wlj

Let us consider the neuron j shown in figure 3. If the
vector O = (O~, 02, 03.. .0,) represents an input to
neuron j, and W~j represents a weight for the signal
going to neuron j from input i, then the output is given
by

OUTj = F(NETj) = 1/(1 + e "szrj) where

n

i - 1

The function F(x) = 1/(1 + e x) is a sigmoidal logistic
function.

A network of three layers is shown in figure 1. We
apply a set of known inputs and adjust the weights of
the hidden layer and the output layer such that error
is minimum. The error is calculated by comparing the
actual output with the desired output. Once the
network is trained with known input-output pairs, it
can recognize unknown input patterns. At the start of
the training process, all the weights are initialized with
random values between -1 to + 1.

Let us consider figure 4 to explain the
calculations involved in backpropagation algorithm.
Let i,j,and k be the input, hidden and output layers
respectively, and let Ni, Nj, and N k be the number of
elements in layers i, j, and k respectively. Let r be an
element in layer i, p be an element in layer j and q be
an element in layer k. The other notations are:

 Tq- -I i

figure 3

403

INPUT HIDDEN OUTPUT
LAYER i LAYER j LAYER k

D

OUTq,k { Eq,k~TARGETq

<]

Figure 4

OUTr, ~ = output of element r in layer i,
Ww.j = Weight of layer j for the signal going from
element r to element p,
Eq,~ = Error in element q in layer k,
TARGETq = Target value of element q,
8q.~ = Error function for element q in layer k.

We follow the following steps to train the
network.
1. Apply an input vector from the training pair to the
network input layer. Output of input layer is the same
as its input.
2. Calculate the output of hidden layer for each
neuron using equation (1). Output of input layer is
input to hidden layer.
3. Calculate the output of the output layer for each
neuron using equation (1). Output of hidden layer is
input to output layer.
4. Compare the calculated output with the target
output for each neuron in output layer, and calculate
the error.
5. If error is less than the tolerance for each neuron
then go to step 11 and exit. The tolerance may be set
to 0.1.
6. Calculate the error function 8q,k for each neuron q
in output layer k using the following equation (3)
Eq, k = (TARGETq - OUTq,)0 (2)
8q,, = OUTq,, (1- OUTqx) Eq,k (3)
7. Calculate the error function of 8p,j for each element
p in the hidden layer j using equation (4).

6p, j = otrrp.j (z - o~rrp,)

N~

(~ ,Sq.j, wpq,~)
q-l.

(4)

8. Adjust the weights for output layer k using equation
(6) in one of the following cases.
CASE 1: Basic Algorithm.
AWpq.k = n ~q,~ OUTpj (5)
Wry,, (N+I) = W~.k(N) + aWm, k (6)
where n is learning rate parameter which can be set to
0.5 at the start and later on adjusted.
CASE 2: With Momentum Term Added.
AWm, k (N+I)=~ 1 (Sq, k OUT,j)+=[A Wm,t (N)] (5)
Wpq.k (N+I) = Win, k (N) + a Wm,~ (N+I) (6)

where ~x = momentum parameter.
CASE 3: With Exponential Smoothing Term Added.
,A Wm,q (N + I) = ~ ,A Win, k (N)+(I - [~)Sq, k OUTpj (5)
Wm,k (N+l)=Wm.k (N)+rl A Wm,k (N+I) (6)

where 13 = exponential smoothing parameter.
9. Adjust the weight for the hidden layer j by using
equation(8).
Wq,,i = n6p, i OUTr,~ (7)
Wq~,j(N+I) = Wqpj(N) + AWq,,j (8)
10. Go to step 2.
11. Stop iteration and exit.

3.2 Feature Extraction:
The recognition of geometrical patterns

independent of position, size, and orientation can be
accomplished using moment invariants. These
moments uniquely determine a piecewise continuous
function f(x,y) which has non-zero values only in a
finite part of the x-y plane. If f(x,y) be a digital image
in two dimensional space, then the moments of
order (p+q) can be defined by [15]

x y

for p,q= 0,1,2... (9)

The central moments can be expressed as

404

~pq =
x y

(Y - Yc) q f(x,y) (10)

where xo = M l o / M o o , Yc ---- M0~/M0o (11)
The normalized central moments Npq can be defined

a s

Npq = ~pq / (I.t0o) v (12)
where 7 = (p+q)/2 + 1 for p + q = 2,3,.. (13)

Hu [16] has shown that a set of seven moments can be
derived which are invariant to translation, rotation, and
scaling transformations. These seven moments are:
~1 = Nz0+ N02
~2 = (N2o- N02) ~ + 4Nn 2
¢3 = (N3o - 3N12)2 + (3N21 - No3) 2
4)4 = (N3o + N~z) 2 + (N2~ + No3) 2
q55 =(N3o-aN,2)(N3o+N~z)[(Nao+N~z) 2 - 3(Nz~+N03) a]

+ (3NzrNo3)(Nz~+No3)I3(N3o+N~z)2-(N2~ + No3) 21
06 = (N2o- Noz)[(N3o + N~z)' - (N2~ + No3) 2]

+ 4Nu(N3o + Ntz)(Nz, + No3)
¢7 = (3Nz~-N3o)(N3o+N,z)[(N3o+N~2) 2 -3(Nz~+No3) 2]

+ (3Niz-N3o)(N21+No3)13(N3o+N,z)2-(N2~ + No3) 2]
A statistical program based on these moments can be
developed and it can recognize numerals but the
problem is that if noise is introduced into the image,
the results are not reliable. It is known that neural
networks are not sensitive to noise so if moment
invariants are used as preprocessed inputs to neural
networks, results are expected to be more reliable.

4. N E T W O R K TRAINING AND TESTIN G
Invariant moments for the digits were calculated

using the formula given in section 3.2. The moments

have very small values so we took their logarithmic
values (Table 1). These moments were used as inputs
to a multilayered neural network. The network was
trained with the original patterns of numerals. To test
the accuracy of the network in the recognition phase
we calculated the moments of patterns under scaling,
translational and rotational transformations using
normalized coordinates. The moments of the original
and transformed images for digits 2 and 3 are given in
Table 2 for example. It shows that the moments are
invariant under transformations. Figure 5 shows the
numbers 2 to 9 under different transformations.

We programmed three cases of backpropagation
algorithm:

1: Basic algorithm [11]
2: Momentum factor added to the basic algorithm in
calculation of the change in weights. [11]
3: Exponential smoothing factor added to the basic
algorithm in calculation of change in weights [12].

Z 2 % 3
44 5
6 6 Co7
8 8 % 9

3 3 " 5
5 5 5
7 7 q

Figure 5

Digit, ~ 1 ~ 2 ~ 3 ~ 4 ~ 5 ~ 6 ~ 7

0 0.2896724 1.8912424 3.0816103 3.7079442 7.5324230 5.0186122 7.1350254

1 0.1444406 0.3163917 2.4561373 2.6496310 5.2045640 2.8246001 6.2161687

2 0.1888211 1.0409897 2.0096739 2.5034514 5.8645744 3.1086389 4.7613598

3 0.1359538 0.6528863 1.3220851 1.9685698 3.7222681 2.2983096 3.8167549

4 0.3861797 1.6341399 1.3707669 2.0140326 3.7101914 2.9756539 4.5891420

5 0.2674511 1.0449647 3.3698149 2.9255948 6.1242224 3.4484834 6.4131852

6 0.2606826 1.3939269 1.6738422 2.0245292 4.0946032 5.1211048 3.9711671

7 0.1560557 0.6918714 0.6640617 1.2505373 2.3567873 1.6665286 2.3599277

8 0.3214875 1.4899748 4.3306973 4.3140626 9.3234240 5.1549184 8.6458210

9 0.2938891 1.2640356 1.7301497 1.9389643 3.9419327 2.9566812 3.9075031

Table 1

405

:-. • ~=" :~:t~,.L ~:~ ~.~

Digits 2t

Pattern # 1 # 2 # 3 # 4 # 5 # 6 # 7

original 0.1782108 0.7956657 2.5284379 2.6516904 5.2936189 4.9121131 5.5781130

t r a n s . 0 .2 0 .1797515 0.7981299 2.5391998 2.6334396 5.2583461 4.1897512 5 .6139249

scale 0.8 0.2000648 0.8591732 2.3372206 2.9122016 7.0309660 3.4452000 5.5371360

rotate n/6 0.1739678 0.7466299 2.2755938 2.5223495 4.9918835 4.3518786 5.1997384

Digits 3z

Pattern ~ I # 2 # 3 ~ 4 # 5 # 6 ~ 7

original 0.1359530 0.6528863 1.3220851 1.9685698 3.7222681 2.2983096 3.8167549

trans. 0.2 0.1359538 0.6528863 1.3220851 1.9685698 3.7222681 2.2983096 3.8167549

scale 0.8 0.1598016 0.6907020 1.4942709 2.1207083 3.9784019 2.4663624 4.2708248

rotete ~/6 0.1032646 0.5299899 1.3127608 1.9181933 3.6848698 2.4416071 3.6835031

For each of the above cases we experimented with
two methods to encode a target vector: 1) Unary
representation, and 2) Binary representation. In order
to observe how the iterations are converging, we
calculated root-mean-square error E:
E = {[(Ti - OUTi)' + (Tz- OUTz)' + ... (T n -

OUTo)'I/n} ½

where
T = (T1 Tz ... T,) = Target Vector
OUT = (OUT~, OUTz ... OUT,) = Output Vector

Each time we ran our training session we
calculated the error (E) at the starting iteration of each
round and plotted E vs N, where N = round number.
In each round the system converged for all the digits
under consideration one by one. We ran our
experiments on an Intel 80386 microprocessor based
microcomputer running at 20 MHz. We wrote the

Table 2

network software in Turbo Pascal. We ran our
experiments first with only three digits 0, 1, and 2, and
after studying the network behavior extended it to 10
digits. Some of our observations with three digits are
given below, for example:
EXAMPLE 1: BINARY REPRESENTATION OF
TARGET
Momentum parameter (a) = 0.9
Exponential smoothing parameter (I~) = 0.5
Learning rate (n) = 0.2
Error tolerance limit (e) = 0.2
Number of input layer neurons (N i) = 7
Number of hidden layer neurons (Nj) = 10
Number of output layer neurons (Nk) = 4
Convergence data is shown in Table 3.

Algorithm

Basic

algorithm

With momentum

term

With exp.

smoothing term

number of

iterations

2311

1429

3883

number of

rounds

169

144

Time in

minutes

2.65

1.83

Error

curve

k_
191 5.51

Table 3

406

Algorithm number of number of

iterations rounds

Basic algorithm 2059 157 4.36

With momentum 1604 168 4.13

With exp. smoothing 3171 165 9.8

Time in

minutes

Table 4

EXAMPLE 2: UNARY REPRESENTATION OF
TARGET
Momentum parameter (~) = 0.9
Exponential smoothing parameter (~) = 0.5
Learning rate (n) = 0.2
Error tolerance limit (~) = 0.2
Number of input layer neurons (N i) = 7
Number of hidden layer neurons (Nj) = 14
Number of output layer neurons (Nk) = 10
Convergence data is shown in Table 4.

The basic backpropagation algorithm
converged but it was taking a longer time and error
curve was oscillating. By adding momentum term into
the basic algorithm for weights adjustment we got
faster convergence and smoother error curve. By
adding the exponential smoothing term into the basic
algorithm we got a smoother error curve but there was
no saving in training time. On the basis of these
observations we concluded that for our case the basic
algorithm with momentum term was the best choice.
We also experimented with different number of
neurons (Nj) in the hidden layer. We found that the
best results were obtained with Nj = 10 for the case of
binary representation and Nj = 14 for the case of unary
representation. We included all digits 0 to 9 and
trained our network with both representations. It takes
a shorter time to train with binary representation than
with unary representation. After the training when we
tested the accuracy of our network in recognizing
transformed and slightly deformed patterns, we found
that unary representation was accurate 96% times and
binary representation was accurate 88% times. Here is
our final data to train the network for all digits 0 to 9.
FINAl.., CONVERGENCE DATA:
Target representation = Unary
Momentum parameter (tz) = 0.9
Learning rate (~q) = 0.1
Error tolerance limit (e) = 0.1
Number of input layer neurons (N,) = 7
Number of hidden layer neurons (Nj) = 14
Number of output layer neurons (N k) = 10

Total number of iterations = 19465
Total number of rounds = 572
Time taken to converge = 51 minutes.

5. CONCLUSION
We have demonstrated that a neural network

using backpropagation training algorithm and a set of
seven invariant moments can recognize numerals
independent of their size, position, and orientation.
The results show that inclusion of momentum term for
weights adjustment improves the convergence time and
makes the error curve smoother. A unary
representation of the target takes a longer time to
converge and needs more neurons in the output layer
but its accuracy in recognizing untrained patterns is
better than that of a binary representation. Slight
variations in the input pattern do not affect the
recognition accuracy of the network.

6. REFERENCES
1) Th. Pavlidis, "Algorithms for shape analysis of
contours and waveforms", IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol 2, pp 301-312,
July 1980.
2) S.R. Ramesh, "A generalized character recognition
algorithm: A graphical approach", Pattern Recognition,
vol 22, No 4, pp 347-350, 1989.
3) K. Fukushima and S. Miyake, "Neocognitron: A
new algorithm for pattern recognition tolerant of
deformations and shifts in position", Pattern
Recognition vol 15, No 6, pp 455-469, 1982.
4) David J. Burr, "Experiments on neural net
recognition of spoken and written text", IEEE Trans.
on Acoustic, Speech, and Signal Processing, vol 36, No
7, pp 1162-1168, July 1988.
5) A. Rajavelu, M.T. Musavi, and M.V. Shirvaikar, "A
neural network approach to character recognition",
Neural Networks, vol 2, pp 387-393, 1989.
6) A.D. Kulkarni, A.C. Yap, and P. Byars, "Neural
networks for invariant object recognition", Proc. IEEE,
SAC'90 pp28-32, 1990.

407

~!~: ~ :::~ii~ r l ~ : ~

• -. , ~ - : ~ ' ~ : ~ " ~ ' ~ " . • • = . & ' a i l 4 / e ~ ' g . Y - ~ e L . ~ . ~ , r ~ a ¢ ~ a ~ - ~ , r ~ / a g ~ q ~ . ~ , , e L ' . ~'~ J : ~ , •

7) Philip D. Wassarman, "Experiments in translating
chinese characters using backpropagation', Proc. IEEE
Compcon 88, pp 399-402, 1988.
8) Y. LeCun, B. Boser, J.S. Denker, D. Henderson,
R.E. Howard, W. Hubbard, and L.D. Jackel,
*Backpropagation applied to handwritten zipcode
recognition', Neural Computation, vol 1, pp 541-551,
1989.
9) A.C.C. Coolen, and F.W. Kuijk, "A learning
mechanism for invariant pattern recognition in neural
networks', Neural Networks, vol 2, pp 495-506, 1989.
10) Philip D. Wasserman, "Neural computing - Theory
and practice ", pp 43-59, Van Nostrand Reinhold, New
York 1989.
11) D.E. Rumelhart, G.E. Hinton, and R.J. Williams,
"Learning internal representations by error
propagation', Parallel distributed processing, vol 1, pp
318-362, MIT Press, Cambridge, MA, 1986.
12) T.J. Sejnowski and C.R. Rosenberg, "Parallel
networks that learn to pronounce English text',
Complex Systems, vol 1, pp 145-168, 1987.

13) Mark Jurik, "Back error propagation - a critique',
Proc. IEEE CompCon 88, pp 387-392, 1988.
14) Yoh-Han Pao, "Adaptive Pattern Recognition and
Neural Networks", pp 120-140, Addison-Wesley
Publishing Co., 1989.
15) R.C. Gonzalez and P. Wintz, "Digital Image
Processing', pp 419-425, Addison-Wesley Publishing
Co., 1987.
16) Ming-Kuei Hu, "Visual pattern recognition by
moment invariants", IRE Trans. Inform. Theory, vol
IT-8, pp 179-197, Feb. 1962.

408

