
IMPROVING RULE PROCESSING IN POSTGRES DATABASE MANAGEMENT SYSTEM

Kyongsok Kim
Department of Computer Science

North Dakota State University
Fargo, ND. 58105-5075, U. S. A.

Abstract

This paper suggests methods to improve the
performance of the rule subsystem of a next-generation
relational database management system, called Postgres.
Specifically, it will be shown that we can decompose some
rules to get further optimization. Then, we will discuss
how we can handle the situation when some fields are
changed from indexable to nonindexable or vice versa.
Finally, it is suggested that a new command be provided so
that we can change indexable characteristics of more than
one field at a time.

Keywords: decomposition, rule processing, early or late
evaluation, source and target field, read- and write-set tag,
indexable characteristics, optimization, random and priority
semantics, mutually disjoint conditions

In Section 1, Postgres rule processing will be
introduced. Then, in Sections 2 and 3, decomposing rules
either by splitting their conditions or by splitting their
target fields will be discussed, respectively, and some
general comments about rule decomposition will be made
in Section 4. We will discuss how we can change
indexable characteristics of fields in Section 5. Finally,
conclusions and recommendations will be given in Section
6.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

1. Introduction

The design of a next-generation relational database
management system, called Postgres (POST inGRES), that
is the successor to the Ingres relational database
management system, is described in [2]. One of the goals
of this new database management system is to support rule
processing within the database management system and
therefore not only data values but also rules are stored
within the database. Users can insert, retrieve, change, or
delete rules just as they handle ordinary data values. Rule
processing is handled by a rule subsystem of Postgres.

This Section basically paraphrases Postgres rule
processing explained in [2, 3]. In Subsection 1.1, Postgres
rule subsystem will be introduced. In Subsection 1.2,
restrictions on choosing early versus late evaluation of
rules will be discussed, and then, in Subsection 1.3, the
Postgres implementation of those restrictions will be
explained.

1.!. Postgres Rule $0bsystem

The Postgres rule semantics will be described below
using an example which is slightly modified from the one
given in [3]. Consider the following EMP schema which
has five fields:

EMP (employees) schema:

SSN (9 characters, indexable),
NAME (20 characters, indexable),
DEPT (5 characters, indexable),
SALARY (integer, nonindexable), and
BONUS (integer, nonindexable)

"Indexable" or "nonindexable" describes the "indexable
characteristics" of fields. "Indexable" indicates that we may
build an index using that field (possibly combined with
other field(s)) as an indexing field; "nonindexable" indicates
that, currently, we may not build an index using that field

© 1991 ACM 089791-382-5/91/0003/0506 $1.50 506

http://crossmark.crossref.org/dialog/?doi=10.1145%2F327164.328644&domain=pdf&date_stamp=1991-04-01

as an indexing field. In Section 4, we will discuss how we
should proceed when we want to build an index using a
currently nonindexable field or when we want to change a
currently indexable field to a nonindexable one.

The following replace command sets Kim's SALARY
to Jane's SALARY.

replace EMPKIM (SALARY = EMPJANE.SALARY)
fxom EMPKIM in EMP,

EMPJANE in EMP
where EMPKIM.NAME = "Kim" and

EMPJANE.NAME = "Jane"

Now if we prefix "define rule Jane-to-Kim is alway" to
the above replace command as shown below, the above
replace command becomes a rule:

define rule Jane-to-Kim is always
replace EMPKIM (SALARY = EMPJANE.SALARY)

from EMPKIM in EMP,
EMPJANE in EMP

where EMPKIM.NAME = "Kim" and
EMPJANE.NAME = "Jane"

The above rule says that we define a rule, called
Jane-to-Kim, which sets Kim's SALARY to that of Jane's.
Its semantics is that, whenever Kim's SALARY field is
retrieved, it will be the same as Jane's SALARY. One
method to support this rule is that, whenever Jane's
SALARY is changed, Kim's SALARY will be changed
immediately. An alternative is to evaluate Kim's
SALARY when it is actually retrieved. The former is
called "early evaluation" and the latter is called "late (or
lazy) evaluation".

If Jane's SALARY is updated frequently but Kim's
SALARY is retrieved infrequently, we had better choose
late evaluation, since we need to evaluate Kim's SALARY
only when it is requested. In contrast, if Jane's SALARY
is updated infrequently but Kim's SALARY is retrieved
frequently, we had better adopt early evaluation, since we
need to evaluate Kim's SALARY only when Jane's
SALARY is updated. Therefore, in general, the time of
evaluating rules has much effect on performance.

L2. Restrictions on Choosing Early versus Late
Evsluation of Rules

Whenever possible, Postgres tries to make a "correct"
choice between early and late evaluations to optimize the
rule processing. However, there are some restrictions which
prevent Postgres from arbitrarily choosing one of the two
evaluation methods. The first restriction is concerned
about what (i.e., indexable or nonindexable) fields can or
cannot be "written" by what (i.e., early or late) rules; the
second restriction is concerned about what fields can or

cannot be "read" by what rules. Now let's consider each of
these two restrictions more carefully.

First, if some field is written by late rules, we cannot
build an index using that field, since, sometimes, that field
may not have the correct or up-to-date value. In con~ast,
we can build an index using some field which is written by
early rules, since that field always has the correct or
up-to-date value. Therefore early rules can write both
indexable and nonindexable fields, whereas late rules can
write nonindexable fields but not indexable fields.

Second, if we should mix early and late rules without
any restriction, we will encounter problems. Let's consider
an example which is slightly modified from the one given
in [3]. Suppose that we have the Jane-to-Kim rule defined
above and a lso the f o l l o w i n g rule:

define rule Mary-to-Jane is always
replace EMPJANE (SALARY =

EMPMARY.SALARY)
from EMPJANE in EMP,

EMPMARY in EMP
where EMPJANE.NAME = "Jane" and

EMPMARY.NAME = "Mary"

Suppose that a) the Jane-to-Kim rule is evaluated early, b)
the Mary-to-Jane rule is evaluated late, c) Mary has just
received a SALARY adjustment, and d) Kim's SALARY is
retrieved after Mary's salary is adjusted but before Jane's
SALARY is retrieved. The Mary-to-Jane rule is a late rule
and therefore Jane's SALARY will not be adjusted until
somebody requests it. Since we assume that nobody has
requested Jane's SALARY yet, Jane's SALARY still has
the old value. Now, if we retrieve Kim's SALARY, we
will see the old SALARY, not the new SALARY which
should be equal to Mary's SALARY. From this example,
we notice that we should not allow arbitrary mixing of
early and late rules. To avoid this type of problem,
Postgres ensures that no late rule writes any data item read
by an early rule.

Since indexable fields can be written by early rules
only, the values of indexable fields are always up-to-date
and, therefore, any (early or late) rule can read indexable
fields without any problem. In contrast, nonindexable
fields can be written by early or late rules and, therefore,
the values of nonindexable fields may or may not be
up-to-date in general. The result is that, although late rules
can read nonindexable fields without any problem, early
rules should not be allowed to read nonindexable fields.
(Actually this requirement seems somewhat too restrictive
since some nonindexable fields are written by early rules
and therefore can be read by early rules safely. A more
complex mechanism may be able to lift this somewhat too
restrictive requirement.) Therefore, late rules can read
indexable and nonindexable fields, whereas early rules can
read indexable fields but not nonindexable fields.

507

The above discussion can be summarized as follows:
the first restriction says that late rules cannot write
indexable fields and the second says that early rules cannot
read nonindexable fields.

1.3. Imnlementation of Restrictions to Choosin~ Early
ver$lls Late Evaluation 9f Rule in PQstgre$

As we saw above, Postgres must make sure that the
above two restrictions hold when processing rules. Let's
see how Postgres implementation deals with these two
restrictions. First, every field of a Postgres relation is
labeled as either "indexable" or "nonindexable". Second, for
each rule, we have two sets (or lists) of field names,
read-set and write-set. A write-set contains those fields to
the left of an assignment sign (those fields will be referred
to as "target fields" in this paper). A read-set contains
fields appearing to the right of an assignment sign (those
fields will be referred to as "source fields") and fields in the
conditions (i.e., predicates). In other words, a write-set
contains target fields and a read-set contains source fields
and those fields in conditions. For example, in the
Jane-to-Kim rule, the write-set is

[SALARY},

and the read-set is

{SALARY, NAME}.

A rule whose read-set contains only indexable (or
nonindexable) fields is tagged {read I} (or {read NI}), which
will be referred to as the "read-set tag" of the rule in this
paper. If a read-set contains a mixture of indexable and
nonindexable fields, we tag the rule {read I and NI}.
Similarly, based on the characteristics of write-set of a rule,
we can tag the rule {write I}, {write NI}, or {write I and
NI}, which will be referred to as the "write-set tag" of the
rule. Both read-set and write-set tags of a rule will be
collectively called "read-and-write-set tag". There are three
read-set tags and three write-set tags, giving nine possible
read-and-write-set tags.

Due to the first restriction, a late evaluation of a rule
is not allowed when its write-set tag is {write I} or {write I
and NI} (See Table 1). Due to the second restriction, an
early evaluation of a rule is not allowed when its read-set
tag is {read I and NII} or {read NI} (See Table 1). The result
is that, out of nine possible cases, four cases are not
permitted at all, two cases allow only early evaluation, two
cases allow only late evaluation, and only one case allows
us to evaluate early or late (See Table 1). This process
derives Table 2 in [3], which summarizes the allowable
execution times of rules for each combination of read-set
and write-set tags. This is how Postgres implementation
deals with the two restrictions mentioned in Subsection

1.2. Postgres tries to optimize the early versus late
execution of rules which can be evaluated either early or
late.

~ _ ~ ~ t "~'scl

I

I andNI

NI

I I andNI NI

Table 1. The process of deriving Table 2 below, Time of
Rule Awakening.

/: not permitted due to the first restriction
(late rules cannot write indexable fields)

~: not permitted due to the second restriction
(early rules cannot read nonindexable fields)

O: allowable

te-se~

I i early

I and NI inot permitted

I

NI ~not permitted

IandNI

early

]not permittex

not permitte~

NI

early or late

late

late

Table 2. Time of Rule awakening (slightly modified from
the one given in [3]).

Based on Table 1, when the read-set tag is {read ! and
NI}, it can be treated as if it were {read NI}. Likewise,
when the write-set tag is {write I and NI}, it can be treated
as if it were {write I}. The result is that we can reduce the
3 by 3 table to a new 2 by 2 table.

Now let's turn to decomposing a rule into two or more
new rules to facilitate further optimization.

2, DeComposing a Rule by Splitting its Cgndition~

In this Section, we will discuss decomposing a rule by
splitting its conditions, when its read-set is a mixture of
indexable and nonindexable fields. Specifically, we will
consider three decomposition methods to make a further
optimization in rule processing. Among the three
methods, thetwo methods utilizing priority semantics

508

(Subsection 2.2) or mutually disjoint conditions
(Subsection 2.3) outperform the method utilizing random
semantics (Subsection 2.1).

2.1. Decomposition Utilizing Ran~lom Semantics

When two or more conditions in the where clause of a
rule are connected by an "or" operator, we can decompose a
rule into a set of two or more new rules. For example,
consider the following rule:

define rule Adml is always
replace EMP (BONUS = 10000)

where EMP.NAME = "Jane" or
EMP.SALARY > 40000

As it is, time of awakening Adml rule must be late, since
the read-set contains both indexable (NAME) and
nonindexable (SALARY) fields and the write-set contains
only nonindexable field (BONUS). However, by
decomposing the rule into two new rules, Adml 1 and
Adml2 , we can facilitate further optimization:

define rule Adml 1 is always
replace EMP (BONUS = 10000)

where EMP.NAME = "Jane"
priority = 0

define rule Adml2 is always
replace EMP (BONUS = 10000)

where EMP.SALARY > 40000
priority = 0

The effect of having two new rules, Adm11 and
Adml2, is the same as that of having one original rule,
Adm 1. You may wonder why we put the equal priority to
the two new rules. If Jane's SALARY is greater than
40,000, both A d m l l and Adml2 rules will attempt to
update the same field (BONUS) even though either rule
will produce the correct result. By putting the equal
priority, we utilize the random semantics of Postgres,
since, if multiple rules have the same priority, Postgres
uses random Semantics for conflicting rules and returns the
result specified by any one of them.

Now let's investigate each of the new rules. The
read-set of rule Adm 11 contains an indexable field (NAME)
and the write-set contains a nonindexable field (BONUS).
Therefore time of awakening rule Adml l can be eithe~
early or late, which facilitates further optimization by
Postgres. Note that the original rule did not allow this
optimization. Time of awakening rule Adml2 still remains
late.

You may wonder what is the possible gain in
decomposing in the above example. Suppose that Jane's
SALARY is less than 40,000 and Jane's BONUS is

retrieved quite frequently, Since the original Adml rule
must be evaluated late, we have to evaluate Jane's BONUS
every time it is retrieved. However, with a new rule
Adml 1, Postgres can decide to evaluate this rule early.
Then Jane's BONUS will be evaluated just once, however
frequently her BONUS is retrieved.

In general, if the where clause contains two or more
conditions connected by an "or" operator as shown below,
we can decompose the rule into a set of two or more new
rules and, if three conditions explained below are met in
addition, we will get some new rule(s) which may be
evaluated early or late, facilitating further optimization by
Postgres.

an original rule:
always replace ... where Cond-1 or Cond-2 or ...

- >

a new rule 1:
always replace ... where Cond-1

a new rule 2:
always replace ... where Cond-2

Now consider the read-and-write-set tag of each of new
rules and its awakening time after decomposing a rule
whose read-and-write-set tag is {read I and NI, write NI}. In
general, there are five possible cases as shown below. The
above example where we decomposed Adml rule into
Adml 1 and Adml2 rules falls into case 1.

read-and-write-set tags case time of rule
awakening

{read I/NI, write NI} late

{read I, write NI}, and early or late
{read NI, write NI] late

{read I, write NI}, and
{read I/NI, write NI]

early or late
late

{ read !/NI, write NI}, and late
(read NI, write NI} late

{read I, write NI}, early or late
{read I/NI, write NI }, and late
{read NI, write NI} late

Table 3. Read-and-write-set Tags of, and Time of
Awakening, New Rules after Decomposing a Rule by
splitting its Conditions.

509

Among those five cases, only cases 1, 2, and 4 produce
new rule(s) which can be evaluated early or late. It needs
more investigation to analyze whether we will get any gain
by decomposing a rule even in cases 0 and 3.

Now let's consider when we can get, after
decomposition, at least one new rule which can be
evaluated early or late. The read-and-write-set tag of such a
new rule is {read I, write NI}. Therefore we need the
following three conditions: a) the read-and-write-set tag of
the original rule must be {read I and NI, write NIl, b) all
target fields are indexable, and c) there is at least one
condition in the where clause that includes only indexable
fields or constants. If the three conditions are met, we can
get, after decomposition, at least one new rule which can
be evaluated early or late.

Although the decomposit ion method in this
Subsection works by utilizing the random semantics of
Postgres, some people may not feel comfortable. For
example, in A d m l l and Adml2 rules above, if Jane's
SALARY is greater than 40,000, they may be afraid that
both rules "might" adjust Jane's BONUS, which is not the
case .

Now let's consider how we can improve the
decomposition method which relies on random semantics.
In the next two Subsections, 2.2 and 2.3, we will consider
two alternative "improved" decomposition methods which
do not rely on random semantics.

2,2. Decomposition Utilizing Priority Semantics

One alternative decomposition method is to assign
different priority to each of new rules. As shown below,
we can assign priority 1 and 0 to Adml3 and Adml4 rules,
respectively. We intentionally assigned higher priority to
Adml3 rule, since we want Adml3 rule, which can be
evaluated early or late, to cover as many tuples as possible.
That is, if Jane's SALARY is greater than 40,000, her
BONUS will be evaluated by rule Adml3, which can be
evaluated early or late, not by rule Adml4 which must be
evaluated late. Although the gain here seems negligible, in
general, the gain will be significant when the intersection
of two conditions covers many tuples.

define rule Adml3 is always
replace EMP (BONUS = 10000)

where EMP.NAME ~. "Jane"
priority = 1

define rule Adm14 is always
replace EMP (BONUS = 10000)

where EMP.SALARY > 40000
priority = 0

We can generalize this idea. Suppose that we have an
original rule that meets the three conditions mentioned at

the end of Subsection 2.1. Then we can decompose the
rule into two new rules. One rule with the higher priority
includes all conditions having only indexable fields or
constants so that it can be evaluated early or late. The
other rule with the lower priority contains the conditions
not included in the first rule.

2.3. Decomoosit ion Utilizing Mutually Disioint
Conditions (or Predicates~

Another alternative decomposition method is to make
the conditions (or predicates) in new rules mutually
disjoint. Consider again the Adml rule. We can
decompose it as follows:

define rule Adml5 is always
replace EMP (BONUS = 10000)

where EMP.NAME = "Jane"

define rule Adml6 is always
replace EMP (BONUS = 10000)

where (not (EMP.NAME= "Jane")) and
EMP.SALARY > 40000

Note that a) the negation of the condition in rule
Adml5 is included in the where clause of Adml6 rule, and
b) we do not use priorities. Now the predicates in rules
Adml5 and Adml6 are mutually disjoint and therefore we
do not need to use priority any more. Rule Adml5 can be
evaluated early or late whereas rule Adml6 remains as a
late rule. Here we also intentionally added the negation of
the condition in rule Adml5 to rule Adml6, not vice versa,
since we want rule Adml5, which can be evaluated early or
late, to cover as many tuples as possible. The reasoning
here is exactly the same as the one above in assigning
different priorities in Subsection 2.2.

We can generalize this idea. Suppose that we have an
original rule that meets the three conditions mentioned at
the end of Subsection 2.1. Then we can decompose the
rule into two new rules. One rule includes all conditions
having only indexable fields or constants so that it can be
evaluated early or late. The other rule contains negations
of those conditions included in the first rule, in addition to
the conditions not included in the first rule.

Decomposition methods utilizing priority semantics or
mutually disjoint conditions seem to give better
performance than the one utilizing random semantics. It
needs more investigation to check which of the two will
perform better.

510

3. Decomoosing a Rule bv Splitting its Target Fields

In Subsection 3.1, we will discuss decomposing a rule
by splitting its target fields, when its write-set is a mixture
of indexable and nonindexable fields, and then, in
Subsection 3.2, we will discuss a possible side-effect of
this decomposition.

3.1. Decomoosin~ a Rule by Spli[ting its Target Fields

Now consider a rule whose read-set tag is {read I} and
write-set tag is {write I and NI}. This occurs when a) all
source fields and those fields in the conditions are either
indexable fields or constants and, b) there are two or more
target fields, among which at least one field is indexable
and at least one field is nonindexable. We can always
decompose such a rule as follows:

an original rule:
always replace (fieldl field2)

where Cond(s)

° >

a new rule 1:
always replace (fieldl = ...) where Cond(s)

a new rule 2:
always replace (field2) where Cond(s)

. , , °

Let's consider the read-and-write-set tag of each of new
rules after decomposing a rule whose read-and-write-set tag
is {read I, write I and NI}. In general, the tag of each of the
new rules will be either {read I, write I} or {read I, write
NI} since, after decomposition, each new rule will have
only one field in the write-set which must be either
indexable or nonindexable.

read-and-write-set tags

{read I, write I}, and
{read I, write NI}

time of rule
awakening

early
early or late

Table 4. Read-and-write-set Tags of, and Time of
Awakening, New Rules after Decomposing a Rule by
splitting its Target Fields.

In general, we can decompose such a rule into two new
rules. One rule, which must be evaluated early, includes
all indexable target fields. The other rule, which can be

evaluated either early or late, includes all nonindexable
target fields. This latter rule facilitates further optimization
by Postgres.

3.2, A Possible Side-effect Qf Decomposing ~ Rule l~y
Solittin~ Target Fields

In the above example, the original rule updates all
target fields at a time. In contrast, each of new rules
updates only some of the target field(s) in the original rule
at a time. Therefore the number of update operations by
the original rule and the number of update operations by
the new rules may not be the same in general. If the exact
number of update operations affects, for example, some
user's actions, other rules, audit log, etc., there is a
side-effect of decomposing a rule by splitting its target
fields.

In general, once we allow a database management
system to evaluate some rules early or late, it seems that
we are not supposed to rely on "how" the evaluations of
rules will be done "internally". Instead, as long as the rules
work "somehow", we may have to feel satisfied. In other
words, the internal rule processing should be transparent to
the users. This k ind of problem seems somewhat
philosophical. Nevertheless, it seems worthwhile to
investigate more about possible multi-rule interactions
caused by a rule decomposition.

4. Some General Comments ab0u~ R01¢ Decomposition

Now, we will discuss some comments which are
common to decomposing rules either by splitting their
conditions or by splitting their target fields. In Subsection
4.1, it will be shown that rules that are not originally
permissible cannot be decomposed. Then, in Subsections
4.2 and 4.3, we will discuss whether we need to decompose
a rule even if the read-and-write-set tags of, or time of
awakening, those new rules remain unchanged,
respectively.

4,1. Rules th0t are not Originally Permissible Cannot be
Dccompose~l

As you can see in Table 2, there are five possible
combinations where the read-set and/or write-set is a
mixture of indexable and nonindexable fields. Among
those, only two combinations, {read I/NI, write NI} and
{read I, write I/NI}, allow decomposition as shown above
in Sections 2 and 3, respectively. Rules of the other three
combinations (i.e., {read I/NI, write I/NI}, {read I/NI, write
I}, and {read NI, write I/NI}) are not permitted; furthermore,
even if they are decomposed, at least one of the new rules
is not permitted, which invalidates the decomposition.

511

4.2. Do we need to DeCompose a Rule even if the
Read-and-write-set Tags of (and therefore Tim~ of
Awakening) those New Rules Remoin the Same ~s Before?

In Subsection 2.1, we already saw that, after we
decompose a rule by splitting conditions in its where
clause, the read-and-write-set tags of those new rules may
remain the same as before. For example, if a rule has two
conditions, each of which includes both indexable and
nonindexable fields, this rule can be decomposed into two
new rules whose read-and-write-set tags remain {read I and
NI, write NI} (See case 0 in Table 3).

If we have a rule whose read-set includes only
indexable (or nonindexable) fields, we may decompose the
rule by splitting conditions into new rules whose
read-and-write-set tags remain {read I, write NI} (or {read
NI, write NI}).

A similar situation can happen when we decompose a
rule by splitting its target fields. For example, if all target
fields are indexable (or nonindexable), we may decompose
the rule by splitting its target fields into new rules whose
read-and-write-set tags remain {read I, write I} (or {read I,
write NI}).

It needs further investigation to analyze whether we
will get any gain by decomposing rules even when the
read-and-write-set tags of those new rules remain the same
as before.

4.3. Do we need tO Decompose a R01e even if Time of
Awakening those New Rules Remain the Same as Before?

After decomposition, sometimes, time of awakening
those new rules may remain the same as before, even
though the read-and-write-set tags of some of new rules
have been changed. Consider case 3 in Table 3. Even
though we get one or more new rules whose
read-and-write-set tag, {read N/, write NI}, is different ffi'om
that of the original rule, {read I and NI, write NI}, the time
of awakening those new rules remain the same as before
(i.e., late).

If the read-and-write-set tags of new rules remain
unchanged, of course, the time of awakening those new
rules remain unchanged. Therefore, the cases discussed in
Subsection 4.2 where read-and-write-set tags of new rules
remain unchanged, can be considered as a proper subset of
those cases where time of awakening new rules after
decomposition remain unchanged.

It needs further investigation to analyze whether we
will get any gain by decomposing rules even when the
time of awakening those new rules remains the same as
before.

5. Changing Indexable Characteristics of Fields

In Subsection 5. I, we will discuss what Postgres
should do when a user wants to change the indexable
characteristics of fields. Then, in Subsection 5.2, we
suggest a new command be provided for changing indexable
characteristics of more than one field at a time.

5.1. The Effects of Chaneine Indexable Characteristics of
Fields

From time to time, we may want to change indexable
characteristics of some fields from indexable to
nonindexable or vice versa. For example, we may want to
build a new secondary index using a currently nonindexable
field as an indexing field, or we may choose not to
maintain an index for some field any more. When such a
change occurs, we need to take necessary actions.

In general, when indexable characteristics of some
fields changes, there are too many possible transitions. By
considering two actions separately, we can simplify the
transition process. One action is concerned with the
change in time of awakening the affected rules (i.e., those
rules whose read-set and/or write-set contains that field).
Time of awakening the rule may remain the same as
before, or change, or the rule may not be permitted any
more. The other action is concerned with whether index(es)
should be destroyed.

First, consider the change in time of awakening the
rules affected. Depending on i) the current time of
awakening the rule, ii) whether or not the rule will still be
permitted, and, if permitted, the new time of awakening the
rule, we can consider six different transitions as
summarized in Table 5 (a). Let's consider what Postgres
should do for each of those six transitions.

a) When an early or late rule remains unchanged, we do
not have anything to do.

b) When an early rule becomes a late rule, we may
need to invalidate those values evaluated by the rule. The
exact action seems to depend on the implementation.

c) When a late rule becomes an early rule, we need to
evaluate those fields in the write-set of the rule and write
them into database.

d) When an early rule becomes "not permissible", we
need to invalidate (delete) the rule.

e) When a late rule becomes "not permissible", we
need to evaluate those fields in the write-set of the rule,
write them into database, and then invalidate (delete) the
ruIe.

Second, consider the change of indexable characteristics
of a field. There are only two transitions: from indexable
to nonindexable and vice versa, as shown in Table 5 (b).
Let's consider what Postgres should do for each of those
two transitions.

a) When an indexable field becomes nonindexable, we

512

need to destroy indexes, if any, where the field was used as
an indexing field.

b) When a nonindexable field becomes indexable, we
don't need to anything. If a user wants to build an index,
he/she (not Postgres) can do.

• current time of
ng a rule

new time of " ~
~wakening a rule ~

early

late

not permissible

early

o.k.

invalidate
current
values

invalidate
the rule

late

evaluate
and write

o.k.

evaluate
and write;
invalidate
the rule

(a) Actions taken due to change in time of awakening a
rule.

indexable characteristics of a field

current

indexable

nonindexable

n e w

nonindexable

indexable

actions taken

destroy indexes,
if any

o.k.

(b) Actions taken due to change in indexable
characteristics of each field.

Table 5. Actions taken when indexable characteristics of
field(s) changes.

5.2. Suggestion: a New ~ommand be Provided for
Changing In0exable ~haracteri~tic~ of More than One Field
at a time

If Postgres provides a command for changing indexable
characteristics of only one field at a time, then we have

some problem, when we want to change indexable
characteristics of more than one field at a time. Consider
the rule Adml in Subsection 2.1. Its read-set is {NAME,
SALARY} and write-set is {BONUS}. Since NAME field
is indexable and SALARY and BONUS fields are
nonindexable, its read-and-write-set tag is {read I and NI,
write NI}, and therefore it is a late rule. Suppose that we
want to change both SALARY and BONUS fields at a time
from nonindexable to indexable. Since we assumed that we
can change indexable characteristics of one field at a time,
there are two possible sequences of steps: a) changing
SALARY field first, then BONUS field; or b) changing
BONUS field first, then SALARY field. The problem is
that, sometimes, these two sequences may give different
results.

Consider what happens when we follow sequence a).
When we make SALARY field indexable, the read-set tag
changes from {read I and NI} to {read I} and the rule can be
evaluated early or late (See Table 6). Then, when we make
BONUS field indexable, the write-set tag changes from
{write NI} to {write I} and the rule must be evaluated early.
It seems fine. That is what we wanted originally.

Now consider what happens when we follow sequence
b). When we make BONUS field indexable, the write-set
tag changes from {write NI} to {write I} and the rule
becomes "not permissible" (See Table 6). Then, we must
delete (or drop) this rule. This is not what we wanted
originally.

•d.••
set

I
I andNI

NI

sequence b)

sequence a)

\
I \ ~ N I

\ \

not peJ nittex

the "correct" step

NI

late

Table 6. Transition of Time of Rule Awakening when
indexable characteristics of SALARY and BONUS fields
changes from nonindexable to indexable.

In general, if indexable characteristics of n fields are to
be changed, there are n! (n factorial) possible sequences of n
steps. To "correctly" handle this situation, we need to

513

change all of them "in one step", not one by one in a
sequence of n steps. In the above example, the
read-and-write-set tag must be changed from {read I and NI,
write NI} to {read I, write I) in one step, as shown in Table
6.

The format of the suggested command might look
like:

change-indexable-characterislics
relnamel.fieldnamel

from indexable to nonindexable,
relname2.fieldnarne2

from nonindexable to indexable,
° , , *

end-change-indexable-characteristics;

It will also be helpful to provide a flag so that we can
see the possible effects of changing indexable
characteristics of some fields (e.g., some rules must be
invalidated, some indexes must be destroyed, etc.) without
actually changing anything in the database. If some effects
are not acceptable, we can simply give up doing so without
affecting the database in any way. To "undo" the effects of
changing indexable characteristics of fields may be too
costly, especially when an index has already been destroyed.

References

[1] The Postgres Reference Manual, University of
California, 1988.
[2] Michael Stonebraker and Lawrence A. Rowe, "The
design of Postgres", in Proceedings of ACM SIGMOD 86,
International Conference of Management of Data,
Washington, D.C., May 28-30, 1986, SIGMOD Record,
VoI. 12, No. 2, June 1986.
[3] Michael Stonebraker, et. al., "The Postgres rule
manager", IEEE Transactions on Software Engineering,
Vol. 14, No. 7, July 1988.

6. Conclusions

We reviewed the rule processing of a next generation
relational database management system, called Postgres,
and suggested some methods to improve the performance of
its rule subsystem by decomposing rules into a set of new
rules. We can decompose a rule either by splitting its
conditions or by splitting its target fields. When we split
conditions, we can utilize random semantics, priority
semantics, or mutually disjoint conditions. Since some of
these new rules can sometimes be evaluated either early or
late, we can get further optimization.

We also discussed what we should do when some fields
are changed from nonindexable to indexable or vice versa.
It was suggested to provide a command so that we can
change indexable characteristics of more than one field at a
time.

It needs more investigation to analyze whether we will
get any gain by decomposing rules even when time of
awakening, or read-and-write-set tags of, those new rules
remain unchanged.

514

