
RULE-BASED COMPUTATIONAL DBMSs

Ronald C. Linton
Emporia State University

Emporia, KS 66801

Abstract

Tight coupling of business information systems and

the streamlining of business organizational structures are

trends that demand the availability of real-time corporate

information for decision making by Chief Executive

Officers. In this paper, the typical Executive Information

System model is shown to fail to support real-time

reporting because of the batch methods commonly used

to extract key business transactions. In addition, a

particular database management system (DBMS)

architecture is proposed that allows the database

administrator to establish rules which force dynamic

DBMS update of key real-time corporate values as

business transactions are added to the database. Such

real-time updates reduce executive information

presentation to simple queries of the database.

1. Introduction

If Tom Peters is correct in his prediction [PETE88]

that the hierarchical structure of the typical business

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

© 1991 ACM 089791-382-5/91/0003/0523 $1.50

organization will evolve into a fiat network, then the

responsibilities of the successful Chief Executive Officer

(CEO) will require a more direct interaction with

corporate information. While interest in executive use of

computers generated research activities as early as the

1960s (e.g. [BRAD67]), only recently have studies focused,

in particular, on the information needs of senior

management. The formal study of Executive Information

Systems (EISs) was initiated by Rockart and Treacy

[ROCK82] in 1982, and today there are a number of

commercial EIS products available, with the high end of

sophistication typified by a mix of artificial intelligence

technology and superb graphics capabilities. The value

of an EIS lies in its graphical presentations of both the

current and projected status of factors identified as critical

to corporate success. A CEO would utilize such a system

in much the same manner that an operational manager

would use visual displays to monitor and control some

physical process. Both environments present

opportunities for feedback and feedforward adjustments

to control parameters. Until recently, the major

difference in control in these two areas has been in the

523

http://crossmark.crossref.org/dialog/?doi=10.1145%2F327164.328646&domain=pdf&date_stamp=1991-04-01

timeliness of the response to system changes. While

physical processes frequently demand instantaneous

responses, those in the business environment have been

slow moving, and managers have felt comfortable

reviewing system status on an end-of-day, end-of-week, or

in some cases, an end-of-month basis. However, if Peters

is even close to the mark in his predictions, advancing

technology will so tightly couple business enterprises and

competition will be so fierce that (almost.) real-time

responses to system changes will be demanded from the

outside.

Although the strength of the EIS technology is the

graphical presentation of current corporate status, its

weakness lies in its information generation techniques:

critical transactions are extracted from the corporate

mainframe database, appropriately massaged and

analyzed, and then the resulting information is loaded into

an executive database, frequently residing on a micro, for

later CEO inquiry (see Figure 1). In the fast-paced

Figure 1
Model for a Typical EIS

System

[-"- ' -"---- ' -----"l l Igpplicaeian Program:
~Corporate~----------J Data Extraction, ~----~[Executive
~Database ~ Summarizing, and ~-----Jl Database
I,, ,l [Model Construotlon I

business environment painted by Peters, such information

gathering would be performed frequently, and would

generate significant cpu cycle requirements. This

processing performance could be improved by the

application of standard numerical analysis methodology;

in addition, the effects of data modification on statistical

forecasts is a current area of research [LINT90b]. These

applications would significantly reduce cpu cycle

requirements by diminishing the need for complete

reconstruction of summaries, model parameters, and

forecasts to reflect new or modified business transactions.

Even with these quick update methods, an efficient

method for recognizing and collecting important

transactions remains a problem area in streamlining the

EIS environment. As it now stands, depending on which

factors are deemed critical to corporate success, programs

would be developed to first collect copies of transactions

either before or after they are added to the corporate

database, and then to perform those quick updates to the

Executive Database. In addition, it must be decided

whether such programs would be frequently run in batch

mode with appropriate database tables accessed as input

files, or whether each and every application program

which updates those key database tables would call such

a program to perform the appropriate processing. Both

approaches are unsatisfactory; the first because of

performance issues, and the second because of software

maintenance requirements.

A Rule-based Computational Database Management

System (DBMS) is defined here as a database

management system having the following features:

524

- a Rule Maintenance Module supporting the

definition and maintenance of database update

rules, and

- a "transaction" driven Inference Engine [WATE86]

responsible for investigation of those update rules

as user transactions update the database.

This paper presents an architecture for such a DBMS and

shows that this architecture offers an efficient and

effective solution to the real-time maintenance problem

described above.

IF TABLE -- tablel AND
FUNCTION = function [AND
A'ITRIBUTE = attributel]

THEN UPDATE table2
SET attribute = expression [,

attribute = expression. . .]
[WHERE predicate],

where tablel denotes the database table which is the

object of an application program update, function denotes

the type of application I /O request that should fire the

rule (effectively, one of INSERT, DELETE, or

UPDATE), and attributel denotes the particular field in

an UPDATE transaction that would cause the rule to fire.

For example, the rule

2. A Structured Language for Update Specification

If, say, the real-time maintenance of the mean value

of all sales transactions were important for business

system control, then the type of DBMS described above

could provide dynamic update of a field MEAN for each

insertion, deletion, or update of a record in the

application database table SALES. Such a database

update rule would take the general form

IF condition
THEN action.

Because the DBMS action to be taken is easily expressed

in terms of the SQL UPDATE statement ([CHAM74],

[DATFE86]), the following command structure [LINT90c]

completely expresses dynamic update requirements.

IF TABLE = SALES AND
FUNCTION = INSERT

THEN UPDATE SYSTEMPOOL
SET MEAN =
{ (COUNT-1)*MEAN + SALES.AMT}/COUNT

requires the DBMS to update the data field MEAN in the

table SYSTEMPOOL whenever a user application inserts

a new record into the SALES table. The formulation of

this rule presupposes the ordered application of other

rules, particularly the one in which the value of COUNT

would be incremented because of the insertion. This

sequencing must be controlled by the Inference Engine

which evaluates rules as transactions are added.

3. System Generation

Prior to generating the DBMS environment, the

Database Administrator (DBA) utilizes the Rule

525

Maintenance Module to build a rule base reflecting all

dynamic update requirements. The system generation

process consists of three phases. During the first phase,

typical data dictionary entries are used to construct

standard system tables, including SYSTABLES, a table of

table names, and SYSFIELDS, a table containing all field

names in the application database. In the second phase,

each rule is examined and certain constructions are made:

The action to be taken by the DBMS has been

expressed in terms of a SOL UPDATE command.

During this second phase, this command is converted to

the same executable code that would be produced by a

SOL interpreter.

Figure 2
l /ORela ted Linked Lists

SYSTADLES

I/O Pointers
ITable Insert Delete Update I

Address

lO00

2000

3000

4000

AO00

BOO0

CO00

SYSFIELDS

!/O

OOlO ~ Pointer!

Linked Lists of Rule Pointers

AO00 I

~000 I I

. . . . I 1 J

Linked list of SYSFIELD Pointers

0010! I I ! 1

Executable Code for Dynamic Update Action

ll010100001010000101010001Ol010101...

0101010010101010100101010010100101...

:0100101010101000001010101010100101...

The condition under which the rule should fire

determines an application database table name, an I /O

type, and perhaps a data field name (only for UPDATE

transactions). In SYSTABLE there is generated, for each

application table, three linked lists - one for each type of

I /O (see Figure 2). For the I /O types INSERT and

DELETE, the only entry made in the linked list is a

pointer to the instructional equivalent of the required

UPDATE action. For the I /O type UPDATE, the only

entry in the linked list is a pointer to a linked list of

entries in SYSFIELDS representing the names of the

particular data fields whose modification would trigger

the action. In addition, for each data field name in

SYSFIELDS, there is generated a linked list of pointers:

a pointer to an UPDATE (action) instruction set is added

to the list that corresponds to the particular data field

triggering the action.

- During the third phase, the final load module version

of the DBMS is produced along with appropriate

secondary storage files.

4. S y s t e m A r c h i t e c t u r e

In general, the system consists of five components,

namely the I /O Request Handler, Runtime Supervisor,

Data Manager, Inference Engine, and Rule Manager (see

Figure 3).

526

Figure 3
System Architecture

IApplication Program]

I/O Request

Request Handler

Runtime Supervisor

Dat~
Manager

~nference Engine

Rule Manager

• Applic~tion I
Database

- - I Rule Base II

The functions of these components are:

- The I/O Request Handler evaluates the parameters

passed by the application program in its call to the

DBMS. As it visits SYSTABLES and SYSFIELDS when

validating table and field names, the Request Handler

initializes, for the Inference Engine, a (perhaps null)

pointer to the head of the appropriate I/O related linked

list found on SYSTABLES.

- After successful editing of the request, control is

passed to the Runtime Supervisor which in turn invokes

the Data Manager. Upon completion of the requested

I/O, the Supervisor invokes the Inference Engine if the

pointer to the head of the I/O linked list is not null.

- The Data Manager is responsible for managing the

physical database and invokes lower-levelcomponents to

perform functions such as buffering, locking, and

journaling.

- The Inference Engine is responsible for the ordered

execution of the dynamic update machine code. After the

address of next set of update instructions is determined,

an appropriate pointer in the I /O Request Handler is

modified, the pointer to the I /O Linked List is

incremented, and control is passed to the Request

Handler so that it may handle this dynamic request as if

it were an application initiated request. The role of the

Rule Maintenance Manager is to provide, prior to system

generation, on-line entry and editing of DBA constructed

update rules. In addition, this Manager provides integrity

checks to avoid execution time anomalies such cycling.

5. The Inference Engine

In the case where a dynamic update of the database

itself triggers one or more other such updates, the

Inference Engine maintains a stack of current pointers to

I /O Linked Lists. Whether a stack is constructed, or not,

is determined by the initial value of the lowest level

pointer at the time that the Request Handler updates its

value during the editing of request table and field names.

If the pointer is not null, the Handler assumes a nesting

of updates and initializes the pointer at the next level up.

At the end of the handling of the stack, the Inference

Engine sets the lowest level to null.

527

6. ElSs Revisited

With the technology of a Rule-based Computational

DBMS available, all real-time computations required by

an EIS can be guaranteed, and the graphics software need

only query the database to get summarized values,

projected values, and any other model parameters.

Current research [LINT90d] is focusing on opportunities

presented by this technology to develop EIS software in

which the CEO can choose to either continuously monitor

critical factors or to allow the system, using appropriate

expertise, to monitor these factors itself and then to notify

the executive when an anticipated problem is detected. It

is reasonable to expect future EIS products to recommend

alternative responses and to graphically demonstrate

consequences of potential CEO decisions.

7. Consideration of an Alternative

It may seem that, rather than developing a new

DBMS architecture, it would be far simpler to enhance

application development language or SQL preprocessors

so that appropriate dynamic update commands would be

inserted as a reflection of the DBA constructed rules.

This approach would move all rule interpretation and

code generation from sysgen time to compile time, but it

would also create some additional processing

requirements as each inserted update would require a call

to and a return from the DBMS. In addition, a

complication occurs in the case that the environment

requires the adjustment of some data field whenever some

other particular database field is modified. For example,

suppose that stored in the table PROD is a collection of

records containing product information: NUMB, DESC,

and QOH. Suppose further that the table INTX is used

to store inventory transactions and that each record

contains the fields TNUMB, PNUMB and QTY. Now, if

for each product number NUMB, QOH is a summary of

all associated values of QTY, then we could charge the

DBMS with the responsibility for updating these QOH

values. It would be difficult to develop an SQL

preprocessor algorithm that would convert the following

update requirement to a standard SQL command: "If, for

some product, the value of OTY is modified, then the

associated value of QOH should be appropriately

modified". The difficulty lies in not knowing in advance

the name used by the application program to hold the

new value of QTY.

In the case of the Update Specification Language

described above, this requirement can be expressed as

follows (see [LINT90c] for more details) :

IF TABLE = INTX AND
FUNCTION = UPDATE AND
ATTRIBUTE = QTY

THEN UPDATE PROD
SET PROD.QOH =
PROD.QOH- INTX.QTY..O + INTX.QTY..N

WHERE PROD.NUM = INTX.PNUM,

where INTX.QTY..O, and INTX.QTY..N denote,

respectively, the old and new values of QTY. The

advantage of the new architecture introduced here is that

the DBMS can be instructed to maintain the "before" and

528

"after" images of the modified data record, whose

constructions are required for journaling, anytime the

Linked List pointer, as initialized by the Request Handler,

is not null.

8. Other Applications

The inventory control example above demonstrates

application potential beyond the real-time maintenance of

computational data items. In particular, it suggests that

the DBMS could be charged with any updating of"parent"

records which reflect the insertion, deletion, or

modification of corresponding "child" records. In addition,

the DBMS can be required to make certain "child"

updates that would maintain database consistency. For

example, the rule

IF TABLE = PROD AND
FUNCTION = UPDATE AND
ATTRIBUTE = PROD.NUM

THEN UPDATE INTX
SET INTX.PNUM = PROD.NUM..N
WHERE INTX.PNUM = PROD.NUM..O

will cause an automatic adjustment to all "child" INTX

records whenever a product number is changed on the

"parent" record in PROD.

9. Future Research

The author is currently involved in an implementation

of both the DBMS architecture and the companion

update specification language described in this paper.

Beyond the study of system performance in a muitiuser

environment and an application of this technology in

streamlining EiS applications, there is a need to identify

other opportunities for applications of this technology.

I0. References

[BRAD67] Brady, Rodney H., "Computer Use in
Top-level Decision Making," Harvard Business
Review, 45, (July - August), 1967.

[CHAM74] Chamberlin, D. D. with R.F.Boyce,
"SEQUEL: A Structured English Query
Language," Proceedings ACM SIGMOD
.Workshop on Data Description, Access, and
Control, May, 1974.

[DATE86] Date, C. J., An Introduction to Database
Systems, Addison-Wesley, 1986.

[LINT90a] Linton, Ronald C., "Applications of
Rule-based Computational DBMSs",
Proceedings Southwest Business Symposium,
Edmond, OK, 1990.

[LINT90b] Linton, Ronald C., "Effects of Data
Modification on Short Term Forecasts",
presented at the Kansas-Western Missouri
Chapter of the American Statistical
Association, Kansas City, MO, 1990.

[LINT90c] Linton, Ronald C., "A Structured Language
for Rule-based Computational DBMSs",
Proceedings Decision Sciences Institute Annual
Meeting, San Diego, CA, 1990.

[LINT90d] Linton, Ronald C. with Jacob R.
Wambsganss, "Expert Executive Information
Systems - Key to Small Business Success?",
Proceedings Decision Sciences Institute Annual
Meeting, San Diego, CA, 1990.

[PETE88] Peters, Tom, Thriving on Chaos, Alfred A.
Knopf, New York, 1988.

[ROCK82] Rockart, John F. with Michael E. Treacy,
"The CEO Goes On-Line," Harvard Business
Review, 60, (January - February), 1982.

lWATE86] Waterman, Donald A., A Guide to Expert
Systems, Addison-Wesley, 1986.

529

