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Fig. 1. Deformation transfer from a fit person to a fat person, both from the MPI DYNA dataset [Pons-Moll et al. 2015]. First row: source fit person shapes,

second row: our results of deformation transfer to a fat person. Our method automatically transfers rich actions across shapes with substantial geometric

differences without the need for specifying correspondences or shape pairs between source and target.

Transferring deformation from a source shape to a target shape is a very

useful technique in computer graphics. State-of-the-art deformation trans-

fer methods require either point-wise correspondences between source and

target shapes, or pairs of deformed source and target shapes with correspond-

ing deformations. However, in most cases, such correspondences are not

available and cannot be reliably established using an automatic algorithm.

Therefore, substantial user effort is needed to label the correspondences

or to obtain and specify such shape sets. In this work, we propose a novel

approach to automatic deformation transfer between two unpaired shape

sets without correspondences. 3D deformation is represented in a high-

dimensional space. To obtain a more compact and effective representation,

two convolutional variational autoencoders are learned to encode source
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and target shapes to their latent spaces. We exploit a Generative Adver-

sarial Network (GAN) to map deformed source shapes to deformed target

shapes, both in the latent spaces, which ensures the obtained shapes from

the mapping are indistinguishable from the target shapes. This is still an

under-constrained problem, so we further utilize a reverse mapping from

target shapes to source shapes and incorporate cycle consistency loss, i.e.

applying both mappings should reverse to the input shape. This VAE-Cycle

GAN (VC-GAN) architecture is used to build a reliable mapping between

shape spaces. Finally, a similarity constraint is employed to ensure the map-

ping is consistent with visual similarity, achieved by learning a similarity

neural network that takes the embedding vectors from the source and target

latent spaces and predicts the light field distance between the corresponding

shapes. Experimental results show that our fully automatic method is able

to obtain high-quality deformation transfer results with unpaired data sets,

comparable or better than existing methods where strict correspondences

are required.

CCS Concepts: • Computing methodologies → Shape modeling; Ani-

mation;

Additional Key Words and Phrases: Deformation transfer, generative adver-

sarial network, cycle consistency, visual similarity
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1 INTRODUCTION

Shape deformation is widely used in computer graphics. It is use-

ful in geometric modeling for generating new shapes from existing

ones and in computer animation for producing smooth animation se-

quences. However, producing realistic animation is time-consuming

and requires artistic expertise. Deformation transfer, i.e. transfer-

ring deformation of one shape to another, provides a cost-effective

solution to producing new deformation results by reusing existing

ones.

Given two sets of deformable shapes (source and target) and a

new deformed source shape, deformation transfer aims to produce

realistic deformation of the target shape, visually corresponding to

the given deformed source shape. It is a challenging task, since the

source and target shapes can differ significantly. Existing state-of-

the-art methods [Chu and Lin 2010; Sumner and Popović 2004] for

surface-based deformation transfer rely on point-wise correspon-

dences between source and target shapes. In general cases, there is

no reliable automatic method to achieve this, so existing methods

require the user to specify a sufficient number of corresponding

points such that point-wise correspondences can be deduced. This

process is tedious and often requires trial-and-error to ensure speci-

fied corresponding points provide sufficient constraints. An alter-

native approach considers semantic deformation transfer [Baran

et al. 2009]. The method does not require point-wise correspondence

between source and target shapes. However, it takes paired source

and target shapes, assuming that each model in the source set is

semantically related to the corresponding shape in the target set.

In practice, however, if the source and target shape datasets are

constructed independently, this property is unlikely to be satisfied.

In this work, we aim to develop a fully automatic algorithm to

deform target shapes in a way as similar as possible to the source

deformed shapes, which none of the existing deformation transfer

methods can achieve. To make this seemingly impossible task a

reality, we exploit the learning capability of deep neural networks

to learn how shapes deform naturally from a given dataset, pro-

vide a differentiable metric measuring visual similarity and build

reliable mapping between the latent spaces with cycle-consistency.

This is inspired by how humans perform this task, by observing

the deformed shapes to learn their characteristics, considering the

similarity between source and target shapes, and thinking about

how the target shapes should deform to resemble source shapes. An

example of our method is shown in Fig. 1 where the deformation of

a fit person is automatically transferred to that of a fat person, with

substantial body shape differences. Unlike previous methods, we do

not require point-wise correspondences between source and target

shapes, or paired source and target shapes as input. Instead, source

and target shape sets may contain different deformations, as long

as they are both sufficient to cover the relevant deformation spaces.

This greatly reduces user efforts and allows using two independent

shape deformation datasets. To achieve this, we propose a cycle-

consistent Generative Adversarial Network (GAN) architecture for

mesh deformation transfer. To ensure learning efficiency with a

relatively small number of training examples, especially because

plausible deformations form a much lower dimensional manifold in

the high-dimensional deformation space, we introduce a convolu-

tional autoencoder to represent shape deformations in a compact

latent space. To ensure effective transfer, we further propose a neu-

ral network to measure visual similarity. The main contributions of

this work are summarized as follows:

• This is the first automatic work to transfer deformation be-

tween unpaired shape datasets. To achieve this, we present

an efficient and differentiable method, which is composed

of a variational autoencoder to encode shape deformations,

a differentiable network to measure visual similarity, and a

cycle-consistent GAN for reliable mapping between latent

spaces.

• We propose a novel neural network to measure the visual

similarity between deformed shape pairs, which is differ-

entiable and efficiently approximates light field distances.

This network is the key to make the whole approach differ-

entiable and trainable.

• We also propose a novel mesh-based convolutional varia-

tional autoencoder (VAE) to encode a shape set with flexible

deformations in a compact latent space, which copes well

with large deformations, supports generating new shapes

in the space, and has good generalizability.

All the network components work together tightly and each is

indispensable. The mesh-based convolutional autoencoder is used

to learn and describe the plausible deformation space for generat-

ing natural shapes; the similarity metric provides a differentiable

approximation to the Light Field Distance (LFD) [Chen et al. 2003],

enabling our whole deep learning architecture to perceive intricate

visual similarities across 3D model domains. Our method also bene-

fits from the cycle consistency applied to the GAN network [Zhu

et al. 2017] to build reliable mapping between two spaces. We further

consider a simple extension of our method to semantic deformation

transfer by utilizing a small number of paired shapes for learning a

semantic similarity metric which cannot be characterized by visual

similarity.

In Sec. 2, we review the work most related to ours. We then

give the detailed description of our method, including overall ar-

chitecture and loss functions in Sec. 3. Implementation details are

presented in Sec. 4. We present experimental results, including ex-

tensive comparisons with state-of-the-art methods in Sec. 5, and

finally, we draw conclusions in Sec. 6.

2 RELATED WORK

Shape deformation is an active research topic. A comprehensive

survey of relevant techniques can be found in [Gain and Bechmann

2008]. We now review techniques for deformation transfer and deep

learning which are related to this work.

Mesh Deformation Transfer. Sumner et al. [2004] performed pio-

neering work for mesh deformation transfer. The method requires

point-wise correspondences between source and target shapes. Local
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shape deformation is then represented using deformation gradients,

which are transferred from the source to the target shapes. This

method however relies on specifying typically a large number of

correspondences to cope with the differences between shapes since

deformation gradients are local. Moreover, the method may trans-

fer geometric details from the source shape to the target, which is

undesirable. To address this, Chu and Lin [2010] proposed a method

that further projected the deformed shape to the manifold of the

target shape space, under the assumption that the target shape set

provides sufficient coverage of plausible deformations. To reduce

user effort, Yang et al. [2018] developed a method to automatically

choose a set of suitable key points on the source shape, although the

corresponding points on the target shape still require to be manually

specified. Instead of specifying point-wise correspondences, Baran

et al. [2009] proposed a different approach where the input is a set

of source shapes and the same number of target shapes, where the

corresponding pair of source and target shapes have related seman-

tic meaning. Their method achieves semantic deformation transfer

by representing each deformed shape in the source sequence using

a combination of given shapes in the source set, and producing the

target deformed shape by utilizing the combination weights with

shapes in the target set. The method produces interesting results,

although the required input is not generally available if the two

shape sets are obtained independently, which restricts its use. Our

method is fundamentally different from these works: by utilizing

the learning capability of a novel GAN-based architecture we are

able to take unpaired source and target shape sets and do not require

point-wise or shape-wise correspondences between the sets.

For shapes which are not manifold triangle meshes, e.g. triangle

soups or tetrahedra, methods have been developed [Ben-Chen et al.

2009; Chen et al. 2010] for transferring deformation using cages that

enclose the shapes to be transferred. However, effort is needed to

construct cages, and suchmethodsmay erroneously deform spatially

adjacent regions if they happen to fit in the same cage. To cope with

shapes involving multiple connected components, Zhou et al. [2010]

developed a method based on a graph structure. These methods

similarly require input for correspondences. Recent work [Corman

et al. 2017; Rustamov et al. 2013] develops effective approaches to

measuring shape differences, which are used for embedding shape

collections. Given a shape in the first collection, these methods can

be used to find a similar shape in the second collection without

known correspondence. However, such methods do not synthesize

new shapes, and therefore may not always be able to find suitable

corresponding shapes.

Deep Learning for 3D Shape Processing. We exploit the learning

capability of neural networks in this work, which have achieved

great success in 2D image processing. In recent years, effort has

been made to process 3D shapes, which are more challenging due

to the higher dimension and irregular connectivity.

For 3D shape recognition and analysis, shapes can be represented

using multi-view projection images along with 2D-CNNs for clas-

sification [Shi et al. 2015]. Such approaches are used in [Huang

et al. 2018] to learn local shape descriptors useful for shape corre-

spondence and segmentation. Shapes can also be represented using

voxels with 3D-CNNs extended from 2D [Maturana and Scherer

2015]. Tulsiani et al. [2017] use this representation to approximate

shapes with cuboids, giving an abstract representation. To improve

efficiency, Wang et al. [2017a] propose an octree structure to repre-

sent 3D shapes and perform convolutional operations on the octree

to build CNNs. Alternatively, meshes can be treated as irregular

graphs, and CNNs are extended to handle such graphs either in the

spectral [Bruna et al. 2013; Defferrard et al. 2016; Henaff et al. 2015]

or the spatial domain [Duvenaud et al. 2015; Niepert et al. 2016].

These representations are used for shape correspondences [Boscaini

et al. 2016a,b] and shape segmentation [Yi et al. 2017a]. Maron et

al. [2017] parameterize a sphere-type shape to a planar flat-torus

with a well-defined convolutional operator to build CNN models.

For 3D shape synthesis, methods have been developed using

voxel-based 3D CNNs, including deep belief networks [Wu et al.

2015] and GANs [Wu et al. 2016]. The latter is pioneering work

that uses a GAN to generate 3D shapes. However, it uses a voxel

representation with limited resolution, whereas our method aims to

automatically transfer mesh deformations with rich geometry de-

tails. Moreover, [Wu et al. 2016] needs paired images and 3D models,

while our method is fully unsupervised. Liu et al. [2017] extend a

3D GAN to support interactive editing, where a projection operator

is provided to map user designed voxels to more detailed shapes.

Sharma et al. [2016] use an unsupervised voxel-based autoencoder

for applications such as denoising. The voxel-based representation

has high space complexity due to its cubic nature, and therefore can

only be practically used to synthesize coarse shapes. An alternative

approach uses geometry images and an image-based ResNet archi-

tecture to synthesize 3D shapes [Sinha et al. 2017]. Geometry images

allow details to be better preserved, but they also have unavoidable

distortions and seams, and require shapes to be aligned to facilitate

processing. Taking aligned meshes with consistent segmentation as

input, neural networks are also used to synthesize 3D shapes with

pre-segmented parts [Li et al. 2017; Nash and Williams 2017]. These

methods focus on man-made objects and do not support non-rigid

deformation.

Someworks address relevant but different tasks from synthesizing

general 3D shapes. Han et al. [2017] use a CNN to model 3D faces

with sketches. In [Sung et al. 2017], neural networks are employed

for assembly-based modeling with suggestions of complementary

components and their placement. Other research considers joint

embeddings of 2D images and 3D shapes [Li et al. 2015], and maps

2D images to corresponding 3D shapes [Choy et al. 2016; Fan et al.

2017; Girdhar et al. 2016; Yan et al. 2016].

None of these works address the problem we study here, namely

deformation transfer.

Deep Learning for Non-Rigid Deformation. Our method deals with

deformable mesh datasets. To analyze them, Tan et al. [2018a] firstly

proposed a mesh variational autoencoder network with fully con-

nected layers to encode meshes using a recent rotation-invariant

representation [Gao et al. 2016], with applications to shape embed-

ding and synthesis. However, the use of fully connected layers re-

stricts its generalizability. An alternative mesh-based convolutional

autoencoder was proposed in [Litany et al. 2017] for completion of

deformable shapes. Their method however takes Euclidean coordi-

nates directly and thus cannot handle large rotations well. The work

ACM Transactions on Graphics, Vol. 0, No. 0, Article 0. Publication date: 2018.
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[Tan et al. 2018b] proposed a convolutional autoencoder to encode

deformable mesh sets with sparse constraints to extract localized

deformation components. Their architecture is not variational and

thus not suitable for generating new data. Our method proposes a

new convolutional variational autoencoder with a representation

that handles large rotations, which effectively embeds deformable

shapes to a compact latent space.

Image Transfer using GAN. Synthesizing new images by trans-

ferring information from existing ones has been an active topic for

decades. Recent work uses the GAN-based architecture, where the

joint training of a generator and a discriminator helps ensure that

the synthesized images have characteristics indistinguishable from

the target sets. This is related to our work, although we deal with de-

formation transfer between shape sets. The work pix2pix [Isola et al.

2017] uses a conditional GAN for paired image-to-image translation,

without the requirement of tuning loss functions. DualGAN [Yi et al.

2017b] uses two identical GANs to achieve image-to-image transla-

tion in an unsupervised manner. The method CycleGAN [Zhu et al.

2017] allows image transfer with unpaired training examples, where

the key idea is to introduce a cycle consistency loss to regularize the

mapping. We instead perform deformation synthesis in the space of

3D shapes utilizing a GAN, since GANs are proved to be capable for

such tasks [Wang et al. 2017b]. Unlike existing CycleGAN works

that focus on images, we propose the first work for automatic mesh

deformation transfer with unpaired source and target shapes, by

generalizing the CycleGAN architecture to deal with challenging

3D shapes.

3 METHOD

Given two sets of unpaired shapes, a source shape set S and a tar-

get shape set T , as well as a deformed source shape s, our aim is

to produce a deformed target shape t which has visually similar

deformation as s. Shapes in the same set S or T have the same con-

nectivity. Many shape datasets satisfy this: they are either obtained

by deforming a mesh model, or fitting a template mesh model to

deformed shapes.

We do not assume shapes in S correspond to specific shapes in

T , although we assume that S and T provide sufficient coverage of

typical deformations of the relevant shapes. We learn a deep model

with S and T as training examples. Once the deep model is trained,

a shape t is generated for each input s.

3.1 Overview

The overall architecture of the VAE-Cycle GAN (VC-GAN) is illus-

trated in Fig. 2. Since mesh models typically contain thousands of

vertices and mesh datasets may have less than a hundred shapes,

establishing a mapping from source shapes S to target shapes T

can be underdetermined. Therefore, before setting up the mapping

functions, we employ variational autoencoders to encode the source

and target shape sets into compact latent spaces S̃ and T̃ . This

not only makes the training process better constrained, but also

ensures generated shapes conform to the deformation space. Denote

by EncS and DecS the encoder and decoder for the source shape

set. EncT and DecT are similarly defined for the target shape set.

FG







′

′Enc

Enc D

D
Dec

Dec

Fig. 2. The overall architecture of our VAE Cycle-Consistent Adversarial (VC-

GAN) Network for deformation transfer. S and T are two shape datasets.

EncS and DecS are the convolutional variational encoder and decoder

for the shape set S, which embed shapes S in a latent space S̃. Similarly,

EncT and DecT are the encoder and decoder for the shape set T. Our

CycleGAN has generatorG that maps vectors from the latent space S̃ to T̃ ,

and generator F that reversely maps T̃ to S̃. Our discriminators DS and

DT are defined with the output of the decoders S′ and T′ as input, which

are used to distinguish synthetic shapes from dataset shapes.

s

t

G F

ŝ

t′

cycle-consistency

loss

{
Dec

D

GF

cycle-consistency

loss

{t t̂

s′

s

Dec

D

Fig. 3. Illustration of the cycle-consistency loss and adversarial loss. Left:

Applying the generator G to a source shape s̃ in the source latent space

generates a target shape t̃ in the target latent space. Further applying F to

t̃ gives a shape ŝ which should be near identical to s̃. Cycle-consistency loss

measures the difference between s̃ and ŝ. The adversarial loss is defined by

first applying the decoder DecT to t̃, followed by a discriminator network

DT . Right: Similar to the case on the left, but starting from a shape t̃ in the

target latent space.

See Sec. 3.2 for details of our convolutional variational autoencoder

(VAE).

Our mapping functions G : S̃ → T̃ and F : T̃ → S̃ are defined

between the latent spaces. To ensure the mapping is meaningful,

three types of regularization terms are employed including adversar-

ial loss, cycle-consistency loss and visual similarity loss. Measuring

the visual similarity between shapes with different topologies is not

trivial and we introduce a dedicated neural network to predict this.

The first loss is the adversarial loss (Sec. 3.3) which discriminates

the generated shape G(·) from the target shape sets. In the joint

training process, it ensures the generated shape belongs to the tar-

get space. As we will show later, since the latent space from the
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convolutional VAE T̃ has a Gaussian distribution, the discriminator

cannot be effectively defined in the latent space to differentiate gen-

uine and synthesized shapes. Instead, we define the discriminator

in the decoded space. Let DS and DT be the discriminators in the

source S and target T shape spaces. DT and DS take DecT (G(s̃))

and DecS(F (t̃)) as input respectively, where s̃ and t̃ are source and

target shapes encoded in the latent spaces; see Fig. 3. The discrimi-

nator is a mesh-based convolutional neural network whose task is

to discriminate between the transferred meshes (fake) and existing

meshes in the target dataset (real).

The second loss is the cycle-consistency loss (Sec. 3.4), which

ensures that the mapping from one domain to the other domain

followed by the reverse mapping returns to the starting point. The

cycle-consistency loss includes the forward cycle-consistency loss:

s̃ → G(s̃) → F (G(s̃)) ≈ s̃ and backward cycle-consistency loss:

t̃ → F (t̃) → G(F (s̃)) ≈ t̃; see Fig. 3.

For the deformation transfer task, the transferred target shape

should be similar to the source shape being transferred. The visual

similarity loss is employed to measure the visual similarity between

the source shape and the transferred target shape. The forward

and backward visual similarity losses are defined as V (G(s̃), t̃) and

V (F (t̃), s̃), whereV (·) is a fully connected neural network to measure

the visual similarity between two shapes represented in the latent

spaces; see Sec. 3.5 for more details.

3.2 Convolutional Variational Autoencoder

To cope with large deformations, we represent each deformed shape

using a recently proposed ACAP (as consistent as possible) shape

deformation representation [Gao et al. 2017], which handles large

rotations well, and has features defined only on vertices, making

convolutional operators easier to define. This is different from al-

ternative representations such as [Gao et al. 2016] where features

are also associated with edges. Take S for example, and the same

process is applied to T . Assume S contains N shapes with the same

connectivity, each denoted as Sm . pm,i ∈ R3 is the ith vertex on

themth mesh. The deformation gradient Tm,i ∈ R
3×3 representing

local shape deformations can be obtained by minimizing:

argmin
Tm,i

∑

j ∈Ni

ci j ∥(pm,i − pm, j ) − Tm,i (p1,i − p1, j )∥
2
2 .

where ci j is the cotangent weight and Ni represents the 1-ring

neighbors of the ith vertex. Tm,i can be decomposed into Rm,iSm,i

where Rm,i is the rotation and Sm,i is the scale/shear deformation.

The rotation matrix Rm,i can be represented by the rotation axis

ωm,i and the associated rotation angle θm,i . The mapping from the

rotation matrix to rotation axis and angle is one to many, and the

possible solutions are in the set Ωm,i :

Ωm,i =
{

(ωm,i ,θm,i + t · 2π ), (−ωm,i ,−θm,i + t · 2π )
}

(1)

For shapes with large-scale rotations, the adjacent vertices may

have inconsistent rotation angles and rotation axes, which will lead

to artifacts during shape blending and synthesis, as shown in [Gao

et al. 2017]. To solve this problem, [Gao et al. 2017] proposes a

method based on global integer programming to resolve rotation

ambiguities and ensure consistency. Two global integer program-

ming optimizations are used to solve for rotation axes and angles to

Table 1. Mean RMS (root mean square) reconstruction errors of applying

our method to generate unseen data using uniform or cotangent [Meyer

et al. 2003] weight matrices for the convolutional operator on the ball

dataset [Rustamov et al. 2013] (see Fig. 11(a)). We randomly choose 75% of

the dataset as the training set and the remaining 25% of the dataset as the

test set.

Dataset
Method

Uniform Weight Cotangent Weight

Balls 0.0059 0.0080

make them as-consistent-as possible. For each vertex, this gives a

feature vector qm,i ∈ R
9. The components of qm,i come from the

combination of the rotation matrix Rm,i and scale/shear matrix Sm,i

of the vertex. The logarithm of Rm,i is a skew-symmetry matrix and

Sm,i is a symmetry matrix, so we extract a 3-dimensional vector for

Rm,i and a 6-dimensional vector for Sm,i using non-duplicated en-

tries and concatenate them to a 9-dimensional vector. As shown in

[Tan et al. 2018b], this ACAP representation is appropriate for mesh-

based convolutional neural networks. Following [Tan et al. 2018b],

we rescale each dimension of qm,i independently to [−0.95, 0.95]

before feeding in to the convolutional VAE, and scale it back from

the output of the convolutional VAE, such that the tanh activation

function can be applied.

The overall architecture of our convolutional VAE is illustrated

in Fig. 4. For meshes with v vertices, the input s to the VAE is 9 ×v

dimensional. Unlike [Tan et al. 2018a] which uses fully connected

layers, we use convolutional layers which have better generaliz-

ability. As illustrated in Fig. 5, we use a mesh-based convolution

operator [Duvenaud et al. 2015; Tan et al. 2018b] where the output

at a vertex is obtained as a linear combination of input in its 1-ring

neighbors along with a bias. The output of the operator yi for the

ith vertex is defined as follows:

yi =Wpoint si +Wneiдhbor
1

Di

Di
∑

j=1

sni j + b, (2)

where si is the input feature vector for the ith vertex, Di is the

degree of the ith vertex, ni j (1 ≤ j ≤ Di ) is the j
th neighbor of the

ith vertex.Wpoint ,Wneiдhbor ∈ R9×9 and b ∈ R9 are the weights

and bias. Following a convolutional neural network, these weights

and the bias are shared by all the neighborhoods within each convo-

lutional layer and learned during training. Since shapes in the same

dataset contain complex deformations, their intrinsic and extrinsic

geometries can change substantially. Therefore, uniform weights

as given in the definition above, whereby neighboring vertices con-

tribute equally in the convolution operator, are beneficial and used

in our experiments as they only depend on the topology. As shown

in Table 1, using uniform weights gives better performance than

using cotangent weights [Meyer et al. 2003] commonly used in mesh

processing.

After connecting several convolutional layers with the same size,

these nodes are further connected with a fully connected layer.

The architecture of this convolutional variational autoencoder is

shown in Fig. 4. The work [Tan et al. 2018b] is not a variational
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Fig. 4. The architecture of our convolutional variational autoencoder. The input is a deformation representation where each vertex is represented in a

9-dimensional feature vector and v is the number of vertices. Conv and FC refer to convolutional and fully connected layers, respectively. ε is a random

variable with a Gaussian distribution with 0 mean and unit variance. The encoder encodes shapes from shape set S in a latent space S̃, and the decoder

recovers the shape S′.

Fig. 5. Illustration of the convolutional operator on meshes. The result of

convolution for each vertex is obtained by a linear combination from the

input in the 1-ring neighbors of the vertex, along with a bias.

(a) s̃ (b) G(s̃) (c) F (G(s̃))

Fig. 6. Results demonstrating cycle consistency mapping, showing recon-

struction results of (a) source shape s̃, (b) the transferred shape G(s̃), (c)

after mapping back F (G(s̃)). We apply the appropriate decoder to recover

the shape for visualization.

autoencoder, and cannot be used to synthesize varied shapes given

the same input.

Let Enc(·) and Dec(·) be the encoder and decoder of our VAE

network. s represents the input shape from dataset S, s̃ = Enc(s)

is the encoded latent vector and s′ = Dec(s̃) is the reconstructed

shape. Our convolutional VAE minimizes the following loss:

LVAE = Lr econ + α1LKL + α2LReдVAE (3)

whereα1 andα2 are relativeweights of different loss terms,Lr econ =
1
|S |

∑

s∈S
| |s − s′ | |22 denotes the MSE (mean square error) reconstruc-

tion loss to ensure faithful reconstruction, LKL = DKL(q(s̃|s)|p(s̃))

is the KL divergence to promote Gaussian distribution in the latent

space, where q(s̃|s) is the posterior distribution given input shape s,

and p(s̃) is the Gaussian prior distribution. LReдVAE is the squared

ℓ2 norm regularization term of the network parameters used to

avoid overfitting. The Gaussian distribution makes it effective to

generate new shapes by sampling in the latent space, which is used

for training the GAN model, as we will explain later. The minimiza-

tion of the above loss LVAE is performed by gradient descent using

the ADAM (adaptive moment estimation) solver. The parameters

and types of layers of this convolutional variational autoencoder

are evaluated in the supplementary material.

3.3 Adversarial Loss

The adversarial losses are applied to both mapping functions G and

F between the latent spaces. For the mapping function G : S̃ → T̃ ,

it is defined with the discriminator neural network DT , as follows:

LGAN−G (G,DT , S̃, T̃ ) = E
t̃∼Pdata (T̃)

[logDT (t̃)]

+E
s̃∼Pdata (S̃)

[log(1 − DT (DecT (G(s̃))))],
(4)

where Pdata (·) represents the data distribution. E is the expected

value of the distribution. The mapping G is used to generate G(S̃)

that has similar deformations in the latent space of T̃ . The discrim-

inator DT aims to distinguish the generated deformation shapes
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Fig. 7. The architecture of the fully connected neural network to learn the

visual similarity distance between two shapes s̃ and t̃ in the latent space.

FC refers to fully connected layers.

DecT (G(s̃)) after decoding from real shape samples t. It is calcu-

lated using a convolutional neural network (see details in Sec. 4).

The adversary DT aims to maximize the objective function while

the mapping function G aims to minimize it. This is equivalent

to minG maxDT
LGAN−G (G,DT , S̃, T̃ ). Similarly, the inverse map-

ping function F and its associated discriminator DS are optimized

by minF maxDS
LGAN−F (F ,DS , T̃ , S̃). We define LGAN to be the

sum of both GAN losses:

LGAN (G, F ,DS ,DT ) = LGAN−G + LGAN−F . (5)

3.4 Cycle Consistency Loss

Cycle-consistency loss is known to be effective to better constrain

the network to produce more stable results and avoid over-fitting.

As illustrated in Fig. 3, for each shape feature s̃ in the latent space

S̃, applying G followed by F should bring it back to the original

feature s̃ → G(s̃) → F (G(s̃)) = ŝ ≈ s̃. Similarly for t̃, it satisfies

the following cycle consistency: t̃ → F (t̃) → G(F (t̃)) = t̂ ≈ t̃. The

cycle-consistency loss LCycle is defined as:

LCycle (G, F ) = Es̃∼Pdata (S̃)
[∥F (G(s̃)) − s̃∥1]

+E
t̃∼Pdata (T̃)

[∥G(F (t̃)) − t̃∥1]
(6)

Using ℓ1 loss above gives near identical performance to an alterna-

tive negative log likelihood definition, so is used in our experiments.

As shown in Fig. 6, with the cycle consistency loss, given an input

shape s̃ in the latent space, the recovered shape ŝ after applying

both mappings G and F is visually identical to s̃ after applying the

decoder. This demonstrates the effectiveness of the cycle consistency

loss.

3.5 Visual Similarity Loss

One aim of deformation transfer is to ensure visual similarity be-

tween the source and target shapes. In [Zhu et al. 2017] the vi-

sual similarity metric between two images can be measured by the

squared ℓ2 norm in the image domain since images are naturally

aligned, However, this similarity metric cannot be generalized to

the 3D shape domain.

In this work, the light field distance (LFD) [Chen et al. 2003] is

employed to measure the visual similarity due to its robustness

and accuracy. A 3D shape is projected to multiple views and image

features are calculated based on projected images. When calculating

distances between two shapes, global rotation is further considered

to minimize the image feature differences. LFD is known to be an

effective feature for shape retrieval [Shilane et al. 2004].

FC FC

2048

FCFC

128

512

1024

FC

1024

128

 

Fig. 8. The architecture of the generatorG , which maps source shapes S̃ to

target shapes T̃, both in latent spaces. FC refers to fully connected layers.

The reverse generator F is similarly defined.

However, LFD is not differentiable and cannot be used in the

loss function. We propose to use a neural network SimNet to learn

this similarity measure. Since latent space is more compact, SimNet

takes two vectors s̃ and t̃ from the latent space of S̃ and T̃ respec-

tively, and predicts the LFD between the decoded shapes. Since

there is no spatial relationship in the latent space, a fully connected

neural network is employed, as shown in Fig. 7. The output of the

neural network is denoted as V (s̃, t̃) ≈ LFD(DecS(s̃),DecT (t̃)). The

network is trained by minimizing the following loss:

LSimNet (V ) = LDist (V ) + βLReдSim , (7)

where β is the weight, LDist is the average of the absolute difference
�

�V (s̃, t̃) − LFD(DecS(s̃),DecT (t̃))
�

�, and LReдSim is the squared ℓ2
norm regularization of network parameters to avoid overfitting.

Our architecture is not restricted to the light field distance, which

could be replaced with other advanced shape features.

Using the visual similarity measure, the loss is defined as follows:

LSim (G, F ) = E
s̃∼Pdata (S̃)

[V (s̃,G(s̃))]

+E
t̃∼Pdata (T̃)

[V (F (t̃), t̃)].
(8)

3.6 Overall Loss Function for Cycle GAN

The overall loss for the CycleGAN is:

LCycleGAN (G, F ,DS ,DT )

= LSim (G, F ) + γ1LCycle (G, F ) + γ2LGAN (G, F ,DS ,DT ), (9)

which is a linear combination of visual similarity, cycle consistency

and adversarial losses with γ1 and γ2 being relative weights.

Our CycleGAN network is optimized as follows:

G∗
, F ∗ = argmin

G,F
max
DS,DT

LCycleGAN (G, F ,DS ,DT ), (10)

where generators G and F aim to minimize the total loss while the

discriminators DS and DT aim to maximize the loss by identifying

synthetic shapes.

4 IMPLEMENTATION

We now give details of our network architecture and training pro-

cess.
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Fig. 9. The architecture of the discriminator, which takes a shape in the

deformation representation as input and predicts whether it is genuine

or synthesized. Conv and FC represent convolutional and fully connected

layers, respectively.

4.1 Network Architecture

Our network consists of three components, convolutional VAE for

encoding shapes in latent spaces, SimNet for calculating visual

similarity between two shapes (from S and T respectively) both in

the latent spaces, and CycleGAN for deformation transfer.

As illustrated in Fig. 4, our proposed VAE architecture uses convo-

lutional layers for improved generalization capability. The encoder

takes as input the features defined on vertices, followed by two

convolutional layers with tanh as the activation function. In the last

convolutional layer we abandon the non-linear activation function,

similar to [Tan et al. 2018b]. The output of the convolutional layer

is then reshaped to a vector and mapped into a 128-dimensional

latent space by a fully connected layer. The decoder has a symmetric

architecture, sharing the weights and biases with the encoder. We

train one VAE for the source shape set S and one for the target

shape set T .

For SimNet, its input includes latent vectors from both domains

S̃ and T̃ . Since dimensions of the latent space do not have spatial

relationship, its hidden layers are fully connected with dimensions

of 2048, 1024, 512 and 256 respectively, each of them having Leaky

ReLU as the activation function, as illustrated in Fig. 7.

Our CycleGAN architecture is similar to [Zhu et al. 2017] although

the generators map vectors in the latent spaces. Since the latent

space does not have a clear spatial relationship, the generators G

and F are fully connected networks with four hidden layers of

512, 1024, 2048, 1024 dimensions respectively, mapping the latent

vector of one model to another (see Fig. 8). The discriminators

are defined in the feature space (i.e. after applying the decoder),

and aim to classify whether the shape is genuine or synthesized.

Discriminators DS and DT have three convolutional layers and a

fully connected layer, similar to the architecture of the encoder (see

Fig. 9). More detailed analysis of network architecture, parameters

and input characteristics (noise, topological changes etc.) is given

in the supplementary material.

4.2 Training Details

In the experiments, we fix the weight parameters α1 = 1, α2 =

0.01, β = 0.01, γ1 = 2, γ2 = 2. We train the whole network in three

steps (VAE, SimNet and CycleGAN). The Adam solver [Kingma and

Table 2. Comparison of losses with different training strategies, i.e. separate

training and end-to-end training.

Training LVAE LSimNet LCycleGAN Total Loss

Separate 532.91 251.04 41.03 824.98

End-to-end 529.60 588.25 56.14 1174.09

(a) (b) (c)

Fig. 10. Comparison of results from two different training methods. (a)

source shape (b) the transfer result using end-to-end training, (c) the transfer

result of our method (separate training for embedding).

Ba 2014] is used for all three training steps. Here we train each

network separately (i.e. VAE and SimNet, followed by CycleGAN)

rather than in an end-to-end manner. Compared with end-to-end

training, training the networks separately not only saves memory

during training, but also results in smaller loss, especially the SimNet

loss, as shown in Table 2, which is based on transferring between

a fat person (ID: 50002) and a fit person (ID: 50009) from the MPI

DYNA dataset.

The main reason is that starting training the SimNet and GAN

before obtaining a well-trained VAE may lead to wrong optimization

directions in early iterations, which ultimately results in optimiza-

tion stuck at a poor local minimum. Moreover, the visual quality

of the deformation transfer results is also worse, in terms of pose,

than for separate training, as shown in the example in Fig. 10.

The VAE is trained with 5,000 iterations, SimNet with 12,000

iterations and CycleGAN with 7,000 iterations, by minimizing loss

functions LVAE (Eq. 3), LSimNet (Eq. 7) and LCycleGAN (Eq. 9),

respectively. For both VAE and CycleGAN, we set the batch size to

128 and learning rate to 0.001. For training SimNet, we set the batch

size and learning rate to 512 and 0.001 respectively for the first 2,000

iterations and change them to 128 and 0.00005 for the remaining

10,000 iterators. Training batches for the VAE are randomly sampled

from the training shape set. For SimNet training, we randomly select

pairs of shapes from the two shape sets for training. For CycleGAN,

training batches are sampled randomly from the latent space with a

Gaussian distribution.

5 RESULTS AND EVALUATIONS

Our experiments were carried out on a computer with an i7 6850K

CPU, 16GB RAM, and a Titan Xp GPU. The code is available at

http://www.geometrylearning.com/ausdt/. The training time for

each network is 30-45min for VAE (depending on the mesh size),

54min for SimNet and 65min for CycleGAN. Once the deep model

is trained, transferring a source shape to a target shape is real-time,
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(c) DOF=128

Fig. 11. Comparison of VAE embedding results. (a) The shape set with two

deformation modes, (b) the embedding with DOFs of latent space set to 2,

(c) the embedding result with DOFs of latent space set to 128; we show two

dimensions with largest variations.

with feature transfer taking < 0.5ms and shape reconstruction tak-

ing 1-10ms (depending on the mesh size). We use publicly available

datasets containing deformable shapes, including SCAPE [Anguelov

et al. 2005], Lion, Cat, Horse, Camel, Flamingo [Sumner and Popović

2004], a fit person (ID: 50009), a fat person (ID: 50002) and two fe-

males (ID: 50020 and 50022) fromMPI DYNA [Pons-Moll et al. 2015],

Crane, Swing (human actions) [Vlasic et al. 2008] and Pants [White

et al. 2007]. For datasets containing too few shapes (< 50), we

use [Gao et al. 2016] to obtain interpolated shapes to augment the

dataset. We represent shapes in the rotation-invariant representa-

tion proposed in [Gao et al. 2016]. Intuitively, blending reasonably

close shapes helps ensure the interpolated shapes stay in the plausi-

ble deformation manifold, so for each mesh in the dataset, we find

the nearest mesh in the feature space, and blend them to create a

new shape.

5.1 Quantitative and Qualitative Evaluation of Network
Components

We first analyze the effectiveness of our network components.

We compare our convolutional VAEwith a state-of-the-art VAE ar-

chitecture for encoding shapes. Since [Litany et al. 2017] operates on

Euclidean coordinates, it does not cope well with large rotations, so

we compare with [Tan et al. 2018a] which uses a rotation-invariant

representation. Our use of convolutional layers better exploits spa-

tial relationships. For each of the three datasets Camel, Horse and

SCAPE, we randomly select half the shapes in the dataset for train-

ing and the remaining half for testing (as unseen data), and work out

the average reconstruction error for the test dataset. We perform

such tests 10 times and report the average errors in Table 3. As

can be seen, our method has significantly lower errors than [Tan

et al. 2018a], which shows that our convolutional VAE has better

generalizability.

In our experiments, we set the dimension of the latent space for

the VAE to 128, which is sufficient for all the examples in the paper.

We now evaluate the approach for cases with known, lower intrin-

sic dimensions. An example is shown in Fig. 11. Given deformed

balls from [Rustamov et al. 2013] with 2 deformation modes (a), our

method gives similar results with the latent space dimension set to

2 (minimum) or 128 (our default). To visualize this, we show the em-

beddings of the model set in the latent space. Setting the dimension

of the latent space to 2 gives the distribution in (b) which exactly

describes the distribution of these balls. When setting the dimension

of the latent space to 128 (default), except for two dimensions of

the network which are activated, the variances of other dimensions

are nearly zero. We show the distributions in the two dominant

dimensions in (c).

Our VAE allows new shapes not in the training set to be generated,

enriching the synthesized deformation results. To demonstrate this,

we generate new shapes by randomly sampling in the latent space.

As shown in Fig. 12, the models in the rows labeled łOur Resultž

are generated by the decoder of the VAE with random samples in

the latent space. The models underneath labeled łNearestž are the

closest models (in terms of Euclidean distance) from the training

set. The latent space is effective to describe the intrinsic shape set

distributions and such capabilities play a central role in automatic

transfer. Although linear combinations of input shapes could also be

used to generate new shapes, those shapes are usually implausible

or distorted due to the lack of a compact, meaningful space.

Fig. 12. The models in the row with label łOur Resultž are generated by

the decoder of the VAE with random samples in the latent space. The

models underneath with label łNearestž are the models with nearest mean

Euclidean distance from the model in the same column.

We propose SimNet to approximate the light field distance be-

tween a pair of shapes, which ensures efficient evaluation and dif-

ferentiability. To demonstrate its convergence, we take the Horse

and Camel shape sets, randomly choose 75% shape pairs for train-

ing and the remaining shapes for testing, and in Fig. 13 plot errors

over training iterations on both the training and test sets. It clearly

shows that our training process is stable, and the learned model has

good generalizability as it also works well for the test set contain-

ing unseen shapes. The average relative errors on the training and

test sets are 7.63% and 8.02% respectively, showing its capability to

efficiently calculate shape similarity.

To demonstrate the effectiveness of each loss term in our VC-

GAN, we performed an experiment of transferring deformation from

Horse to Camel, as shown in Fig. 14. These two datasets have pairs

of corresponding shapes. Although our method does not exploit this

property, it is useful to provide ground truth to make evaluation

easier. To demonstrate the capability of VC-GAN, we use 75% of

randomly selected shapes for training, and the test shapes used as

ACM Transactions on Graphics, Vol. 0, No. 0, Article 0. Publication date: 2018.



0:10 • Gao, Yang, Qiao, Lai, Rosin, Xu and Xia

0 500 1000 1500 2000 2500 3000 3500 4000

# of epochs

0

500

1000

1500

2000

2500

3000

3500

4000
D

if
f

Training Set

Test Set

Fig. 13. Errors of SimNet over training iterations for both the training and

test sets.

Table 3. Comparison of average reconstruction errors for unseen models

between our convolutional VAE and [Tan et al. 2018a].

Dataset [Tan et al. 2018a] Our Method

Camel 0.0241 0.0167

Horse 0.0603 0.0117

SCAPE 0.1104 0.0486

Table 4. Comparison of average per-vertex errors between generated shapes

and ground truth, corresponding to Figs. 14 (b-f). For comparative results

(b-e), a specific loss is modified while keeping other losses unchanged. (f)

shows our results.

Example Fig. 14b Fig. 14c Fig. 14d Fig. 14e Fig. 14f

Camel to

Horse
0.0738 0.0717 0.0551 0.1005 0.0082

Horse to

Camel
0.0641 0.0673 0.0588 0.0769 0.0054

input (a) do not appear in the training sets. It can be seen that our

results are visually very close to the ground truth. The comparative

results are obtained by changing one loss term of our VC-GANwhile

keeping the remaining terms unchanged. Applying discriminators

performing in the latent space does not work effectively due to the

Gaussian distribution in the latent space, resulting in shapes that are

visually different from those in the shape space (b). Results obtained

without the cycle consistency loss (c), the adversarial loss (d) or

the visual similarity loss (e) do not have sufficient constraints to

properly transfer deformations. Table 4 gives quantitative evaluation

of average per-vertex errors between generated shapes and ground

truth, with shapes scaled to fit in a unit cube. Our results have much

lower error than alternative results with one loss term changed,

showing that each loss term is essential. The sensitivity analysis

on vertex number, noise level, topology and triangulation of input

meshes is documented in the supplementary material.

5.2 Deformation Transfer Results and Comparisons

We now demonstrate our system using various deformation transfer

examples. Note that our method is the only method that is fully auto-

matic with unpaired shape sets. In comparison, the method [Sumner

and Popović 2004] requires point-wise correspondence to be estab-

lished, which typically needs 70-80 correspondences to be manually

specified. The method [Ben-Chen et al. 2009] requires building

cages, and further specifying 20-40 pairs of corresponding points.

The method [Baran et al. 2009] requires shapes in the source and

target datasets have one-to-one correspondences, which is not nor-

mally satisfied for independent shape sets. Even if this is possible,

it involves user effort to choose semantically related shape pairs.

For all the methods compared, when the input is a deformation

sequence, we feed in each shape and obtain the output shape to

form a transferred deformation sequence. All these methods work

well with this simple strategy; see the accompanying video.

Figure 15 shows comparative results of deformation transfer from

Flamingo to Crane (human action) datasets. In this example, the

source and target shapes differ substantially, so methods that require

point-wise correspondences not only need a large number of corre-

spondences, but can also suffer from large, local shape deformations

to transform from one shape to the other. The results [Ben-Chen

et al. 2009; Sumner and Popović 2004] have clear distortions on the

left leg. Moreover, since the Flamingo shape does not have arms, it

is not possible to control the arm deformation, even if the target

shape set has a suitable arm movement that accompanies a corre-

sponding leg movement. The result of [Baran et al. 2009] does not

have artifacts. However, despite carefully choosing 7 pairs of shapes

that are semantically similar and have broad coverage of poses, the

deformation result is still somewhat dissimilar (e.g. legs) to the in-

put. Our method is not only fully automatic, but also follows the

deformation of the source shape, taking into account both shape

similarity and plausible deformation of the target shapes.

We compare our method with existing methods requiring manual

correspondence specification. The deformation transfer results are

shown in Fig. 17. The result of our method (d) is fully automatic

and artifact free. Compared with other methods, the VAE compo-

nent in our network can better fit the data distribution and mitigate

self-intersection. The results (b) and (c) are obtained using manually

labeled correspondences (15 pairs and 40 pairs respectively) along

with the method [Sumner and Popović 2004]. The labeled correspon-

dences are visualized in Fig. 17. It can be seen that (c) is better than

(b), with less severe artifacts (see the closeups), however it is more

time-consuming to label. It takes a skilled user 7 minutes 36 seconds

and 18 minutes 13 seconds to label 15 pairs and 40 pairs of corre-

spondences, respectively. Our fully automatic method produces a

better result.

Figure 18 shows deformation transfer from the Lion to Cat datasets.

Our automatic method produces similar and sometimes better re-

sults than [Sumner and Popović 2004] which requires manually spec-

ifying correspondences. Differences between results are highlighted

in Fig. 19 using color coding to show the vertex displacements. It

clearly highlights the front right leg, where our result looks closer

to the source shape.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 14. The evaluation of each loss term for our VC-GAN model for deformation transfer. (a) input shapes, (b) results with discriminators performed in the

latent space, (c) results without cycle consistency loss, (d) results without adversarial loss, (e) results without visual similarity loss, (f) our results, (g) ground

truth.

(a) (b) (c) (d) (e)

Fig. 15. Comparison of different methods for deformation transfer from

Flamingo to Crane (human action) datasets. (a) source shape, (b) deforma-

tion transfer result of [Sumner and Popović 2004], (c) deformation transfer

result of [Baran et al. 2009], (d) deformation transfer result of [Ben-Chen

et al. 2009], (e) our result.

(a) (b) (c) (d)

Fig. 16. Two pairs of shapes with manually labeled landmarks. (a)(b) 15

pairs of manually labeled landmarks between the source and target shapes

(c)(d) 40 pairs of correspondence points.

In Fig. 20, we also compare our results with alternative methods

without correspondences. We would like to stress that neither of

these methods are intended for mesh deformation transfer. The

results in the second row are obtained using [Rustamov et al. 2013]

where each shape is mapped to the nearest shape from the other set

in the joint embedding space. The method produces some plausible

results, but can also match a shape to an incorrect one (e.g. first

column). It also cannot be used to generate deformation sequences

since it does not generate new shapes. The results in the third row

are generated using a baseline method by representing shapes in a

rotation-invariant representation [Gao et al. 2016], applying PCA

(Principal Component Analysis) to extract main deformation modes

independently for the source and target shape sets and transferring

PCA weights from the source shape to the target shape. A similar

idea has been used for face deformation transfer [Cosker et al. 2008].

However, for general shapes, it is challenging to identify meaningful

basis deformations that can be used to reliably establish the map-

ping. These are in fact expected due to the nature of the shape sets

themselves. We aim to produce plausible shapes sampled from the

target space that are visually similar to the source shape. While

we wish the deformed target to resemble the source, it should also

be consistent with the target samples to ensure it is semantically

plausible for the target shape. There is a tradeoff between these two

factors, which explains the discrepancies. For example, a person

naturally walks in a different way than a Flamingo, and therefore

when transferring the walking between them, the poses may look

different, but the results are indeed plausible. Figures 21 and 22 show

results for our automatic deformation transfer of a galloping ele-

phant to a horse and a collapsing horse to a camel. Our synthesized

shapes are visually similar to the target shape space while faithfully

following the input deformation. We also evaluate the robustness

of our method on the size of the training data. We independently

remove 30% of randomly chosen shapes from the input datasets

of the collapsing horse and camel, and the deformation transfer

results on the reduced shape sets are similar to the transfer results

with the whole datasets as shown in Fig. 22. Figure 23 shows an

example of transferring hand deformation to a pair of pants, with

finger movement effectively transferred to łwalkingž pants.

Figure 1 shows an example of transferring deformation from a

fit person (ID: 50009) to a fat person (ID: 50002) (both from the

MPI DYNA dataset). The training datasets contain thousands of

shapes with different poses, and our method successfully generates

suitable shapes in the shape space, effectively transferring rich

actions (punching, running, etc.), despite substantial differences in

their body shapes.

Figure 24 shows an example of transferring the deformation from

a running person to a robot. The mesh dataset with various poses

of the robot is from [Xu et al. 2009]. Our method produces plausible

robot deformation following the human action. In this example, the

robot mesh is composed of multiple components and our method

cannot be directly applied. To cope with this, the first mesh in the ro-

bot dataset is converted to a singly connected mesh using a volumet-

ric mesh repair approach [Ju 2004]. The correspondences between

the singly connected mesh and the original multi-component mesh
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(a) (b) (c) (d) (e)

Fig. 17. Deformation transfer results. (a) source shape, (b)(c) deformation transfer results by [Sumner and Popović 2004] with 15 labeled landmarks and 40

labeled landmarks respectively (as shown in Fig. 16), (d) deformation transfer result of [Ben-Chen et al. 2009] with 40 labeled landmarks (as shown in Fig. 16),

(e) our automatic deformation transfer result.

are then easily established based on nearest points. Using these cor-

respondences as soft constraints, the singly connected mesh can be

deformed to approximate the dataset with multi-component meshes.

Our automatic unpaired deformation transfer technique is applied

to the human and the singly connected robot mesh datasets. Once

the deformed robot is obtained, we obtain the rigid rotation and

translation of each component based on the vertex correspondences

to obtain the deformed multi-component robot shape.

5.3 Extension of Our Method to Semantic Transfer

Our proposed deformation transfer method based on visual sim-

ilarity is fully automatic. However, sometimes shapes which are

semantically related may not be visually similar. To address this, we

present a simple extension of our method that takes semantically

related pairs as in [Baran et al. 2009] in addition to two unpaired

shape sets to perform semantic deformation transfer. Inspired by

the Triplet Network [Hoffer and Ailon 2014], we modify the SimNet

to two independent fully connected networks, each embedding the

source or target latent space to a lower dimensional Euclidean space,

where the distance can represent the semantic differences. An ex-

ample is shown in Fig. 25 where the deformation is transferred from

a face to a running female [Pons-Moll et al. 2015]. We expect the se-

mantic pairs in Fig. 25 to express that closing an eye corresponds to

lifting a leg. Similar to [Baran et al. 2009], we select 19 pairs of faces

and female shapes that are semantically similar as input to train the

semantic similarity network. To train it, we use a simple strategy

such that the network aims to predict distance 0 for the 19 given

pairs of shapes, and the maximum LFD for all the other shape pairs.

We compare our method with another method [Baran et al. 2009],

which also requires corresponding shape pairs. Results in Fig. 26

show that our method generates more semantically similar shapes

than [Baran et al. 2009]. This is because generally two datasets may

not have pairs with perfect one-to-one semantic correspondence,

where shape pairs selected by a human will inevitably introduce

conflicts and confuse the computation of shape bases [Baran et al.

2009]. In such cases, our method can exploit unpaired shapes in

the 3D model datasets with VAE to characterize shape distributions

in the datasets. In Fig. 26, motions in the second row produced

by [Baran et al. 2009] tend to freeze and the legs do not match the

eyes. In contrast, our results in the third row have higher semantic

similarity.

Fig. 18. Deformation transfer from Lion to Cat. First row: source shapes,

second row: results of [Sumner and Popović 2004], third row: our results.

(a) (b) (c) (d)

Fig. 19. Comparison of deformation transfer results from Lion to Cat. (a)

source shape, (b) deformation transfer result of [Sumner and Popović 2004],

(c) deformation transfer result of our method, (d) color-coding of the Eu-

clidean distance of each vertex between the results of our method and

[Sumner and Popović 2004].

6 CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel architecture for automatic mesh

deformation transfer, which is also flexible, allowing source and

target shape sets to be unpaired. Our method achieves state-of-the-

art deformation transfer results. However, the method may still be

improved. The current visual similarity measure works well when

the deformation is visually similar. It may not work as well for

semantically similar but visually very different shapes. In the future,

we would like to investigate using neural networks to estimate more

advanced visual similarity measures. Also, our VC-GAN in the latent

space has the potential to be useful in other 3D shape synthesis

applications, which we would like to explore in the near future.

In cases where the two shape sets have significant visual differ-

ences such as a horse and a human (ID: 50009), it is challenging

to construct a reliable visual similarity metric between them. An

example is shown in Fig. 27. Although both the horse and the per-

son are running, the corresponding body parts between the horse

and the person do not move simultaneously. The semantic transfer

techniques in Sec. 5.3 could be applied to transfer the deformation
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from the horse to the human in a semantic manner, although au-

tomatic methods not requiring user effort would still be preferred.

The main problems of the current visual similarity metric are that

the light field distance may not be able to measure the differences

Fig. 20. Deformation transfer from Flamingo to Crane (human action)

datasets. First row: source flamingo shapes, second row: nearest shapes

from the embedding of [Rustamov et al. 2013], third row: shapes obtained by

transferring PCA weights [Cosker et al. 2008], fourth row: our deformation

transfer results.

Fig. 21. Deformation transfer from elephant to horse. First row: source

elephant shapes, second row: our results of deformation transfer to the

horse shape.

Fig. 22. Deformation transfer from camel to horse with collapse effect. First

row: source camel shapes, second row: our results of deformation transfer to

the horse shape, third row: the results obtained by independently removing

30% of randomly chosen shapes in the datasets, and the results are very

similar to those in the second row, demonstrating that our method does not

require shape sets to have shapes with corresponding poses.

Fig. 23. Deformation transfer from Hand to Pants datasets. First row: source

hand shapes, second row: our results of deformation transfer to pants.

Fig. 24. Deformation transfer from a person to a robot. First row: source

person shapes, second row: the transferred robot shapes.
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Fig. 25. Semantically related pairs labeled manually. First row: source face

shapes, second row: semantically related target female shapes. Closing an

eye corresponds to lifting a leg.

Fig. 26. Semantic transfer from a face to a running female. First row: source

face shapes, second row: semantic deformation transfer [Baran et al. 2009],

third row: our results of deformation transfer to a person.

Fig. 27. Deformation transfer from a horse to a person (ID: 50009) from the

MPI DYNA dataset. First row: source horse shapes, second row: our results

of deformation transfer to a person.

in a semantic manner and it is not easy to distinguish small visual

differences.

We also perform another experiment where all the pose shapes

of two persons (ID: 50020 and 50026) in the DYNA dataset are used

as input. As shown in Fig. 28, in general our method reasonably

Fig. 28. Deformation transfer from a female to a male by using all the pose

shapes in theMPI DYNA dataset. First row: source female shapes (ID: 50020),

second row: our results of deformation transfer to a male (ID: 50026).

transfers deformation of the first person to the second. However,

there are some visual differences between two shapes due to the

limitations of the visual similarity metric. In future work, we will

develop more powerful visual similarity metrics to better distinguish

subtle visual differences and better capture semantic similarities.

ACKNOWLEDGMENTS

We thank the reviewers for their constructive comments and sug-

gestions. We would also like to thank Prof. Mirela Ben-Chen for

providing the code of [Ben-Chen et al. 2009], Dr. Bob Sumner for pro-

viding the executable of [Sumner and Popović 2004] and the mesh

models, Dr. Raif Rustamov for providing the deformed ball shapes

of [Rustamov et al. 2013]. This work was supported by National Nat-

ural Science Foundation of China (No. 61872440, No. 61828204, No.

61502453 and No. 61772499), Young Elite Scientists Sponsorship Pro-

gram by CAST (No. 2017QNRC001), Royal Society-Newton Mobility

Grant (No. IE150731), CCF-Tencent Open Fund and NVIDIA Corpo-

ration with the GPU donation. Weiwei Xu was partially supported

by National Natural Science Foundation of China (No. 61732016),

Alibaba IDEA Lab and fundamental research fund for the central

universities (2017YFB1002600).

REFERENCES
Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers,

and James Davis. 2005. SCAPE: shape completion and animation of people. ACM
Trans. Graph. 24, 3 (2005), 408ś416.

Ilya Baran, Daniel Vlasic, Eitan Grinspun, and Jovan Popović. 2009. Semantic deforma-
tion transfer. ACM Trans. Graph. 28, 3 (2009), 36:1ś36:6.

Mirela Ben-Chen, Ofir Weber, and Craig Gotsman. 2009. Spatial deformation transfer.
In Symposium on Computer Animation. 67ś74.

Davide Boscaini, Jonathan Masci, Emanuele Rodolà, and Michael Bronstein. 2016a.
Learning shape correspondence with anisotropic convolutional neural networks. In
Advances in Neural Information Processing Systems. 3189ś3197.

Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Michael M Bronstein, and Daniel
Cremers. 2016b. Anisotropic diffusion descriptors. Comp. Graph. Forum 35, 2 (2016),
431ś441.

Joan Bruna,Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spectral networks
and locally connected networks on graphs. arXiv:1312.6203 (2013).

Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming Ouhyoung. 2003. On Visual
Similarity Based 3DModel Retrieval. Computer Graphics Forum 22, 3 (2003), 223ś232.

Lu Chen, Jin Huang, Hanqiu Sun, and Hujun Bao. 2010. Cage-based deformation
transfer. Computers & Graphics 34, 2 (2010), 107ś118.

Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese. 2016.
3D-R2N2: A unified approach for single and multi-view 3D object reconstruction.
In ECCV. 628ś644.

ACM Transactions on Graphics, Vol. 0, No. 0, Article 0. Publication date: 2018.



Automatic Unpaired Shape Deformation Transfer • 0:15

Hung-Kuo Chu and Chao-Hung Lin. 2010. Example-based Deformation Transfer for
3D Polygon Models. J. Inf. Sci. Eng. 26, 2 (2010), 379ś391.

Etienne Corman, Justin Solomon, Mirela Ben-Chen, Leonidas Guibas, and Maks Ovs-
janikov. 2017. Functional Characterization of Intrinsic and Extrinsic Geometry.
ACM Trans. Graph. 36, 2 (2017), 14:1ś14:17.

D. Cosker, R. Borkett, D. Marshall, and P. L. Rosin. 2008. Towards automatic
performance-driven animation betweenmultiple types of facial model. IET Computer
Vision 2, 3 (2008), 129ś141.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional
neural networks on graphs with fast localized spectral filtering. In Advances in
Neural Information Processing Systems. 3844ś3852.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy
Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. 2015. Convolutional networks
on graphs for learning molecular fingerprints. In Advances in Neural Information
Processing Systems. 2224ś2232.

Haoqiang Fan, Hao Su, and Leonidas Guibas. 2017. A point set generation network for
3D object reconstruction from a single image. In IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR).

James E. Gain and Dominique Bechmann. 2008. A survey of spatial deformation from
a user-centered perspective. ACM Trans. Graph. 27, 4 (2008), 107:1ś107:21.

Lin Gao, Yu-Kun Lai, Jie Yang, Ling-Xiao Zhang, Leif Kobbelt, and Shihong Xia. 2017.
Sparse Data Driven Mesh Deformation. arXiv:1709.01250 (2017).

Lin Gao, Yu-Kun Lai, Dun Liang, Shu-Yu Chen, and Shihong Xia. 2016. Efficient and
Flexible Deformation Representation for Data-Driven Surface Modeling. ACM Trans.
Graph. 35, 5 (2016), 158:1ś158:17.

Rohit Girdhar, David F. Fouhey, Mikel Rodriguez, and Abhinav Gupta. 2016. Learning
a Predictable and Generative Vector Representation for Objects. In ECCV.

Xiaoguang Han, Chang Gao, and Yizhou Yu. 2017. DeepSketch2Face: A Deep Learning
Based Sketching System for 3D Face and Caricature Modeling. ACM Trans. Graph.
36, 4 (2017), 126:1ś126:12.

Mikael Henaff, Joan Bruna, and Yann LeCun. 2015. Deep convolutional networks on
graph-structured data. arXiv:1506.05163 (2015).

Elad Hoffer and Nir Ailon. 2014. Deep Metric Learning Using Triplet Network. In
International Workshop on Similarity-Based Pattern Recognition. 84ś92.

Haibin Huang, Evangelos Kalegorakis, Siddhartha Chaudhuri, Duygu Ceylan,
Vladimir G. Kim, and Ersin Yumer. 2018. Learning Local Shape Descriptors with
View-based Convolutional Neural Networks. ACM Trans. Graph. 37, 1 (2018), 6:1ś14.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. 2017. Image-to-Image
Translation with Conditional Adversarial Networks. In IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR).

Tao Ju. 2004. Robust Repair of Polygonal Models. ACM Trans. Graph. 23, 3 (2004),
888ś895.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization.
arXiv:1412.6980 (2014).

Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao Zhang, and Leonidas Guibas.
2017. GRASS: Generative Recursive Autoencoders for Shape Structures. ACM Trans.
Graph. 36, 4 (2017), 52:1ś52:14.

Yangyan Li, Hao Su, Charles Ruizhongtai Qi, Noa Fish, Daniel Cohen-Or, and Leonidas J
Guibas. 2015. Joint embeddings of shapes and images via CNN image purification.
ACM Trans. Graph. 34, 6 (2015), 234.

Or Litany, Alex Bronstein, Michael Bronstein, and Ameesh Makadia. 2017. Deformable
Shape Completion with Graph Convolutional Autoencoders. arXiv:1712.00268
(2017).

Jerry Liu, Fisher Yu, and Thomas A. Funkhouser. 2017. Interactive 3D Modeling with a
Generative Adversarial Network. arXiv:1706.05170 (2017).

Haggai Maron, Meirav Galun, Noam Aigerman, Miri Trope, Nadav Dym, Ersin Yumer,
Vladimir G. Kim, and Yaron Lipman. 2017. Convolutional Neural Networks on
Surfaces via Seamless Toric Covers. ACM Trans. Graph. 36, 4 (2017), 71:1ś71:10.

Daniel Maturana and Sebastian Scherer. 2015. Voxnet: a 3D convolutional neural
network for real-time object recognition. In IEEE Conference on Intelligent Robots
and Systems. 922ś928.

Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H Barr. 2003. Discrete
differential-geometry operators for triangulated 2-manifolds. In Visualization and
mathematics III. 35ś57.

Charlie Nash and Chris KI Williams. 2017. The shape variational autoencoder: A deep
generative model of part-segmented 3D objects. Comp. Graph. Forum 36, 5 (2017),
1ś12.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning convolu-
tional neural networks for graphs. In ICML. 2014ś2023.

Gerard Pons-Moll, Javier Romero, Naureen Mahmood, and Michael J Black. 2015. Dyna:
A model of dynamic human shape in motion. ACM Trans. Graph. 34, 4 (2015), 120.

Raif M Rustamov, Maks Ovsjanikov, Omri Azencot, Mirela Ben-Chen, Frédéric Chazal,
and Leonidas Guibas. 2013. Map-based exploration of intrinsic shape differences
and variability. ACM Trans. Graph. 32, 4 (2013), 72:1ś72:12.

Abhishek Sharma, Oliver Grau, and Mario Fritz. 2016. Vconv-dae: Deep volumetric
shape learning without object labels. In ECCV Workshops. 236ś250.

Baoguang Shi, Song Bai, Zhichao Zhou, and Xiang Bai. 2015. Deeppano: Deep panoramic
representation for 3-d shape recognition. IEEE Signal Processing Letters 22, 12 (2015),
2339ś2343.

Philip Shilane, Patrick Min, Michael Kazhdan, and Thomas Funkhouser. 2004. The
Princeton Shape Benchmark. In Shape Modeling International.

Ayan Sinha, Asim Unmesh, Qixing Huang, and Karthik Ramani. 2017. SurfNet: Gener-
ating 3D Shape Surfaces Using Deep Residual Networks. In IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR).

Robert W Sumner and Jovan Popović. 2004. Deformation transfer for triangle meshes.
ACM Trans. Graph. 23, 3 (2004), 399ś405.

Minhyuk Sung, Hao Su, Vladimir G. Kim, Siddhartha Chaudhuri, and Leonidas Guibas.
2017. Complementme: Weakly-supervised Component Suggestions for 3DModeling.
ACM Trans. Graph. 36, 6 (2017), 226:1ś226:12.

Qingyang Tan, Lin Gao, Yu-Kun Lai, and Shihong Xia. 2018a. Variational Autoencoders
for Deforming 3D Mesh Models. In IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR).

Qingyang Tan, Lin Gao, Yu-Kun Lai, Jie Yang, and Shihong Xia. 2018b. Mesh-based
Autoencoders for Localized Deformation Component Analysis. In AAAI.

Shubham Tulsiani, Hao Su, Leonidas J Guibas, Alexei A Efros, and Jitendra Malik. 2017.
Learning Shape Abstractions by Assembling Volumetric Primitives. In IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR).

Daniel Vlasic, Ilya Baran, Wojciech Matusik, and Jovan Popović. 2008. Articulated
mesh animation from multi-view silhouettes. ACM Trans. Graph. 27, 3 (2008), 1ś9.

Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. 2017a. O-CNN:
Octree-based Convolutional Neural Networks for 3D Shape Analysis. ACM Trans.
Graph. 36, 4 (2017), 72:1ś72:11.

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan
Catanzaro. 2017b. High-Resolution Image Synthesis and Semantic Manipulation
with Conditional GANs. In IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR).

Ryan White, Keenan Crane, and David Forsyth. 2007. Capturing and Animating
Occluded Cloth. ACM Trans. Graph. 26, 3, Article 34 (2007).

JiajunWu, Chengkai Zhang, Tianfan Xue,William T Freeman, and Joshua B Tenenbaum.
2016. Learning a probabilistic latent space of object shapes via 3D generative-
adversarial modeling. In Advances in Neural Information Processing Systems. 82ś90.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,
and Jianxiong Xiao. 2015. 3D ShapeNets: A deep representation for volumetric
shapes. In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 1912ś1920.

Weiwei Xu, Jun Wang, KangKang Yin, Kun Zhou, Michiel van de Panne, Falai Chen,
and Baining Guo. 2009. Joint-aware manipulation of deformable models. ACM
Trans. Graph. 28, 3 (2009), 35:1ś35:9.

Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, and Honglak Lee. 2016. Perspective
Transformer Nets: Learning Single-View 3D Object Reconstruction without 3D
Supervision. In Advances in Neural Information Processing Systems. 1696ś1704.

Jie Yang, Lin Gao, Yu-Kun Lai, Paul L. Rosin, and Shihong Xia. 2018. Biharmonic
deformation transfer with automatic key point selection. Graphical Models 98 (2018),
1ś13.

Li Yi, Hao Su, Xingwen Guo, and Leonidas J. Guibas. 2017a. SyncSpecCNN: Synchro-
nized Spectral CNN for 3D Shape Segmentation. In IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR).

Zili Yi, Hao (Richard) Zhang, Ping Tan, and Minglun Gong. 2017b. DualGAN: Unsuper-
vised Dual Learning for Image-to-Image Translation.. In ICCV. 2868ś2876.

Kun Zhou, Weiwei Xu, Yiying Tong, and Mathieu Desbrun. 2010. Deformation Transfer
to Multi-Component Objects. Computer Graphics Forum 29, 2 (2010), 319ś325.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. 2017. Unpaired Image-to-
Image Translation using Cycle-Consistent Adversarial Networks. In IEEE Interna-
tional Conference on Computer Vision (ICCV).

ACM Transactions on Graphics, Vol. 0, No. 0, Article 0. Publication date: 2018.


	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Overview
	3.2 Convolutional Variational Autoencoder
	3.3 Adversarial Loss
	3.4 Cycle Consistency Loss
	3.5 Visual Similarity Loss
	3.6 Overall Loss Function for Cycle GAN

	4 Implementation
	4.1 Network Architecture
	4.2 Training Details

	5 Results and Evaluations
	5.1 Quantitative blackand Qualitative Evaluation of Network Components
	5.2 Deformation Transfer Results and Comparisons
	5.3 Extension of Our Method to Semantic Transfer

	6 Conclusions and Future Work
	Acknowledgments
	References

