skip to main content
research-article

Set-in-stone: worst-case optimization of structures weak in tension

Published:04 December 2018Publication History
Skip Abstract Section

Abstract

Large-scale binder jetting provides a promising alternative to manual sculpting of sandstone. The weak build material, however, severely limits its use in architectural ornamentation. We propose a structural optimization that jointly optimizes an ornament's strength-to-weight ratio and balance under self-weight, thermal, wind, and live loads. To account for the difference in the tensile and compressive strength of the build material, we turn the Bresler-Pister criterion into a failure potential, measuring the distance to failure. Integrated into an XFEM-based level set formulation, we minimize this potential by changing the topology and shape of the internal structure. To deal with uncertainties in the location of live loads, and the direction of wind loads, we first estimate loads that lead to the weakest structure, then minimize the potential of failure under identified worst-case loads. With the help of first-order optimality constraints, we unify our worst-case load estimation and structural optimization into a continuous optimization. We demonstrate applications in art, furniture design, and architectural ornamentation with three large-scale 3D printed examples.

Skip Supplemental Material Section

Supplemental Material

a252-schumacher.mp4

mp4

87 MB

References

  1. Grégoire Allaire, Frédéric de Gournay, and François Jouve. 2009. Stress minimization and robust compliance optimization of structures by the level set method. In Proc. 8th World Congr. Struct. Multidisciplinary Optimization.Google ScholarGoogle Scholar
  2. Grégoire Allaire, François Jouve, and Anca-Maria Toader. 2004. Structural optimization using sensitivity analysis and a level-set method. Journal of computational physics 194, 1 (2004), 363--393. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Moritz Bächer, Emily Whiting, Bernd Bickel, and Olga Sorkine-Hornung. 2014. Spin-it: Optimizing Moment of Inertia for Spinnable Objects. ACM Trans. Graph. 33, 4, Article 96 (July 2014), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Martin P. Bendsøe and Ole Sigmund. 2004. Topology Optimization: Theory, Methods, and Applications. Springer Berlin Heidelberg.Google ScholarGoogle Scholar
  5. Amit H. Bermano, Thomas Funkhouser, and Szymon Rusinkiewicz. 2017. State of the Art in Methods and Representations for Fabrication-Aware Design. In Computer Graphics Forum, Vol. 36. Wiley Online Library, 509--535. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Wai-Fah Chen and Atef F. Saleeb. 1994. Constitutive Equations for Engineering Materials. Elsevier.Google ScholarGoogle Scholar
  7. Andrej Cherkaev and Elena Cherkaeva. 1999. Optimal design for uncertain loading condition. 193--213.Google ScholarGoogle Scholar
  8. D-Shape. 2018. D-Shape. https://d-shape.com/. (2018). Accessed: 2018-06-04.Google ScholarGoogle Scholar
  9. Frédéric de Gournay, Grégoire Allaire, and François Jouve. 2008. Shape and topology optimization of the robust compliance via the level set method. ESAIM: Control, Optimisation and Calculus of Variations 14, 1 (2008), 43--70.Google ScholarGoogle ScholarCross RefCross Ref
  10. Joshua D. Deaton and Ramana V. Grandhi. 2014. A survey of structural and multidisciplinary continuum topology optimization: post 2000. Structural and Multidisciplinary Optimization 49, 1 (2014), 1--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Chi-Wing Fu, Peng Song, Xiaoqi Yan, Lee Wei Yang, Pradeep Kumar Jayaraman, and Daniel Cohen-Or. 2015. Computational Interlocking Furniture Assembly. ACM Trans. Graph. 34, 4, Article 91 (July 2015), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Timothy Langlois, Ariel Shamir, Daniel Dror, Wojciech Matusik, and David I. W. Levin. 2016. Stochastic Structural Analysis for Context-aware Design and Fabrication. ACM Trans. Graph. 35, 6, Article 226 (Nov. 2016), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Lin Lu, Andrei Sharf, Haisen Zhao, Yuan Wei, Qingnan Fan, Xuelin Chen, Yann Savoye, Changhe Tu, Daniel Cohen-Or, and Baoquan Chen. 2014. Build-to-last: Strength to Weight 3D Printed Objects. ACM Trans. Graph. 33, 4, Article 97 (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Yangjun Luo and Zhan Kang. 2012. Topology optimization of continuum structures with Drucker-Prager yield stress constraints. Computers & Structures 90--91 (2012), 65--75.Google ScholarGoogle Scholar
  15. Nicolas Moës, Mathieu Cloirec, Patrice Cartraud, and Jean-François Remacle. 2003. A computational approach to handle complex microstructure geometries. Computer Methods in Applied Mechanics and Engineering 192, 28--30 (2003), 3163--3177.Google ScholarGoogle ScholarCross RefCross Ref
  16. Andrey Molotnikov, Ralf Gerbrand, Yuanshen Qi, George Philip Simon, and Yuri Estrin. 2015. Design of responsive materials using topologically interlocked elements. Smart Materials and Structures 24, 2 (2015), 025034.Google ScholarGoogle ScholarCross RefCross Ref
  17. Nathaniel R. Morgan and Jacob I. Waltz. 2017. 3D level set methods for evolving fronts on tetrahedral meshes with adaptive mesh refinement. J. Comput. Phys. 336 (2017), 492--512. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Przemyslaw Musialski, Thomas Auzinger, Michael Birsak, Michael Wimmer, and Leif Kobbelt. 2015. Reduced-Order Shape Optimization Using Offset Surfaces. ACM Trans. Graph. 34, 4 (Aug. 2015), 102:1--102:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lise Noël, Laurent Van Miegroet, and Pierre Duysinx. 2015. Analytical sensitivity analysis using the extended finite element method in shape optimization of bimaterial structures. Internat. J. Numer. Methods Engrg. 107, 8 (Dec. 2015).Google ScholarGoogle Scholar
  20. Stanley Osher and Ronald Fedkiw. 2003. Level Set Methods and Dynamic Implicit Surfaces. Springer-Verlag New York.Google ScholarGoogle Scholar
  21. Julian Panetta, Abtin Rahimian, and Denis Zorin. 2017. Worst-case Stress Relief for Microstructures. ACM Trans. Graph. 36, 4, Article 122 (2017), 16 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Romain Prévost, Emily Whiting, Sylvain Lefebvre, and Olga Sorkine-Hornung. 2013. Make It Stand: Balancing Shapes for 3D Fabrication. ACM Trans. Graph. 32, 4, Article 81 (July 2013), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Ashesh Sharma and Kurt Maute. 2018. Stress-based topology optimization using spatial gradient stabilized XFEM. Structural and Multidisciplinary Optimization 57, 1 (Jan 2018), 17--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Jan Sokolowski and Jean-Paul Zolesio. 1992. Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer-Verlag Berlin Heidelberg.Google ScholarGoogle Scholar
  25. Ondrej Stava, Juraj Vanek, Bedrich Benes, Nathan Carr, and Radomír Měch. 2012. Stress Relief: Improving Structural Strength of 3D Printable Objects. ACM Trans. Graph. 31, 4, Article 48 (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Erva Ulu, James Mccann, and Levent Burak Kara. 2017. Lightweight structure design under force location uncertainty. ACM Trans. Graph. 36, 4 (2017), 158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Nobuyuki Umetani and Ryan Schmidt. 2013. Cross-sectional Structural Analysis for 3D Printing Optimization. In SIGGRAPH Asia 2013 Technical Briefs. Article 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Nico P. van Dijk, Kurt Maute, Matthijs Langelaar, and Fred Van Keulen. 2013. Level-set methods for structural topology optimization: a review. Multidisciplinary Optimization 48, 3 (2013), 437--472. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Laurent Van Miegroet and Pierre Duysinx. 2007. Stress concentration minimization of 2D filets using X-FEM and level set description. Structural and Multidisciplinary Optimization 33, 4 (Apr 2007), 425--438.Google ScholarGoogle Scholar
  30. Voxeljet. 2018. Voxeljet. https://www.voxeljet.com/. (2018). Accessed: 2018-06-04.Google ScholarGoogle Scholar
  31. Michael Yu Wang, Xiaoming Wang, and Dongming Guo. 2003. A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering 192, 1--2 (2003), 227--246.Google ScholarGoogle ScholarCross RefCross Ref
  32. Weiming Wang, Tuanfeng Y. Wang, Zhouwang Yang, Ligang Liu, Xin Tong, Weihua Tong, Jiansong Deng, Falai Chen, and Xiuping Liu. 2013. Cost-effective Printing of 3D Objects with Skin-frame Structures. ACM Trans. Graph. 32, 6, Article 177 (Nov. 2013), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Jun Wu, Niels Aage, Rüdiger Westermann, and Ole Sigmund. 2018. Infill Optimization for Additive Manufacturing---Approaching Bone-Like Porous Structures. IEEE Transactions on Visualization and Computer Graphics 24, 2 (Feb 2018), 1127--1140.Google ScholarGoogle ScholarCross RefCross Ref
  34. Jun Wu, Christian Dick, and Rudiger Westermann. 2016. A System for High-Resolution Topology Optimization. IEEE Transactions on Visualization and Computer Graphics 22, 3 (March 2016), 1195--1208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Hongyi Xu, Espen Knoop, Stelian Coros, and Moritz Bächer. 2018. Bend-It: Design and Fabrication of Kinetic Wire Characters. Proc. of ACM SIGGRAPH Asia 37, 6 (2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Haiming Zhao, Weiwei Xu, Kun Zhou, Yin Yang, Xiaogang Jin, and Hongzhi Wu. 2017. Stress-Constrained Thickness Optimization for Shell Object Fabrication. Computer Graphics Forum 36, 6 (2017), 368--380. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Qingnan Zhou, Julian Panetta, and Denis Zorin. 2013. Worst-case Structural Analysis. ACM Trans. Graph. 32, 4, Article 137 (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Yahan Zhou, Evangelos Kalogerakis, Rui Wang, and Ian R. Grosse. 2016. Direct shape optimization for strengthening 3D printable objects. Computer Graphics Forum 35, 7 (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Set-in-stone: worst-case optimization of structures weak in tension

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 37, Issue 6
        December 2018
        1401 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3272127
        Issue’s Table of Contents

        Copyright © 2018 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 4 December 2018
        Published in tog Volume 37, Issue 6

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader