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ABSTRACT

In the context of computer assisted verification of schedulability

analyses, very expressive task models are useful to factorize the

correctness proofs of as many analyses as possible. The digraph task

model seems a good candidate due to its powerful expressivity. Alas,

its ability to capture dependencies between arrival and execution

times of jobs of different tasks is very limited.

We propose here a task model that generalizes the digraph model

and its corresponding analysis for fixed-priority scheduling with

limited preemption. A task may generate several types of jobs, each

with its own worst-case execution time, priority, non-preemptable

segments and maximum jitter. We present the correctness proof

of the analysis in a way amenable to its formalization in the Coq

proof assistant.

Our objective (still in progress) is to formally certify the analysis

for that general model such that the correctness proof of a more

specific (standard or novel) analysis boils down to specifying and

proving its translation into our model. Furthermore, expressing

many different analyses in a common framework paves the way

for formal comparisons.

1 INTRODUCTION

The need for computer assisted verification of analysis techniques

in the area of real-time systems has been recognized by the research

community. The work presented here is part of an effort to con-

tribute to Prosa [1], a library of definitions and proofs for real-time

schedulability analyses using the Coq proof assistant [2]. Formal

verification requires an important human effort, so making proofs

general, generic, and/or reusable is of great importance.

Our goal is to factorize the formal certification of existing Re-

sponse Time Analyses (RTAs) for fixed-priority policies. There

exists a wide variety of task models and analyses for such policies.

However, most of these models are incomparable and very few

can describe dependencies between arrival and/or execution time

of different jobs. The Digraph Real-Time Task (DRT) model [21]

seems a good candidate for modeling intra-task dependencies, but

its ability to capture dependencies between different tasks is very

limited. It cannot, for example, capture Tindell’s offset model [25].
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In this paper, we propose a task model that generalizes the DRT

model and its corresponding RTA, with the restriction that we con-

sider discrete time while some results about DRT apply to dense

time. A task may generate several types of jobs, each with its own

worse-case execution time (WCET), priority, non-preemptable seg-

ments and jitter. Our model can capture dependencies between

jobs of the same task as well as jobs of different tasks. We focus on

fixed-priority scheduling policies and our model can encompass

preemptive and nonpreemptive models, as well as limited preemp-

tion. Despite being much more general, the RTA for our model

is not significantly more complex than the original one. Also, it

underlines similarities between existing analyses, in particular the

analysis for the DRT model and Tindell’s offset model.

For the time being, the proof of the RTA of the general model

within the Coq proof assistant is not yet complete. When it is certi-

fied, the design and proof of a more specific (standard or novel) RTA

will boil down to specifying and proving its translation into our

model. Furthermore, expressing many different RTAs in a common

framework paves the way for formal comparisons and generaliza-

tions (e.g., design of novel RTAs).

To summarize, the main contributions of this paper are:

(1) A general task model which encompasses complex depen-

dencies between jobs and tasks;

(2) A RTA for that model;

(3) A correctness proof of that RTA amenable to its formalization

in Coq and applicable to other task models.

The paper is structured as follows. Section 2 introduces the sys-

tems we consider and provides basic definitions to describe their

runtime behavior. Section 3 presents the syntax and semantics of

our task model and Section 4 provides intuition about its expressiv-

ity. Section 5 presents the associated RTA and Section 6 sketches its

correctness proof. Section 7 puts the contribution of this paper into

the perspective of our broader project of a Coq library of schedula-

bility results. We discuss related models in Section 8 and conclude

in Section 9.

2 SYSTEM BEHAVIOR

We target concrete systems implemented as a set of tasks executing

on a uniprocessor. The execution proceeds according to a job-level
fixed-priority limited preemptive (JFPLP) scheduling policy. A JFPLP

scheduler arbitrates between jobs competing for processor time

by choosing the highest priority job, but it can only preempt a

running job at some predefined execution point. In other words,

each job is decomposed into non-preemptable segments. This model

subsumes the Fixed Priority Preemptive (FPP) and Fixed Priority

Non-Preemptive (FPNP) policies, and permits mixed policies [3].

A task can generate different types of jobs. Jobs of the same type

have similar properties, in particular they have the same priority.

https://doi.org/10.1145/3273905.3273918


2.1 Definition of system behavior

We assume a set T of type names (types, for short). Each type entails

a number of characteristics that are described in Section 2.

Definition 1 (Job⋆1). A job ȷ is specified by:

• its type v( ȷ) ∈ T;
• its priority p( ȷ) ∈ N inherited from its type; A greater number

means a higher priority.

• its arrival time a( ȷ) ∈ N;
• its jitter j( ȷ) ∈ N (also called release delay);

• a vector c⃗( ȷ) = ⟨c1, . . . , cs ⟩, ci ∈ N+, of durations correspond-
ing to the cost (i.e., execution time) of each non-preemptable seg-

ment.

The cost (or required service time) of a job ȷ as above is c( ȷ) =∑
1≤i≤s ci . The release time of ȷ is r( ȷ) := a( ȷ) + j( ȷ).

We do not exclude different jobs from having the same parame-

ters, but we assume that they can be distinguished (e.g., through
an identifier). We also assume that the set of jobs is partitioned

into tasks. The behavior of a system is described using a set of

executions defined by a job arrival sequence and a schedule.

Definition 2 (Job arrival sequence⋆). A job arrival sequence is
a function ρ mapping any time instant t to a finite (possibly empty)

set of jobs ρ (t ) such that ȷ ∈ ρ (t ) iff a( ȷ) = t .

Note that once the set of jobs and the function a are given, ρ
is uniquely determined. A job ȷ completes when it has received

as much service time as it required, which is determined by the

schedule. We denote its completion time by end( ȷ). The response
time of ȷ is defined as RT ȷ := end( ȷ) − a( ȷ). From its release time

and until completion, a job is said to be pending.

Definition 3 (Schedule, JFPLP schedule⋆). A schedule is a par-
tial function σ which maps any time instant t to the job (if any) that
is scheduled (i.e., receives service) at t . A job ȷ can be scheduled

only when it is pending.

A JFPLP schedule is a schedule such that the job that is scheduled

is: either the job that is already executing one of its non-preemptable

segments, or a job that has the highest priority h among pending

jobs. If there are several pending jobs with priority h, a task is

arbitrarily selected among those with such jobs; the chosen job is

then the first released job with priority h in this task (FIFO policy).

2.2 Additional definitions and notations

In the following, we will need additional definitions and notations,

which we introduce here.

Definition 4 (Job release sequence). Let ρ be a job arrival se-

quence. The corresponding job release sequence, written ρ̂, is de-
fined as ρ̂ (t ) := { ȷ | ȷ ∈ ρ (t ′) ∧ t = t ′ + j( ȷ)}. We have ȷ ∈ ρ̂ (t ) iff
r( ȷ) = t .

We will occasionally write arrival (or release) sequences as lists

of sets of jobs. For instance, [(t1, { ȷ1, ȷ2}), (t2, { ȷ3}), . . .] denotes a
sequence ρ such that ρ (t1) = { ȷ1, ȷ2}, ρ (t2) = { ȷ3} and ρ (t ) = ∅ for
all t absent from the list.

1
The definitions and lemmas decorated with a star have been formalized in Coq/Prosa,

see discussion in Section 7.

The restriction of a job arrival sequence ρ to a time interval [t1, t2[
is denoted ρ/

[t1,t2[. The same applies to job release sequences.

Definition 5 (Workload⋆). Let ρ be a job arrival sequence and

V a set of job types. The workload wlV ,ρ of jobs with type inV in a

time interval [t1, t1 +∆[ is the cumulative cost (i.e., required service
time) of such jobs released in that interval. Formally,

wlV ,ρ (t1,∆) :=
∑
ȷ :v ∈V

t1≤r( ȷ )<t1+∆

c( ȷ) (1)

Definition 6 (Service time⋆). Let σ be a schedule and V a set

of job types. The service time servV ,σ received by jobs with type in

V in a time interval [t1, t1 + ∆[ is

servV ,σ (t1,∆) :=
∑

t ∈[t1,t1+∆[
v(σ (t )) ∈V

1 (2)

Our RTA analysis (Section 5) is based on the concept of busy

window which we formally introduce now. The following defini-

tions are implicitly parameterized by a job arrival sequence ρ and

a schedule σ .

Definition 7 (Level-p quiet time⋆). An instant t is said to be

a level-p quiet time if all jobs of priority higher than or equal to p
released strictly before t have completed at t .

Definition 8 (Level-p busy window⋆). A time interval [t1, t2[
is said to be a level-p busy window if:

(1) t1 and t2 are level-p quiet times;

(2) there is no level-p quiet time in ]t1, t2[; and
(3) at least one job with a priority higher than or equal to p is

released in [t1, t2[.

The last condition excludes degenerate cases of busy windows

in which no job is scheduled. Since several jobs with the same type

may be released in the same busy window, we introduce (again

in a way similar to the state of the art) the additional concept of

queueing prefix.

Definition 9 (Queueing prefix⋆). The q-th queueing prefix of
jobs of type v in a level-p busy window [t1, t2[ is the time interval

[t1, tq] where tq is the instant at which the last non-preemptable

segment of the q-th job of type v receives its first service (i.e., is
scheduled for the first time).

Example 1. Figure 1 presents a job arrival sequence ρ (split into
ρ1 and ρ2) in a system made of two tasks. One task produces jobs of

type v , priority 1, jitter 0 and segments ⟨2, 2⟩ and two consecutive

arrival times of its jobs are separated by at least 9 time units. The

other task produces jobs of priority 2. The three first queueing

prefixes of jobs of type v in the level-1 busy window [0, 27[ are

Qv,ρ (1), Qv,ρ (2) and Qv,ρ (3).

3 GENERALIZED DIGRAPH TASK MODEL

Our task model, called the generalized digraph (Gd) model, is an ex-

tension of the digraph model [21] with job level priorities, possibly

null inter-arrival times, jitter and non-preemptable segments.
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Qv,ρ (1)

Qv,ρ (2)

Qv,ρ (3)

ρ1

ρ2

0 5 10 15 20 25

Figure 1: Queueing prefixes of jobs of type v.

3.1 Syntax

A system consists of a set of n independent tasks Σ := {G1, . . . ,Gn },

each task being specified by a graph Gi := (Vi ,Ei ) where:

• Vi is a set of vertices representing different job types;

• Ei is a set of edges such that an edge connecting two vertices

v1 andv2 ofVi is labeled with a durationd (v1,v2) ∈ N representing

the minimum inter-arrival time between jobs of types v1 and v2.

A job type v is characterized by the following parameters
2
:

• P(v ) ∈ N defines the priority of jobs of type v ;
• J(v ) ∈ N specifies the maximum jitter (i.e., delay between

arrival and release time) for jobs of type v ;

• C⃗(v ) = ⟨C1, . . . ,Cs ⟩ is a vector specifying the maximum cost

of each non-preemptable segment of jobs of typev ; C(v ) =
∑s
i=1 Ci

defines the maximum cost of jobs of type v .

The sets of verticesVi are assumed to be disjoint (i.e., tasks activate
jobs of different types). The set of vertices of the complete system is

denoted byVΣ =
⋃n
i=1Vi . For simplicity and to improve readability,

we assume in this paper that the jitter is constrained3: the jitter

of any vertex v ∈ VΣ is smaller than or equal to the minimum

inter-arrival time labeled on any edge going out of v .
In contrast with the standard digraph task model, null inter-

arrival times are allowed. We however disallow tasks (i.e., graphs)
that contain null cycles (which would permit an infinite nomber of

job arrivals at the same instant). This is easily verified statically.

In the following, we note hep(p), hp(p), ep(p), lp(p) the sets of
vertices of the system whose priorities are equal or higher, higher,

equal and lower than p, respectively.

Example 2. The graphGe represented in Figure 2 defines a task

with three vertices (i.e., three types of jobs). Vertex u is decorated

with the triplet (⟨1, 1⟩, 0, 1) where ⟨1, 1⟩ indicates that jobs of this
type can be preempted at each instant (segments of length 1) and

their maximum cost is 2 = 1 + 1; their maximum release jitter is 0

and their priority is 1. Similarly, jobs of typev have a maximum cost

of 5 and cannot be preempted, their maximum jitter and priority

are 3 and 2, respectively. Jobs of typew have a maximum cost of 8

and can be preempted after at most 4 time units of execution.

3.2 Task-level and system paths

As a graph, a task Gi = (Vi ,Ei ) specifies a set of (possibly infinite)

paths, i.e., sequences of vertices ofGi such that (vj ,vj+1) ∈ Ei . Note

2
The RTA presented in this paper does not rely on deadlines andwe omit this parameter.

3
The extension to arbitrary jitter is discussed in Section 4.3.

u v

w

(⟨1, 1⟩, 0, 1) (⟨5⟩, 3, 2)

(⟨4, 4⟩, 0, 1)

8

16

10

20

Figure 2: A graph Ge specifying a task with 3 types of jobs

that a task will typically have cycles, thus specifying an infinite

set of paths, some of them infinite. In the following, we sometimes

refer to paths of tasks as task-level paths for clarity.

Example 3. In Figure 2, [u,v,u,w,v], [w,v,u,v,u], and the

infinite sequence X = [u,v,X ] are paths of Ge , but [u,v,w] is not.

Definition 10 (System path). A system path of system Σ is a set

π := {π1, . . . ,πn } such that for each i , πi is a task-level path of task

Gi in Σ. The set of system paths of Σ is denoted ΠΣ.

We will use later the following operations on task-level paths.

• The function len returns the sum of all minimum inter-arrival

times on the edges of a finite path. Formally:

len([v1,v2, . . . ,vk ]) :=
∑

1≤j<k

d (vj ,vj+1)

• The function pre∆ (πi ) returns the longest prefix πp of πi such
that len(πp ) < ∆. A variant, written prenv (πi ), returns the prefix of
πi up to the n-th occurrence of vertex v in πi .
• We write lennv (πi ) for len(pre

n
v (πi )) which returns the sum of

all minimum inter-arrival times between the first vertex and the

n-th occurrence of vertex v in πi .
• The function cost (seq) returns the sum of the maximum cost

of all vertices in a vertex sequence seq.
• The filter function |π |V returns the vertex sequence obtained

from π where all vertices not belonging toV have been filtered out.

3.3 Semantics

The semantics of a system Σ := {G1, . . . ,Gn } is given by the set

of arrival sequences that are consistent with a system path of Σ.
Consistency between an arrival sequence and a system path ensures

that jobs in the sequence satisfy the constraints imposed on them by

their type and that the order and timing of job arrivals is compatible

with the constraints specified on the edges of the graphs Gi .

Definition 11 (Consistency of an arrival sequence w.r.t. a path).
An arrival sequence ρ is consistent with a task-level path πi =
[v1,v2, . . .], which is denoted ρ ∼ π , iff there exists a flattening

4

[(t1, ȷ1), (t2, ȷ2), . . .] of ρ such that for all k :

• ȷk is consistent with vk , i.e., :
– v( ȷk ) = vk ;
– p( ȷk ) = P(v );
– j( ȷk ) ≤ J(vk ); and

4
For example, the arrival sequence [(t1, { ȷ1, ȷ2 }), (t3, { ȷ3 })] can be flattened into

either [(t1, ȷ1 ), (t1, ȷ2 ), (t3, ȷ3 )] or [(t1, ȷ2 ), (t1, ȷ1 ), (t3, ȷ3 )].
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– c⃗( ȷk ) = ⟨c1, . . . , cs ⟩ ∧ C⃗(vk ) = ⟨C1, . . . ,Cs ⟩ ∧ ci ≤ Ci , i =
1 . . . s .

• d (vk ,vk+1) ≤ tk+1 − tk
The definition naturally extends to system-level paths.

We write ρ ∼ Σ to denote that an arrival sequence ρ is consistent

with a system path in ΠΣ.

4 EXPRESSIVITY OF THE GD MODEL

In this section, we show how a variety of existing task models can

be expressed using the Gd model. We also hint at extended or new

models that could be defined as Gd and analyzed by our proposed

RTA.

4.1 Models without task dependencies

The Gd model can easily emulate many kinds of arrival models.

Obviously, a simple sporadic task whose jobs are of typev and with

a minimum inter-arrival time p is represented by a single vertex

v and self-loop labeled with p. A periodic task of period p can be

represented by the same Gd task. Of course, this Gd task represents

many more consistent job arrival sequences but the worst case

analyzed by the RTA is precisely the periodic sequence.

Arrival curves [24] represent more expressive arrival models. For

instance, the minimal distance function d
−

(a) returns the smallest

time interval that may contain a + 1 occurrences of a job. This func-
tion must be super-additive i.e., d

−

(a) +d
−

(b) ≤ d
−

(a +b). In general,

an arrival curve may have an infinite description in terms of Gd

task (e.g., d
−

(a) = a2 is super-additive and describes ever growing

inter-arrival times). However, such functions
5
are usually given by

a collection of values from 1 to some constant k . Then, the anal-
ysis uses the minimal super-additive extension (e.g., the smallest

function compatible with d
−

(1), . . . ,d
−

(k )). Such super-additive clo-

sures can be represented faithfully by a Gd task. When d
−

is convex

(i.e., d
−

(x + 1) + d
−

(x − 1) − 2d
−

(x ) ≥ 0) then the minimal super-

additive extension is periodic and ∀x = qk+r ,d
−

(x ) = qd
−

(k )+d
−

(r ).
The corresponding Gd task is then made of a cycle of k vertices

v0, . . . ,vk−1 where the minimum inter-arrival time decorating each

edge is d (vi ,v(i+1)modk ) = d
−

((i + 1)modk ) − d
−

(i ).

Example 4. Consider, for instance, the arrival curve specified

by d
−

(1) = 2,d
−

(2) = 5,d
−

(3) = 10,d
−

(4) = 20 which specifies that 2

(resp. 3, 4, and 5) jobs cannot arrive in less than 2 (resp. 5, 10 and

20) time units. The corresponding Gd task is given in Fig.3 (a).

For non convex functions, it has been shown that their minimal

super-additive extensions are pseudo-periodic functions [10] which

can also be represented by a finite Gd task.

4.2 Models with job and task dependencies

As a generalization of digraphs, the Gd model can of course express

all task models with intra-task dependencies that standard digraphs

can. Let us cite, the multiframe model [18] and its generalized

version [6], the recurring branching [7] or recurring RT [8] models,

the non cyclic RT [4] and digraph model (DRT) [21].

Allowing job-level fixed priorities and null minimal inter-arrival

times allows the Gd model to model inter-task dependencies

5
By default d

−

(0) = 0

v

2
v

3

v

5 v 10

v1

10

v2
10

v1

20

v1

0

v2
20

(a) (b)

Figure 3: Gd representing (a) an arrival curve model and (b)

a transaction with offsets a la Tindell)

(e.g., fixed timing relation among tasks), e.g., the offset model of

Tindell [25] (which cannot be represented in the standard DRT

model).

In Tindell’s model, a system is made of a set of independent

transactions {Tr1, . . . , Trn }. Each transaction Tri consists of a set
of periodic tasks with offsets Tri := {. . . ,τi,k , . . .} where each task

τi,k has its own WCET, period, offset, priority, and deadline. A

transaction and its set of periodic tasks with offsets can be rep-

resented within a single Gd task. It is sufficient to compute the

hyper-period of the transaction and to build the circular Gd task

representing the inter-arrival time (which may be null) between

arrivals of the different jobs in the hyper-period. The periods and

offsets are represented by inter-arrival times. The WCET, priority

and deadline of tasks are represented by the corresponding vertices.

Example 5. Consider, for instance, a transaction Tr with two

periodic tasks with jobs of type v1 and v2, with periods 20 and

30 and with offsets 5 and 15. The hyper-period is 60 and tak-

ing the first arrival of v1 as the time origin, the arrival times

are [(v1, 0), (v2, 10), (v1, 20), (v1, 40), (v2, 40), (v1, 60)]. The trans-
action Tr is represented by the Gd task in Fig.3 (b). Its worst job

arrival sequence w.r.t. the RTA is exactly the job arrival sequences

of Tr .

Shared resources, which entail inter-tasks dependencies, is a com-

mon issue in hard real-time systems. Abdullah et al. [3] addressed

this problem using DRT by allowing two kinds of vertices : pre-

emptable (tasks) and non-preemptable (resources). They proposed

an extension of the RTA to take into account these two kinds of ver-

tices. Using the Gd model, this is directly modeled using segments

with always preemptable vertices for tasks and non-preemptable

ones for resources.

Rendez-vous mechanisms, another kind of inter-task depen-

dencies, have been expressed using an extension of digraphs

(SDRT) [17]. We believe that the encoding of such inter-task syn-

chronization is possible in Gd tasks but the exact encoding as well

as its complexity remain to be investigated.

4.3 Beyond existing models

All these features, including jitter, can be combined to express and

analyse new task models. For instance, non-preemptable segments

and jitter have not been considered into intra-task dependencies

task models (e.g.,MF, GMF, RB, RR, DRT) nor do Tindell’s model

consider intra-task dependencies (e.g., if a transaction could be a

set of MF tasks instead of simple periodic tasks). Since all these

4



models can be expressed as the Gd model, they can be analyzed

using the RTA described next.

Note that the following RTA targets the Gd model with con-

strained jitters. Because any Gd task with arbitrary jitters can be

transformed into a Gd task with constrained jitters remaining the

same worst case analyzed by the RTA. For instance, a sporadic task

of the minimum inter-arrival time 10 and jitter 22 represented by

G can be transformed into G’ with jitter 0 in Fig. 4.

v

10

(⟨3, 3⟩, 22, 1)

v v v v
0

(⟨3, 3⟩, 0, 1)

0 8

10

(G) (G’)

Figure 4: Encoding of arbitrary jitter

5 RESPONSE TIME ANALYSIS OF GD SYSTEMS

The objective of RTA is to bound, as tightly as possible, the worst-
case response time of each vertex (job type) v , defined as the maxi-

mum response time among all jobs of typev occurring in all arrival

sequences consistent with each possible system path. Formally,

wcrt (v ) := max{RT ȷ | ȷ : v ∧ ∃π ∈ ΠΣ,∃ρ ∼ π , ȷ ∈ ρ}

In this section, we present the overall structure of the analysis

that we propose for Gd systems. We suppose given a vertex v ,
with priority p, of a task Gi ∈ Σ and focus on upper bounding its

worst-case response time.

Our analysis relies on a path-specific analysis of level-p busy

windows, hence the following definition (implicitly parameterized

as before by a job arrival sequence ρ).

Definition 12 (Busy window path). A level-p busy window

[t1, t2[ is said to be represented by the shortest system path π such

that ρ̂/
[t1,t2[ ∼ π , and any extension of it.

The shortest path representing a busy window [t1, t2[ is the path
obtained after restricting the job release sequence to [t1, t2[. In
other words, a busy window path is an abstraction of a level-p busy

window. Equipped with these notions, the general principle of our

RTA analysis can now be presented.

5.1 Overall structure of the RTA of Gd systems

The RTA of a vertex v with priority p, of task Gi , consists in ana-

lyzing a set of paths such that all possible level-p busy windows

are represented by one path in the set. The methodology to bound

the worst-case response time of jobs of type v is thus as follows.

Step 1: Derive a set of system paths Πv
Σ such that any possible

level-p busy window (for any arrival sequence and schedule

consistent with any system path in ΠΣ) is represented by

one path in Πv
Σ .

Step 2: For each system path π ∈ Πv
Σ :

a) Compute an upper bound BW +p,π on the length of any

level-p busy window represented by π ;

b) Derive from πi (the task-level path ofGi in π ) and BW +p,π
an upper bound q+v,πi ,BW +

p,π
on the number of jobs of type

v released in any level-p busy window represented by π ;
c) Compute, for each q ≤ q+v,πi ,BW +

p,π
, an upper bound

Q+v,π (q) on the length of the q-th queueing prefix of jobs

of type v in any level-p busy window represented by π ;
d) For each q ≤ q+v,πi ,BW +

p,π
, compute a lower bound

θ−v,πi (q) on the (possibly negative) time difference be-

tween the q-th arrival of a job of type v in in any level-p
busy window represented by π and the start of that busy

window;

e) Based on the above, compute an upper bound RT+π (v ) on
the worst-case response time of any job of type v in any

level-p busy window represented by π .

Step 3: Finally, compute an upper bound RT+Σ (v ) on wcrt (v ).

In the following subsection, we provide the formulas used for the

computations associated with each step of the methodology that

we just presented, along with some intuition of where they come

from. The proof of correctness of the computed values is presented

in Section 6.

5.2 Step-by-step RTA of Gd systems

Our RTA relies on an upper bound on the workload of a set of jobs

in any level-p busy window by the workload for the path in Πv
Σ that

represents it, where the workload of a given set of vertices V ⊆ VΣ
for a system-level path π := {π1, . . . ,πn } ∈ Πv

Σ and a duration ∆ is

wl+V ,π (∆) :=
n∑

x=1
wl+V ,πx (∆) (3)

with wl+V ,πx (∆) := cost ( |pre∆+J(fst (πx )) (πx )|V )

Wewill show (see Lemma 2 in Sec. 6) that the workload of a set of

verticesV ⊆ VΣ for any prefix of length ∆ of a level-p busy window

represented by a system path π is upper bounded by wl+V ,π (∆).

Step 1: Computing Πv
Σ — see Theorem 1 in Sec. 6

Let Πvx (∆) denote the set of paths πx of task Gx ∈ Σ which

• are the longest paths fitting in ∆ + J+x , that is, such that

len(πx ) ≤ ∆ + J+x and for all valid suffixes s , len(πx · s ) > ∆ + J+x ;
where J+x representing the largest release jitter among Vx .
• if the vertex under study v belongs to Gi then we consider

only paths πx with occurrences of v .

With this notion of path, we compute a sufficiently large du-

ration which can bound the length of any level-p busy window.

That duration is the least positive fixed point, written Wk , of the

following equation

∆ = N +
n∑

x=1
max

πx ∈Πvx (∆)
{wl+hep(p ),πx (∆)} (4)

with N denoting the greatest non-preemptable segment in the sys-

tem. At each iteration, the greatest workload among all possible

paths within ∆ is selected. The obtained fixed point is clearly an

upper bound on the duration of any possible busy window. There-

fore, to bound wcrt (v ), it is sufficient to examine all the following

5



combinations,

Πv
Σ :=

n
×
x=1

Πvx (Wk ) (5)

where×nx=1 denotes the Cartesian product of all paths of length

bounded by Wk for the n tasks. Thus, any level-p busy window can

be represented by (possibly a prefix of) a path in Πv
Σ .

Step 2: Computing upper bounds for each path in Πv
Σ

We now show how to compute BW +p,π , q
+
v,πi ,BW +

p,π
, Q+v,π (q)

and θ−v,πi (q) for a given system path π := {π1, . . . ,πn } ∈ Πv
Σ .

a) Computing BW +p,π — see Theorem 2 in Sec. 6

Having non-preemptable segments implies that vertices in lp(p)
may execute within a level-p busy window. Still, the definition of a

level-p busy window implies that:

• at most one non-preemptable segment of a vertex in lp(p) can
execute in a level-p busy window; and

• such a segment (if it exists) must have started its execution

before the beginning of the level-p busy window.

As a result, the maximum duration that vertices in lp(p) can execute
in a level-p busy window is upper bounded by:

Bp := max

vx ∈lp(p )
C∈C⃗(vx )

(C − 1) (6)

with the convention that Bp := 0 if lp(p) = ∅. Now, let BW +p,π be

the least positive fixed point of the following equation:

∆ = Bp + wl+hep(p ),π (∆) (7)

Then BW +p,π is an upper bound on the length of any possible level-p

busy window represented by π .
Note that it may be pessimistic to use Bp to bound the workload

from lp(p) because the largest non-preemptable segment among

lp(p) may not contribute to any level-p busy window represented

by π . On the other hand, it reduces the complexity of the analysis

and simplifies its correctness proof
6
.

b) Computing q+v,πi ,BW +
p,π

Definition 12 implies that the number of jobs of type v in a

busy window is equal to the number of v in its representing path.

In addition, since BW +p,π is an upper bound on the length of any

possible level-p busy window represented by π , let q+v,πi ,BW +
p,π

be the number of vertices v in the prefix preBW +
p,π +J(fst (πi )) (πi ) of

path πi , then q
+
v,πi ,BW +

p,π
is an upper bound on the number of jobs

of type v released in any level-p busy window represented by π .

c) Computing Q+v,π (q) — see Theorem 3 in Sec. 6
The q-th queueing prefix of jobs of type v in a level-p busy

window represented by π spans the execution of:

• at most one non-preemptable segment from a vertex in lp(p)
which started before that busy window;

• all jobs of task Gi with the same priority as v released during

the prefix, up to the q-th job of v in πi (minus the cost of its last

segment);

6
An exact analysis would require considering up to n + 1 different critical instants for
a system with n tasks.

• the jobs of vertices fromGi in hp(p) released during the prefix;
and

• the jobs of vertices in hep(p) released during the prefix, except
those from Gi .

Let Q+v,π (q) be the least positive fixed point of the following equa-

tion:

∆ = Bp

+ wl+ep(p )∩Vi ,π (len
q
v (πi ) + 1) − last (C⃗(v )) + 1

+ wl+hp(p )∩Vi ,π (∆)

+ wl+hep(p )\Vi ,π (∆)

(8)

where last (C⃗(v )) is themaximum cost of the last segment ofv . Then,
Q+v,π (q) is an upper bound on the length of the q-th queueing prefix
of jobs of type v in any possible level-p busy window represented

by π .

d) Computing θ−v,πi (q) — see Theorem 4 in Sec. 6

For each q ≤ q+v,πi ,BW +
p,π

, a lower bound on the duration be-

tween t1 and the q-th arrival of jobs of typev in any possible level-p
busy window represented by π is:

θ−v,πi (q) := lenqv (πi ) − J(fst (πi )) (9)

e) Computing RT+π (v ) — see Theorem 5 in Sec. 6
The worst-case response time RT+π (v ) for path π can then be

upper bounded based on the above upper and lower bounds.

RT+π (v ) := max

q≤q+
v,πi ,BW

+
p,π

{Q+v,π (q)−θ
−
v,πi (q)+last (C⃗(v ))−1} (10)

Step 3: Computing RT+Σ (v )

Finally, performing the same computation for all paths in Πv
Σ

yields the worst-case response time of jobs of type v .

RT+Σ (v ) := max

π ∈Πv
Σ

(RT+π (v )) (11)

Note that the max functions in Equation 10 and 11 play different

roles: The first one (Eq. 10) accounts for the fact that there may be

several jobs of the same type (vertex) in a level-p busy window; the

second one (Eq.11) allows a fine-grained analysis of dependencies

(which are captured by the notion of path).

5.3 Improvements

For the sake of clarify, we have presented the analysis by first

computing a superset of possible paths and then focusing on a

single vertex. Clearly, this approach is not the most efficient. First,

the paths considered are larger than needed and the analysis is

likely to consider many time the same prefix common to many

paths. Second, as presented, a complete system analysis would

need to iterate the same process for each vertex. Both points entail

costly and/or useless recomputations.

A more reasonable approach is to analyse pertinent paths only

once. An analysis of the whole system would proceed by consider-

ing all possible alignments between vertices of all tasks. For each

alignment {v1, . . . ,vn }, we compute the level-p busy window (with

p the minimal priority) for all possible paths starting from the con-

sidered alignment. Paths are built on demand; they end when a

6



level-p quiet time is reached. That busy window is the longest and

includes all other busy windows. The computation should keep

enough information to evaluate Q+v,π (q), θ
−
v,πi (q) and therefore

RT+π (v ) for each vertex v in the path. Finally, the maximum of

RT+π (v ) over all alignments gives the worst-case response time for

any vertex v (i.e., jobs of type v).
Further improvements can be made. Consider a vertex vi in

an alignment {v1, . . . ,vn }, then if there is some vj with a lower

priority that vi whereas taskG j has another vertex with a priority

equal or higher than vi , then this alignment cannot be a worst case

forvi and RT
+
π (vi ) does not need to be computed in that alignment.

The analysis described so far is precise; the only source of ap-

proximation lies in the blocking factor Bp (see Eq. 6). However, de-

pending on the size of Gd, considering all possible alignments may

be overly expensive. Approximations should be studied. A possible

approximation consists in computing a single over-approximated

workload function for each priority and each task. This lower dras-

tically the number of combinations to test (more on this in the

Sec. 7). Note that this approach is similar to the approximation used

by Tindell in his offset analysis [26] and by Guan et al. in their

DRT analysis [15]. In fact, since our approach generalizes these two

analyses, existing techniques should be applicable.

6 PROOF OF CORRECTNESS

We outline here the proofs of the main lemmas used to establish

the correctness of the RTA presented in Sec. 5. Our short term

goal is to complete these proofs using Coq and the Prosa library

(see Section 7). In contrast with classical proofs in the RT commu-

nity, machine-verified proofs require to list all used hypotheses, to

specify formally concrete executions and to prove many properties

usually taken for granted.

In the following, we consider a JFPLP schedule σ and a system-

level job arrival sequence ρ ∼ Σ having a job ȷ of type v with

priority p and belonging to task Gi . Any such job occurs within a

level-p busy window. Therefore, we consider that ȷ occurs as the
q-th job of type v in a level-p busy window starting at instant t1.

6.1 Concrete busy window and queueing prefix

The key to the proof of the RTA is to show the correctness of

the upper/lower bounds (e.g., BW +p,π ) computed using the abstract

model (i.e., Gd). So, we need to specify formally the length BWp of

the considered level-p busy window and the length Qv,ρ (q) of the
q-th queueing prefix of jobs of type v in order to bound them.

Length of the level-p busy window

The length of a level-p busy window starting at t1, denoted
by BWp , can be computed as the least positive fixed point of the

following equation.

∆ = servlp(p ),σ (t1,∆) + wlhep(p ),ρ (t1,∆) (12)

The first term represents the service provided to the possible non

preemptable segment of a lower priority job. Then, the amount of

services performed by the scheduler for hep(p) jobs is equal to the

workload requested from hep(p) within the duration of the busy

window.

Length of the q-th queueing prefix

Similarly, computing the length of the q-th queueing prefix of

jobs of type v (i.e., the queueing prefix of ȷ) in the level-p busy

window [t1, t1 + BWp [ amounts to evaluate:

• the service provided to the possible non preemptable seg-

ment of a lower priority job;

• the workload of jobs of task Gi with the priority p (minus

the cost of ȷ’s last segment);

• the workload of jobs of vertices from Gi in hp(p)
• the workload of other jobs with priorities in hep(p).

Thus, the length of the q-th queueing prefix of jobs of type v , de-
noted by Qv,ρ (q), can be defined as the least positive fixed point

of the following equation.

∆ =servlp(p ),σ (t1,∆)

+wlep(p )∩Vi ,ρ (t1, (a( ȷ) − t1 + 1)) − last (⃗c( ȷ)) + 1

+wlhp(p )∩Vi ,ρ (t1,∆)

+wlhep(p )\Vi ,ρ (t1,∆)

(13)

6.2 Basic lemmas

To bound BWp and Qv,ρ (q) we rely on the following lemma.

Lemma 1 (⋆). Let f , g : N→ N be two functions and ∆1 and ∆2 be
fixed points of the equations ∆ = f (∆) and ∆ = g(∆) then, if for all
x : N, f (x ) ≤ д(x ) and, for all x : N+, x < ∆1, we have x < f (x ),
then ∆1 ≤ ∆2.

Proof. Easy proof by contradiction. □

Using this lemma the proof thatBW +p,π andQ+v,π (q) upper bound

BWp and Qv,ρ (q) respectively, amounts to show that serv and wl
are increasing and to compare the rhs of their recursive definitions.

A key step to this aim is to bound the workload of a set of jobs

of types in V during a busy window by the workload of the set

of vertices in V of the path representing that busy window. More

generally, we prove the following lemma:

Lemma 2. Let ∆ be a time interval and let π := {π1, . . . ,πn } be the
system path representing ρ̂/[t1,t1+∆[ i.e., ρ̂/[t1,t1+∆[ ∼ π , then

wlV ,ρ (t1,∆) ≤ wl+V ,π (∆) (14)

Furthermore, that bound is tight.

Proof. The arrival sequence ρ can be decomposed into n inde-

pendent task-level job arrival sequences {ρ1, . . . , ρn } where each
ρx is the arrival sequence of the jobs of task Gx . Then,

wlV ,ρ (t1,∆) =
n∑

x=1
wlV ,ρx (t1,∆)

Recall the definition of

wl+V ,π (∆) :=
n∑

x=1
cost ( |pre∆+J(fst (πx )) (πx )|V )

Therefore, it is sufficient to prove, for all task Gx that

wlV ,ρx (t1,∆) ≤ cost ( |pre∆+J(fst (πx )) (πx )|V )

We show that the workload of ρ̂x/[t1,t1+∆[ is maximal when:

(1) any two consecutive jobs of ρx are separated by their mini-

mum inter-arrival time d ;
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(2) all jobs take their maximum cost (i.e.,WCET) C;
(3) the first job in the interval releases at t1 after having expe-

rienced its maximum release jitter (J(fst (πx ))) whereas the
jitter of all other jobs is null.

When these three conditions are met, the value of wlV ,ρx
(t1,∆)

is maximal and exactly equal to cost ( |pre∆+J(fst (πx )) (πx )|V ). That

directly implies Lemma 2. □

6.3 Correctness of Πv
Σ

As a first step towards the correctness proof of the RTA, we must

show that any possible level-p busy window is represented by one

path in Πv
Σ .

Theorem 1. Any level-p busy window is represented by at least one
path in Πv

Σ as defined in Equation 5.

Proof. It suffices to show that Wk bounds the length of any

level-p busy window. i.e.,

BWp ≤ Wk (15)

Recall that Wk is the least positive fixed point of the equation

∆ = N +
n∑

x=1
max

πx ∈Πvx (∆)
{wl+hep(p ),πx (∆)} (16)

We first prove that the rhs of Equation 16 bounds the one of Equa-

tion 17. It is fairly easy to prove that Bp ≤ N since N represents the

largest segment in the system. Furthermore, for each task Gx ∈ Σ,
we clearly have

wl+hep(p ),πx (∆) ≤ max

πx ∈Πvx (∆)
{wl+hep(p ),πx (∆)}

and therefore, for the system path and all tasks,

wl+hep(p ),π (∆) ≤
n∑

x=1
max

πx ∈Πvx (∆)
{wl+hep(p ),πx (∆)}

Then, Lemma 1 entails BW +p,π ≤ Wk and Theorem 2 permits to

establish Equation 5 by transitivity. □

6.4 Correctness of bounds for job ȷ
Now, we show the correctness of the upper/lower bounds BW +p,π ,

q+v,πi ,BW +
p,π

, Q+v,π (q) and θ
−
v,πi (q) which implies the correctness

of the upper-bound RT+π (v ) for the response time of ȷ. Let π be the

path representing the level-p busy window [t1, t1 + BWp [,

Theorem 2. Let BW +p,π be the least positive fixed point of the equa-
tion

∆ = Bp + wl+hep(p ),π (∆) (17)

then BWp ≤ BW +p,π (18)

Proof. We first prove that the rhs of Equation 17 bounds the

rhs of
∆ = servlp(p ),σ (t1,BWp ) + wlhep(p ),ρ (t1,∆) (19)

The definition of a level-p busy window implies that at most one

non-preemptable segment of any vertex in lp(p) of π can execute in

[t1, t1+BWp [. Further, such a segment (if it exists) must have started

execution before t1. Therefore, servlp(p ),σ (t1,BWp ) is bounded by

Bp . Lemma 2 ensures that the second term of the rhs of equation 19

is bounded by wl+hep(p ),π (∆). Then, Lemma 1 permits to conclude.

□

Lemma 3. The number of vertices v in πi upper-bounds q:

q ≤ q+v,πi ,BW +
p,π

(20)

Proof. This result follows by the definition of a path represent-

ing a busy window and q+v,πi ,BW +
p,π

. □

Theorem 3. Let Q+v,π (q) be the least positive fixed point of the
equation

∆ = Bp

+ wl+ep(p )∩Vi ,π (len
q
v (πi ) + 1) − last (C⃗(v )) + 1

+ wl+hp(p )∩Vi ,π (∆)

+ wl+hep(p )\Vi ,π (∆)

(21)

then it bounds the length of the q-th queueing prefix of jobs of type v
in the level-p busy window i.e.,

Qv,ρ (q) ≤ Q+v,π (q) (22)

Proof. As for Theorem 2, it suffices to prove that the rhs of Equa-
tion 21 bounds the rhs of Equation 13. We prove it by considering

each term in turn.

(1) In Theorem 2, we proved servlp(p ),σ (t1,BWp ) ≤ Bp . Further,

the definition of a queueing prefix implies that Qv,ρ (q) ≤
BWp . Therefore, for all ∆ ≤ Qv,ρ (q) (which is sufficient for

Lemma 1), servlp(p ),σ (t1,∆) ≤ servlp(p ),σ (t1,BWp ) ≤ Bp .

(2) The second term can be divided in two parts:

wl+ep(p )∩Vi ,π \vq (len
q
v (πi ) + 1) (23)

+ C(v ) − last (C⃗(v )) + 1 (24)

where vq denotes the q-th v in π .
The second term of equation 13 can be separated in two parts

as well:

wlep(p )∩Vi ,ρ\ ȷ (t1, a( ȷ) − t1 + 1) (25)

+ c( ȷ) − last (⃗c( ȷ)) + 1 (26)

Now, it is sufficient to prove that (25) ≤ (23) and (26) ≤ (24).

• According to Definition 12, the type of any job

of hep(p) ∩ Vi released in [t1, a( ȷ) + 1[ occurs

preJ(fst (πi ))+len
q
v (πi )+1

(πi ). Taking into account the mini-

mum inter-arrival time, we have

wlep(p )∩Vi ,ρ (t1, a( ȷ) − t1 + 1) ≤ wl+ep(p )∩Vi ,π (len
q
v (πi ) + 1)

If we filter out ȷ from ρ and the q-th v (job ȷ’s type) from
π , (25) ≤ (23) follows.

• By definition, we know that c⃗( ȷ) = ⟨c1, . . . , cs ⟩, C⃗(v ) =
⟨C1, . . . ,Cs ⟩ and, for all i = 1, . . . , s , ci ≤ Ci . So

s−1∑
i=1

ci ≤
s−1∑
i=1

Ci

Equivalently (c( ȷ)−last (⃗c( ȷ)) ≤ (C(v )−last (C⃗(v )). There-
fore (26) ≤ (24) follows.
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The last two inequalities between the last two terms of (21) and of

(13) follow directly from Lemma 2. □

Theorem 4. The term θ−v,πi (q) = lenqv (πi ) − J( f st (πi )) is a lower
bound of the duration between the arrival of ȷ and the beginning of
its level-p busy window.

θ−v,πi (q) ≤ a( ȷ) − t1 (27)

Proof. By cases.

(1) a( ȷ) − t1 < 0. The job ȷ arrives before t1 but releases at or after
t1 i.e., t1 ≤ a( ȷ) + j( ȷ). Constrained jitter implies that no other job

of the same task arrives before the release of ȷ. So job ȷ must be

the first vertex of πi and lenqv (πi ) = 0. By convention, j( ȷ) ≤ J(v ),
therefore −J(v ) ≤ −j( ȷ) ≤ a( ȷ) − t1 and equation 27 holds.

(2) a( ȷ) − t1 ≥ 0. Let ȷ ′ be the job corresponding to the first vertex
in πi . We know a( ȷ)−a( ȷ ′) ≥ lenqv (πi ) and j( ȷ ′) ≤ J(fst (πi )). Then,
lenqv (πi )−J(fst (πi )) ≤ a( ȷ)−a( ȷ ′)−j( ȷ ′) and since a( ȷ ′)+j( ȷ ′) ≥ t1
that is −a( ȷ ′) − j( ȷ ′) ≤ t1, equation 27 follows. □

Lemma 4. Let RT ȷ be the response time of job ȷ then

RT ȷ ≤ Q+v,π (q) − θ
−
v,πi (q) + last (C⃗(v )) − 1 (28)

Proof. By definition RT ȷ := end( ȷ) − a( ȷ). Also, when a job

begins to execute its last non-preemtable segment it cannot be

preempted until its completion. Using the notion of q-th queueing

prefix, we have

end( ȷ) = t1 +Qv,ρ (q) + last (⃗c( ȷ)) − 1

Note thatQv,ρ (q) includes the first cost unit of job ȷ’s last segment,

so we should subtract 1 from last (⃗c( ȷ)). Equivalently, we have

RT ȷ = Qv,ρ (q) − (a( ȷ) − t1) + last (⃗c( ȷ)) − 1

The result follows from Theorem 3, Theorem 4 and the fact that

costs in the model upper-bounds costs in the execution. □

6.5 Correctness of the RTA

The previous result applies to an arbitrary job ȷ of type v in a busy

window starting at t1. It can be used to upper-bound the response

times of any job of type v in that busy window, and by extension

any job of type v in the arrival sequence.

Theorem 5. The response time of any job of type v released in a
busy window starting at t1 is bounded by

max

q≤q+
v,πi ,BW

+
p,π

{Q+v,π (q) − θ
−
v,πi (q) + last (C⃗(v )) − 1} (29)

Proof. Follows from properties of max and Lemma 4. □

Theorem 6. The response time of any job of type v released in any
arrival sequence ρ ∼ Σ is bounded by

max

π ∈Πv
Σ




max

q≤q+
v,πi ,BW

+
p,π

{
Q+v,π (q) − θ

−
v,πi (q) + last (C⃗(v )) − 1

}

(30)

Proof. Follows from properties of max and Theorem 5. □

7 DISCUSSION

In this section, we discuss the significance of the presented model

and analysis in the context of our broader effort toward a Coq

library of schedulability results.

In the past decades, there have a few attempts at proving meth-

ods [13, 14] for solving real-time problems. Recently, the Prosa

library [11, 12] has been proposed to provide formal specifications

and mechanized proofs for schedulability analyses using the Coq

proof assistant. The motivation behind our general task model

for fixed priority scheduling is to add it to the Prosa library and

prove the correctness of its RTA. It can thus cover a large variety

of existing models and analyses.

7.1 Proving in Coq the RTA of Gd systems

The complete Coq proof of the RTA for Gd systems is still in

progress
7
and can be separated into two parts:

(1) The generic proof of RTAs for the JFPLP scheduling policy.

For this part, many definitions (i.e., those in Sec. 2) have been

formalized and used in Prosa, as well as a significant part of the

proof. We are actually formalizing the proof of a more general

statement, which does not rely on a task model, but on an abstract

workload function

wl+ : (ρ → N→ N→ T ) → N→ N

where: (a) the first argument (ρ → N→ N→ T ) denotes a function
taking a job arrival sequence, a time instant and a time duration and

returning an abstract candidate represented by the type T , where
candidates correspond to incomparable scenarios which must be

analyzed, e.g. paths for the Gd model; (b) the second argument

denotes a time duration such that wl+ returns the workload during

that duration. The proof as well as the analysis are then applicable

to many task models respecting the fixed priority scheduling policy,

including the Gd model, by instantiating that function.

(2) Specifying the Gd task model and instantiating the function

wl+. This part is not formalized yet; however, according to our

experience, it should not raise any issue.

7.2 Intended use of the analysis

One of our objectives is to formally certify our RTA in order to:

• compare it with existing RTAs for task models which can be

expressed by Gd, in terms of precision and time complexity;

• obtain novel machine-verified RTAs which take into account

e.g., jitter, non-preemptable segments and offsets;

• reuse the generic part of the proof to propose machine-

verified RTAs for task models beyond Gd by focusing on

upper bounding the workload.

7.3 Beyond the current analysis

By proposing a unified analysis for models as different as the DRT

model and Tindell’s offset model, our work underlines the generic

parts of the proof structure of such RTAs. Based on this, we can

now propose a framework which formalizes these steps in a generic

manner, to be reused for any new task model. Such steps include

7
For more information, please visit https://team.inria.fr/spades/generalized-digraph/.
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the use of sustainability properties [5, 11], but also strategies to

efficiently approximate the worst-case response time.

8 RELATEDWORK

Many task models have been proposed to analyze different fixed-

priority scheduling policies. Depending on their capacity to model

intra- or inter-task dependencies, those models can be divided into

three categories.

The simplest models do not consider any kind of dependency:

there is only one type of job for each task. The classic periodic task
model, presented by Liu and Layland [16] characterizes a task by

its worst-case execution time C and its activation period P . The
sporadic task model [19] generalizes activation periods of tasks by

introducing the concept of minimum inter-arrival time. Later Thiele

et al. introduced the real-time calculus [24], whose arrival curves
can model many more arrival patterns. Another category of models

considers intra-task dependencies: there may be several types of

jobs for each task. The multiframe model [18], characterizes a task

by an array of execution times (C0,C1, . . . ,CN−1) and a minimum

inter-arrival time P . A task has N types of jobs and the (i + 1)-
th job in the arrival sequence has the worst-case execution time

C (i mod N )
and arrives at least P time units after the arrival time

of the i-th job. The model (C,P ,D) extends the multiframe model

by allowing each type of job to have a different inter-arrival time

and deadline [6]. Later, Baruah introduced the recurring branching
task model [7], which adds branching structures. Each task can

be represented by a tree of job types (C,D) labeled by minimum

inter-arrival times. Two other extensions use directed acyclic graphs
instead of trees: the recurring real-time task model [8, 9]), and

the non-cyclic recurring real-time task model [4]. More recently,

Stigge et al. introduced the DRT task model [21] and its extended

version [22] that use arbitrary graphs. None of those models allows

to model inter-task dependencies.

One of the most classic task model taking inter-task dependen-

cies into account is Tindell’s offsets model. A system is made of a

collection of transactions regrouping periodic tasks having fixed

timing relations. More recently, the DRT model was extended by

Mohaqeqi et al. to allow the RDV mechanism [17] and by Abdullah

et al. to take into account shared resources [3].

To the best of our knowledge, none of the previous models is

general enough to express at the same time intra- and inter-task

dependencies as well as arrival curves. Ourmodel is a generalization

in this respect. The formal certification of its associated RTA should

permit to factorize the correctness proofs of many analyses.

9 CONCLUSION

In this paper, we have introduced the Gd model, a generalization of

the DRT task model that is expressive enough to model and analyze

many different fixed-priority systems. In particular, Gd can express

dependencies between jobs as well as tasks. The work presented in

this paper is motivated by our ongoing contribution to Prosa, a Coq

library of models and analyses of real-time systems. The Gd model

and its associated RTA provide the needed foundations for a Coq

response time analysis of complex systems, in particular regarding

dependencies. Future work includes:

• The complete Coq formalization of the presented RTA, which

is still in progress.

• A formal comparison of our proposed analysis with the ex-

isting RTAs of specific types of DRTs, e.g., constrained deadline

under job-level FPP or task-level FPNP [23], and arbitrary deadline

under task-level FPP [20]. Indeed, our RTA for Gd uses a queueing

prefix technique which may require a smaller number of paths to

be analyzed.

• A practical study of the complexity of the analysis and of the

possible trade-off between accuracy of the computed bounds and

runtime performance of an RTA implementation.

• Extensions to more complex models, in particular to task

chains and multiprocessor systems.

• A theoretical connection between the RTA proposed here and

the notion of sustainability.

We believe that this work represents a significant step toward inte-

grating previously independent features into a unified framework

for the response time analysis of real-time systems.
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