
Using Bayesian Networks to estimate Strategic Indicators in the

context of Rapid Software Development

Martí Manzano
Universitat Politècnica de Catalunya

Spain
mmanzano@essi.upc.edu

Emilia Mendes
University of Oulu

Finland
Emilia.Mendes@oulu.fi

Cristina Gómez
Universitat Politècnica de Catalunya

Spain
cristina@essi.upc.edu

Claudia Ayala
Universitat Politècnica de Catalunya

Spain
cayala@essi.upc.edu

Xavier Franch
Universitat Politècnica de Catalunya

Spain
franch@essi.upc.edu

ABSTRACT
Background: During Rapid Software Development, a large

amount of project and development data can be collected from

different and heterogeneous data sources. Aims: Design a

methodology to process these data and turn it into relevant

strategic indicators to help companies make meaningful decisions.

Method: We adapt an existing methodology to create and estimate

strategic indicators using Bayesian Networks in the context of

Rapid Software Development, and applied it to a use case.

Results: Applying the methodology in the use case, we create a

model to predict product quality based on software factors and

metrics, using companies’ business knowledge and collected data.

Conclusions: We proved the methodology’s feasibility and

obtained positive feedback from the company’s use case.

CCS CONCEPTS

• Software and its engineering → Software creation and

management

KEYWORDS

Strategic indicator, Bayesian Network, Decision Making, Rapid

software development

1 Introduction

Rapid Software Development (RSD) is the organizational

capability to develop, release, and learn from software in rapid

cycles without compromising its quality [1]. During RSD, a large

amount of project and development data (e.g., number of to do

issues, acceptance-testing time) is available in several data

sources (e.g., JIRA, Git). These data may be processed and

analyzed with the purpose of turning into meaningful and relevant

Strategic Indicators (SIs) to inform decision-makers about how

the software development is progressing in each iteration, what is

especially valuable in RSD. Examples of SIs are customer

satisfaction, estimated effort and, in general, any aspect that a

company considers relevant for strategic decision-making.

In this context, defining SIs becomes a challenge. On the one

hand, the aggregation of simple data into SIs has not been much

investigated. On the other hand, this aggregation cannot be

realistically expected to be universal, but instead each company

may have its own intricacies yielding to different definitions. For

satisfying both requirements, Bayesian Networks (BNs) emerge as

a promising approach, because their definition does not require

any existing framework to exist but only the availability of data

and experts.

The two goals of this paper are: 1) To adapt an existing

methodology for the construction and validation of SI prediction

models using Bayesian Networks (BNs) in the context of RSD,

and 2) To apply the methodology within the context of a use case

at a company that uses RSD, to prove its feasibility.

As far as we know, no previous study has proposed a general

methodology for defining SIs prediction models within the

context of RSD [2]. However, there exist several studies

proposing individual SIs using BNs in the area of software

engineering, specifically, to estimate “teamwork quality” [3], to

model quality in software projects [4], to estimate effort in

software development [5], for requirements engineering [6], to

predict software defects [7], and to estimate value and help

decision making [8,9]. The difference between these works and

ours is that we build a SI BN prediction model based upon

companies’ business knowledge and data automatically measured

from heterogeneous data sources, and within the context of RSD.

The remaining of this paper is organized as follows: Section 2

introduces the context of this work. Section 3 describes the

methodology used to build and validate SI prediction models and

its application to a real scenario is presented in Section 4. Finally,

conclusions, comments and future work are given in Section 5.

2 The Q-Rapids Approach

This work is carried out in the context of the Q-Rapids project1.

Q-Rapids is a data-driven, quality-aware RSD tooled method in

which quality requirements are identified from available data and

evaluated with respect to some selected SIs [10]. Q-Rapids aims

at increasing software quality and improving the development

1 www.q-rapids.eu

Definitive Version of Record in the ACM Digital Library: https://dl.acm.org/citation.cfm?id=3273940

process through: 1) Gathering and analyzing data from project

management tools, software repositories, quality of service and

system usage to continuously assess software quality; 2)

Providing decision makers with a strategic dashboard to help them

make requirements-related strategic decisions; 3) Extending the

RSD process in a way that favors software quality, by considering

the integration of quality and functional requirements, as well as

their management.

In the Q-Rapids approach, the strategic dashboard visualizes

information about a set of selected SIs. A SI (e.g., product quality,

time to market) is defined as an aspect that the company considers

relevant for the decision-making process [10]. In order to define

SIs, the Q-Rapids Quality Model [11], links the data gathered

from some data sources to the SIs rendered in the dashboard.

Concretely, Metrics are computed from data gathered via Data

Sources relating to a software product and development process.

The gathering and computation is achieved using software data

collectors, which periodically gather heterogeneous raw data from

different data sources’ repositories (e.g., SonarQube and Jira) and

aggregate them into Metrics measured within the [0, 1] range. The

Metrics are then combined into Quality Factors (QFs) via custom

linear aggregation functions, and are measured within the same

range. These QFs can be related to the product being developed

(Product Factors) or to the software development process itself

(Process Factors). Finally, QFs are aggregated into Strategic

Indicators. More details on the Q-Rapids Quality Model and Q-

Rapids approach can be found in [12,13].

3 The Methodology

In this section, we introduce the methodology used to build a SI

BN prediction model in the context of RSD. It is based on the

EKEBN (Expert-based Knowledge Engineering of Bayesian

Networks) methodology [14] and the Weighted Sum Algorithm

(WSA) [8], adapted to the Q-Rapids context. BNs allow

incorporating company business knowledge and representing

uncertainty that is inherent in a complex domain. Such

representation and quantification use probabilities, and model the

cause and effect relationships between the variables of a BN

model [8]. BN models can be created using expert knowledge,

pure data-driven approaches or a combination of both. Next

sections describe the steps of our hybrid approach.

3.1 Structure Building

This step consists in the construction of the directed acyclic graph

(DAG) that represents the BN structure. Such DAG includes,

within the context of this work, two types of nodes:

product/process QFs and a SI. Further, such DAG also includes

arrows between nodes, which represent their cause and effect

relationships. Herein a SI node is always the destination of arrows

from QF nodes, which means that QFs are SI’s predictors. While

building a DAG, a company also needs to decide upon: i) the QFs

that will be used to predict the chosen SI; ii) the cause and effect

relationships between nodes; and iii) categorical scales to measure

each of the nodes. In the case of QFs, it is also important to decide

how each scale point matches the [0, 1] interval. For instance, a

given QF node may have three categories: Low, Medium, and

High, corresponding respectively to ranges [0 - 0.6), [0.6 - 0.85)

and [0.85 - 1].

3.2 Uncertainty Quantification

The uncertainty quantification step represents the probabilistic

quantification of every node’s Conditional Probability Table

(CPT). These probabilities are entered in order to define and

quantify the relationships between these nodes, to reflect the

knowledge of the expert stakeholders on the cause-effect relations

between the selected QFs, and between those and the SI in the

model being built. In our case, for parent nodes, i.e., nodes that do

not have arrows pointing to them, probabilities are computed by

the frequency quantification of the historical data gathered for the

QFs associated with these nodes, using the corresponding scale

types (categories).

To quantify the probabilities of the child nodes a semi-

automatic approach is used based on the Weighted Sum

Algorithm (WSA) [15]. The WSA uses expert knowledge to

identify the probabilities of the most compatible states for a child

node’s parent nodes, and to assign weights to the parent nodes,

representing their importance when computing the child’s

probabilities. A detailed explanation of the WSA algorithm is

given in [8]. Such solution reduces the number of probabilities to

be elicited. After finishing this step, the actual BN model is ready

for its validation.

3.3 Model Validation

This step aims to verify the accuracy of the model and recalibrate

it, if necessary. Generally, two validation methods are used in

EKEBN: Model Walkthrough to assess the reliability of the model

in terms of subjective accuracy [16,14] and Outcome Adequacy

[17], to evaluate the model using real past scenarios. Within the

context of this work, for Model Walkthrough, stakeholders have

to come up with hypothetical scenarios, which represent

hypothetical states for the QFs, and the expected SI state that

should present the highest probability. The scenarios are entered

in the BN model as evidence, and if the SI’s state with the highest

probability does not match to the experts’ expectation, the model

is recalibrated until it matches.

The Outcome Adequacy uses real past data to assess if the

model is accurate. Therefore, it is necessary to dispose of past

statuses of QFs and the resulting value of the SI computed using

custom functions prior to the BN creation. If the SI’s computed

does not match to the output obtained by the BN, the model is

recalibrated.

4 Pilot Use Case

A real scenario was considered in a company working in the

telecommunications domain to create a company-specific SI BN

prediction model. For this purpose, a workshop to apply the

methodology introduced in Section 3 was conducted, with the

help of three stakeholders: a software engineer with more than 4

years of experience, a project manager with almost 2 years of

experience, and a software development specialist with more than

10 years of experience. The workshop lasted for 4 hours, divided

into 2 sessions of 2 hours each. The first one covered the structure

building and uncertainty quantification and the second one

covered the model validation. The last participant only attended

the second session. As an introduction, in the first session an

example presenting the rationale of BNs was shown, and concepts

like probabilities and causal relationships were clarified, along

with the objectives and the results to emerge from the workshop.

4.1 Company Description

The company providing the use case develops distributed systems

for telecommunication networks using a release-based

development process based on agile and lean principles. They

manage multiple product lines each one having their own

products, combining hardware and software components. In

relation to quality, they are interested in defining methodological

support to manage quality requirements that are common to their

product lines. To this aim, they want to define and manipulate

appropriate SIs visualized through a strategic dashboard. The

workshop reported next is the first step in such definition.

4.2 Structure Building

In this part of the workshop, the stakeholders decided which of the

QFs being computed in their premises would take part in the SI

assessment model. The SI selected was Product Quality¸ based on

the Code Quality and Software Stability QFs, which had been

computed and stored for six months in a software-testing

environment. The first factor, Code Quality, is computed from

several software metrics related to the software complexity, ratio

of comments and percentage of duplicated code. The second

factor, Software Stability, is computed from ratio of bugs’ related

metrics. These factors are aggregated from metrics coming out of

several data sources like SonarQube, Jira and Jenkins. Fig. 1.

shows the cause and effect relationships between QFs and the SI.

Figure 1: Product Quality BN model

The two domain experts defined the following scale types to

measure every BN node: Very Low, Low, Medium, High and Very

High. The ranges for each scale type are as follows:

Code Quality: [0 – 0.805), [0.805 – 0.807), [0.807 – 0.808),

[0.808 – 0.9), [0.9 – 1).

Software Stability/Product Quality: [0 – 0.7), [0.7 – 0.85),

[0.85 – 0.95), [0.95 – 0.99), [0.99 – 1).

Ranges provided for Code Quality node are narrow due to the

low variance of its historical data. This part of the workshop,

along with the introduction, lasted for 1.5 hours.

4.3 Uncertainty Quantification

The probabilities elicitation process for each node was the

following:

4.3.1 Code Quality. This is a parent node; thus, its probability

quantification was done using historical data of the computed QFs

over a period of 6 months, discretized according to scale types and

their correspondence in the [0, 1] range. The probabilities for this

node’s CPT are shown in Fig. 2 (a).

4.3.2 Software Stability. The probabilities for this node (see

Table 1) were directly elicited from the stakeholders,

conditionally on each of its parent node’s states. For example,

when Code Quality is ‘Very High’, there is a 70% probability of

Software Stability being also ‘Very High’, a 20% of being ‘High’

and a 10% of being ‘Medium’. Note that the WSA was not used

here because it can only be used when a child node has at least

two parent nodes.

Table 1: Elicited CPT for the node Software Stability

 Software Stability (%)

Code Quality Very Low Low Medium High Very High

Very Low 70 20 10 0 0

Low 65 15 20 0 0

Medium 20 30 40 10 0

High 0 20 30 45 5

Very High 0 0 10 20 70

Table 2: Elicited partial CPT for the node Product Quality

Parent nodes Product Quality (%)

Code

Quality
(w = 30%)

Software

Stability
(w = 70%)

Very

Low

Low Medium High Very

High

Very Low Very Low 100 0 0 0 0

Low Very Low 95 5 0 0 0

Medium Medium 0 50 50 0 0

High High 0 0 20 75 5

Very High Very High 0 0 0 10 90

Very Low Very Low 100 0 0 0 0

Medium Low 40 55 5 0 0

Medium Medium 0 50 50 0 0

High High 0 0 20 75 5

Very High Very High 0 0 0 10 90

4.3.3 Product Quality. We used the semi-automatic technique

WSA to ease the elicitation task. As both its parent nodes and the

SI node have five scale types, a manual elicitation of all

probabilities would require eliciting 53 probabilities. By using the

WSA, the number of probabilities to be elicited decreased from

125 to 50 (i.e. 25 rows of 5 probabilities to 10 rows of 5

probabilities, one per SI’s category, respectively). For example,

when Code Quality is ‘Very Low’, the elicited most compatible

state for the parent node Software Stability is also ‘Very Low’,

and given such combination, the probability of Product Quality

being ‘Very Low‘ is 100%, and 0% for the other 4 states. The

WSA required weights for the parental nodes were also elicited

from the two stakeholders, and are shown in Table 2, along with

the partial CPT for Product Quality node. These data was entered

into the WSA to infer the full CPT. The uncertainty quantification

step lasted for 30 minutes. Fig. 2 (a) shows the resulting BN.

Figure 2: (a) BN obtained from steps 4.2 and 4.3. (b) BN

obtained from step 4.4

4.4 Model Validation

In the two-hour second workshop session, we carried out the

Model Walkthrough validation with the three stakeholders.

Having the third stakeholder only in the validation step allowed

achieving a more robust validation [18]. It is part of our future

work to perform the Outcome Adequacy validation when building

larger SI BN models for which SIs had been automatically

measured during a past period of time, with a formula defined by

the company’s domain experts. As this requirement was not met

in this use case, only Model Walkthrough validation was carried

out. Stakeholders were asked to prepare jointly 10 hypothetical

scenarios (see Table 3) for the SI BN model shown in Fig. 2 (a).

Such scenarios were entered in the SI BN model one at a time,

and were used to check whether the model provided the highest

probability to the same state in the SI node corresponding to the

stakeholders’ expectation. In 4 out of the 10 scenarios, the SI

node’s CPT needed to be recalibrated (see Table 3). Recalibration

represented the change of probabilities in order to match

stakeholders’ expectations. Fig. 2 (b) shows the validated BN.

Table 3: Scenarios used for model validation

Code Quality Software Stability Product Quality Required calibration

Low Low Low Yes

Low High Medium Yes

Medium High Medium Yes

High Medium Medium No

High High High No

Very Low Very Low Very Low No

Very Low Medium Low No

Very Low Low Very Low Yes

Very High Very High Very High No

Very High High High No

5 Conclusions And Future Work

This work adapts an existing methodology to build SI prediction

models for RSD, and presents its application to a use case using a

combination of real data from a company, along with the expertise

of the company’s stakeholders. Our methodology is especially

useful for RSD because it permits to recalibrate SI prediction

models in an iterative and incremental way. After applying the

methodology to the use case, the stakeholders claimed that this

kind of SI prediction models could be useful to support their

software quality decision-making processes.

The work introduced in this paper presents some limitations to

be addressed as future work. Specifically, it is clear that the

created model is simplistic in terms of the number of QFs

included in the model. The small number of domain experts who

provided the business knowledge during the workshop can also

have an effect on the model’s accuracy, causing it to be biased.

Moreover, the Outcome Adequacy validation was not conducted

since product quality was not being computed prior to the BN

construction. Additionally, we need to compare our methodology

with others using different models, as for instance the GSRM

model to predict release dates in RSD [19].

As ongoing work, and to show the scalability of our proposal,

we are now working on defining more complex SIs for software

products and APIs of other companies.

ACKNOWLEDGMENTS

This work is a result of the Q-Rapids project, which has received

funding from the European Union’s Horizon 2020 research and

innovation program under grant agreement N° 732253. Also, this

work is partially funded by the Spanish project GENESIS

(TIN2016-79269-R). We thank to the company participating in

the workshop for defining a prediction model for a SI.

REFERENCES
[1] L. Guzmán et al. “How Can Quality Awareness Support Rapid Software

Development? - A Research Preview”. REFSQ 2017.

[2] A. Tosun, A. B. Bener, and S. Akbarinasaji. “A systematic literature review on

the applications of Bayesian networks to predict software quality”. SQJ 25(1),

2017.

[3] A. Freire, M. Perkusich, R. Saraiva, H. Almeida, and A. Perkusich. “A

Bayesian networks-based approach to assess and improve the teamwork quality

of agile teams”. IST 100, 2018.

[4] N. E. Fenton, P. Hearty, M. Neil, and Ł. Radliński. “Software Project and

Quality Modelling Using Bayesian Networks”. Artif. Intell. Appl. Improv.

Softw. Eng. Dev. New Prospect., 2009.

[5] L. Radlinski. “A survey of bayesian net models for software development effort

prediction,” Int. J. Softw. Eng. Comput. 2(2), 2010.

[6] I. M. del Águila and J. del Sagrado. “Bayesian networks for enhancement of

requirements engineering: a literature review”. Requir. Eng., 21(4), 2016.

[7] A. Okutan, Olcay, T. Yıldız, A. Okutan, and O. T. Yıldız, “Software defect

prediction using Bayesian networks”. Empir Softw. Eng, 2014.

[8] E. Mendes, P. Rodriguez, V. Freitas, S. Baker, and M. A. Atoui. “Towards

improving decision making and estimating the value of decisions in value-based

software engineering: the VALUE framework”. SQJ 26(2), 2017.

[9] A. T. Misirli and A. B. Bener. “Bayesian networks for evidence-based decision-

making in software engineering”. IEEE Trans. Softw. Eng., 2014.

[10] C. Gómez et al. “Towards an Ontology for Strategic Decision Making: The

Case of Quality in Rapid Software Development Projects”. MREBA@ER 2017.

[11] S. Martínez-Fernández, A. Jedlitschka, L. Guzmán, A. M. Vollmer.

“A Quality Model for Actionable Analytics in Rapid Software Development”.

CoRR abs/1803.09670, 2018.

[12] X. Franch et al. “Data-driven requirements engineering in agile projects: the Q-

rapids approach”. REW 2017.

[13] X. Franch et al. “Data-Driven Elicitation, Assessment and Documentation of

Quality Requirements in Agile Software Development”. CAiSE 2018.

[14] E. Mendes. “Using knowledge elicitation to improve Web effort estimation:

Lessons from six industrial case studies”. ICSE 2012.

[15] B. Das. “Generating Conditional Probabilities for Bayesian Networks: Easing

the Knowledge Acquisition Problem,” CoRR, 2004.

[16] E. A. Drost. “Validity and Reliability in Social Science Research”. Educ. Res.

Perspect., 2011.

[17] E. Mendes, Practitioner’s knowledge representation: A pathway to improve

software effort estimation. Springer, 2014.

[18] J. Pitchforth and K. Mengersen, “A proposed validation framework for expert

elicited Bayesian Networks,” Expert Syst. Appl., 40(1), 2013.

[19] H. Washizaki and K. Honda Fukazawa. “Predicting release time for open source

software based on the generalized software reliability model”. AGILE, 2015.

http://dblp.uni-trier.de/pers/hd/j/Jedlitschka:Andreas
http://dblp.uni-trier.de/pers/hd/g/Guzm=aacute=n:Liliana
http://dblp.uni-trier.de/pers/hd/v/Vollmer:Anna_Maria
http://dblp.uni-trier.de/db/journals/corr/corr1803.html#abs-1803-09670

