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ABSTRACT 
Background: During Rapid Software Development, a large 

amount of project and development data can be collected from 

different and heterogeneous data sources. Aims: Design a 

methodology to process these data and turn it into relevant 

strategic indicators to help companies make meaningful decisions. 

Method: We adapt an existing methodology to create and estimate 

strategic indicators using Bayesian Networks in the context of 

Rapid Software Development, and applied it to a use case. 

Results: Applying the methodology in the use case, we create a 

model to predict product quality based on software factors and 

metrics, using companies’ business knowledge and collected data. 

Conclusions: We proved the methodology’s feasibility and 

obtained positive feedback from the company’s use case. 

CCS CONCEPTS 

• Software and its engineering → Software creation and

management 
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Strategic indicator, Bayesian Network, Decision Making, Rapid 

software development 

1 Introduction 

Rapid Software Development (RSD) is the organizational 

capability to develop, release, and learn from software in rapid 

cycles without compromising its quality [1]. During RSD, a large 

amount of project and development data (e.g., number of to do 

issues, acceptance-testing time) is available in several data 

sources (e.g., JIRA, Git). These data may be processed and 

analyzed with the purpose of turning into meaningful and relevant 

Strategic Indicators (SIs) to inform decision-makers about how 

the software development is progressing in each iteration, what is 

especially valuable in RSD. Examples of SIs are customer 

satisfaction, estimated effort and, in general, any aspect that a 

company considers relevant for strategic decision-making. 

In this context, defining SIs becomes a challenge. On the one 

hand, the aggregation of simple data into SIs has not been much 

investigated. On the other hand, this aggregation cannot be 

realistically expected to be universal, but instead each company 

may have its own intricacies yielding to different definitions. For 

satisfying both requirements, Bayesian Networks (BNs) emerge as 

a promising approach, because their definition does not require 

any existing framework to exist but only the availability of data 

and experts. 

The two goals of this paper are: 1) To adapt an existing 

methodology for the construction and validation of SI prediction 

models using Bayesian Networks (BNs) in the context of RSD, 

and 2) To apply the methodology within the context of a use case 

at a company that uses RSD, to prove its feasibility. 

As far as we know, no previous study has proposed a general 

methodology for defining SIs prediction models within the 

context of RSD [2]. However, there exist several studies 

proposing individual SIs using BNs in the area of software 

engineering, specifically, to estimate “teamwork quality” [3], to 

model quality in software projects [4], to estimate effort in 

software development [5], for requirements engineering [6], to 

predict software defects [7], and to estimate value and help 

decision making [8,9]. The difference between these works and 

ours is that we build a SI BN prediction model based upon 

companies’ business knowledge and data automatically measured 

from heterogeneous data sources, and within the context of RSD. 

The remaining of this paper is organized as follows: Section 2 

introduces the context of this work. Section 3 describes the 

methodology used to build and validate SI prediction models and 

its application to a real scenario is presented in Section 4. Finally, 

conclusions, comments and future work are given in Section 5. 

2 The Q-Rapids Approach 

This work is carried out in the context of the Q-Rapids project1. 

Q-Rapids is a data-driven, quality-aware RSD tooled method in 

which quality requirements are identified from available data and 

evaluated with respect to some selected SIs [10]. Q-Rapids aims 

at increasing software quality and improving the development 

1 www.q-rapids.eu 
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process through: 1) Gathering and analyzing data from project 

management tools, software repositories, quality of service and 

system usage to continuously assess software quality; 2) 

Providing decision makers with a strategic dashboard to help them 

make requirements-related strategic decisions; 3) Extending the 

RSD process in a way that favors software quality, by considering 

the integration of quality and functional requirements, as well as 

their management. 

In the Q-Rapids approach, the strategic dashboard visualizes 

information about a set of selected SIs. A SI (e.g., product quality, 

time to market) is defined as an aspect that the company considers 

relevant for the decision-making process [10]. In order to define 

SIs, the Q-Rapids Quality Model [11], links the data gathered 

from some data sources to the SIs rendered in the dashboard. 

Concretely, Metrics are computed from data gathered via Data 

Sources relating to a software product and development process. 

The gathering and computation is achieved using software data 

collectors, which periodically gather heterogeneous raw data from 

different data sources’ repositories (e.g., SonarQube and Jira) and 

aggregate them into Metrics measured within the [0, 1] range. The 

Metrics are then combined into Quality Factors (QFs) via custom 

linear aggregation functions, and are measured within the same 

range. These QFs can be related to the product being developed 

(Product Factors) or to the software development process itself 

(Process Factors). Finally, QFs are aggregated into Strategic 

Indicators. More details on the Q-Rapids Quality Model and Q-

Rapids approach can be found in [12,13]. 

3  The Methodology 

In this section, we introduce the methodology used to build a SI 

BN prediction model in the context of RSD. It is based on the 

EKEBN (Expert-based Knowledge Engineering of Bayesian 

Networks) methodology [14] and the Weighted Sum Algorithm 

(WSA) [8], adapted to the Q-Rapids context. BNs allow 

incorporating company business knowledge and representing 

uncertainty that is inherent in a complex domain. Such 

representation and quantification use probabilities, and model the 

cause and effect relationships between the variables of a BN 

model [8]. BN models can be created using expert knowledge, 

pure data-driven approaches or a combination of both. Next 

sections describe the steps of our hybrid approach. 

3.1 Structure Building 

This step consists in the construction of the directed acyclic graph 

(DAG) that represents the BN structure. Such DAG includes, 

within the context of this work, two types of nodes: 

product/process QFs and a SI. Further, such DAG also includes 

arrows between nodes, which represent their cause and effect 

relationships. Herein a SI node is always the destination of arrows 

from QF nodes, which means that QFs are SI’s predictors. While 

building a DAG, a company also needs to decide upon: i) the QFs 

that will be used to predict the chosen SI; ii) the cause and effect 

relationships between nodes; and iii) categorical scales to measure 

each of the nodes. In the case of QFs, it is also important to decide 

how each scale point matches the [0, 1] interval. For instance, a 

given QF node may have three categories: Low, Medium, and 

High, corresponding respectively to ranges [0 - 0.6), [0.6 - 0.85) 

and [0.85 - 1].  

3.2 Uncertainty Quantification 

The uncertainty quantification step represents the probabilistic 

quantification of every node’s Conditional Probability Table 

(CPT). These probabilities are entered in order to define and 

quantify the relationships between these nodes, to reflect the 

knowledge of the expert stakeholders on the cause-effect relations 

between the selected QFs, and between those and the SI in the 

model being built. In our case, for parent nodes, i.e., nodes that do 

not have arrows pointing to them, probabilities are computed by 

the frequency quantification of the historical data gathered for the 

QFs associated with these nodes, using the corresponding scale 

types (categories). 

To quantify the probabilities of the child nodes a semi-

automatic approach is used based on the Weighted Sum 

Algorithm (WSA) [15]. The WSA uses expert knowledge to 

identify the probabilities of the most compatible states for a child 

node’s parent nodes, and to assign weights to the parent nodes, 

representing their importance when computing the child’s 

probabilities. A detailed explanation of the WSA algorithm is 

given in [8]. Such solution reduces the number of probabilities to 

be elicited. After finishing this step, the actual BN model is ready 

for its validation. 

3.3 Model Validation 

This step aims to verify the accuracy of the model and recalibrate 

it, if necessary. Generally, two validation methods are used in 

EKEBN: Model Walkthrough to assess the reliability of the model 

in terms of subjective accuracy [16,14] and Outcome Adequacy 

[17], to evaluate the model using real past scenarios. Within the 

context of this work, for Model Walkthrough, stakeholders have 

to come up with hypothetical scenarios, which represent 

hypothetical states for the QFs, and the expected SI state that 

should present the highest probability. The scenarios are entered 

in the BN model as evidence, and if the SI’s state with the highest 

probability does not match to the experts’ expectation, the model 

is recalibrated until it matches. 

The Outcome Adequacy uses real past data to assess if the 

model is accurate. Therefore, it is necessary to dispose of past 

statuses of QFs and the resulting value of the SI computed using 

custom functions prior to the BN creation. If the SI’s computed 

does not match to the output obtained by the BN, the model is 

recalibrated. 

4 Pilot Use Case 

A real scenario was considered in a company working in the 

telecommunications domain to create a company-specific SI BN 

prediction model. For this purpose, a workshop to apply the 

methodology introduced in Section 3 was conducted, with the 

help of three stakeholders: a software engineer with more than 4 

years of experience, a project manager with almost 2 years of 

experience, and a software development specialist with more than 



 

10 years of experience. The workshop lasted for 4 hours, divided 

into 2 sessions of 2 hours each. The first one covered the structure 

building and uncertainty quantification and the second one 

covered the model validation. The last participant only attended 

the second session. As an introduction, in the first session an 

example presenting the rationale of BNs was shown, and concepts 

like probabilities and causal relationships were clarified, along 

with the objectives and the results to emerge from the workshop. 

4.1 Company Description 

The company providing the use case develops distributed systems 

for telecommunication networks using a release-based 

development process based on agile and lean principles. They 

manage multiple product lines each one having their own 

products, combining hardware and software components. In 

relation to quality, they are interested in defining methodological 

support to manage quality requirements that are common to their 

product lines. To this aim, they want to define and manipulate 

appropriate SIs visualized through a strategic dashboard. The 

workshop reported next is the first step in such definition. 

4.2 Structure Building 

In this part of the workshop, the stakeholders decided which of the 

QFs being computed in their premises would take part in the SI 

assessment model. The SI selected was Product Quality¸ based on 

the Code Quality and Software Stability QFs, which had been 

computed and stored for six months in a software-testing 

environment. The first factor, Code Quality, is computed from 

several software metrics related to the software complexity, ratio 

of comments and percentage of duplicated code. The second 

factor, Software Stability, is computed from ratio of bugs’ related 

metrics. These factors are aggregated from metrics coming out of 

several data sources like SonarQube, Jira and Jenkins. Fig. 1. 

shows the cause and effect relationships between QFs and the SI. 

 

Figure 1: Product Quality BN model 

The two domain experts defined the following scale types to 

measure every BN node: Very Low, Low, Medium, High and Very 

High. The ranges for each scale type are as follows:  

Code Quality: [0 – 0.805), [0.805 – 0.807), [0.807 – 0.808), 

[0.808 – 0.9), [0.9 – 1). 

Software Stability/Product Quality: [0 – 0.7), [0.7 – 0.85), 

[0.85 – 0.95), [0.95 – 0.99), [0.99 – 1). 

Ranges provided for Code Quality node are narrow due to the 

low variance of its historical data. This part of the workshop, 

along with the introduction, lasted for 1.5 hours. 

4.3 Uncertainty Quantification 

The probabilities elicitation process for each node was the 

following: 

4.3.1 Code Quality. This is a parent node; thus, its probability 

quantification was done using historical data of the computed QFs 

over a period of 6 months, discretized according to scale types and 

their correspondence in the [0, 1] range. The probabilities for this 

node’s CPT are shown in Fig. 2 (a). 

4.3.2 Software Stability. The probabilities for this node (see 

Table 1) were directly elicited from the stakeholders, 

conditionally on each of its parent node’s states. For example, 

when Code Quality is ‘Very High’, there is a 70% probability of 

Software Stability being also ‘Very High’, a 20% of being ‘High’ 

and a 10% of being ‘Medium’. Note that the WSA was not used 

here because it can only be used when a child node has at least 

two parent nodes. 

Table 1: Elicited CPT for the node Software Stability 

 Software Stability (%) 

Code Quality Very Low Low Medium High Very High 

Very Low 70 20 10 0 0 

Low 65 15 20 0 0 

Medium 20 30 40 10 0 

High 0 20 30 45 5 

Very High 0 0 10 20 70 

Table 2: Elicited partial CPT for the node Product Quality 

Parent nodes Product Quality (%) 

Code 

Quality  
(w = 30%) 

Software 

Stability  
(w = 70%) 

Very 

Low 

Low Medium High Very 

High 

Very Low Very Low 100 0 0 0 0 

Low Very Low 95 5 0 0 0 

Medium Medium 0 50 50 0 0 

High High 0 0 20 75 5 

Very High Very High 0 0 0 10 90 

Very Low Very Low 100 0 0 0 0 

Medium Low 40 55 5 0 0 

Medium Medium 0 50 50 0 0 

High High 0 0 20 75 5 

Very High Very High 0 0 0 10 90 

 

4.3.3 Product Quality. We used the semi-automatic technique 

WSA to ease the elicitation task. As both its parent nodes and the 

SI node have five scale types, a manual elicitation of all 

probabilities would require eliciting 53 probabilities. By using the 

WSA, the number of probabilities to be elicited decreased from 

125 to 50 (i.e. 25 rows of 5 probabilities to 10 rows of 5 

probabilities, one per SI’s category, respectively). For example, 

when Code Quality is ‘Very Low’, the elicited most compatible 

state for the parent node Software Stability is also ‘Very Low’, 

and given such combination, the probability of Product Quality 

being ‘Very Low‘ is 100%, and 0% for the other 4 states. The 

WSA required weights for the parental nodes were also elicited 

from the two stakeholders, and are shown in Table 2, along with 

the partial CPT for Product Quality node. These data was entered 

into the WSA to infer the full CPT. The uncertainty quantification 

step lasted for 30 minutes. Fig. 2 (a) shows the resulting BN. 



 

 

 

Figure 2: (a) BN obtained from steps 4.2 and 4.3. (b) BN 

obtained from step 4.4 

4.4 Model Validation 

In the two-hour second workshop session, we carried out the 

Model Walkthrough validation with the three stakeholders. 

Having the third stakeholder only in the validation step allowed 

achieving a more robust validation [18]. It is part of our future 

work to perform the Outcome Adequacy validation when building 

larger SI BN models for which SIs had been automatically 

measured during a past period of time, with a formula defined by 

the company’s domain experts. As this requirement was not met 

in this use case, only Model Walkthrough validation was carried 

out. Stakeholders were asked to prepare jointly 10 hypothetical 

scenarios (see Table 3) for the SI BN model shown in Fig. 2 (a). 

Such scenarios were entered in the SI BN model one at a time, 

and were used to check whether the model provided the highest 

probability to the same state in the SI node corresponding to the 

stakeholders’ expectation. In 4 out of the 10 scenarios, the SI 

node’s CPT needed to be recalibrated (see Table 3). Recalibration 

represented the change of probabilities in order to match 

stakeholders’ expectations. Fig. 2 (b) shows the validated BN. 

Table 3: Scenarios used for model validation 

Code Quality Software Stability Product Quality Required calibration 

Low Low Low Yes 

Low High Medium Yes 

Medium High Medium Yes 

High Medium Medium No 

High High High No 

Very Low Very Low Very Low No 

Very Low Medium Low No 

Very Low Low Very Low Yes 

Very High Very High Very High No 

Very High High High No 

5 Conclusions And Future Work 

This work adapts an existing methodology to build SI prediction 

models for RSD, and presents its application to a use case using a 

combination of real data from a company, along with the expertise 

of the company’s stakeholders. Our methodology is especially 

useful for RSD because it permits to recalibrate SI prediction 

models in an iterative and incremental way. After applying the 

methodology to the use case, the stakeholders claimed that this 

kind of SI prediction models could be useful to support their 

software quality decision-making processes. 

The work introduced in this paper presents some limitations to 

be addressed as future work. Specifically, it is clear that the 

created model is simplistic in terms of the number of QFs 

included in the model. The small number of domain experts who 

provided the business knowledge during the workshop can also 

have an effect on the model’s accuracy, causing it to be biased. 

Moreover, the Outcome Adequacy validation was not conducted 

since product quality was not being computed prior to the BN 

construction. Additionally, we need to compare our methodology 

with others using different models, as for instance the GSRM 

model to predict release dates in RSD [19].   

As ongoing work, and to show the scalability of our proposal, 

we are now working on defining more complex SIs for software 

products and APIs of other companies. 

ACKNOWLEDGMENTS 

This work is a result of the Q-Rapids project, which has received 

funding from the European Union’s Horizon 2020 research and 

innovation program under grant agreement N° 732253. Also, this 

work is partially funded by the Spanish project GENESIS 

(TIN2016-79269-R). We thank to the company participating in 

the workshop for defining a prediction model for a SI. 

REFERENCES 
[1]  L. Guzmán et al. “How Can Quality Awareness Support Rapid Software 

Development? - A Research Preview”. REFSQ 2017. 

[2] A. Tosun, A. B. Bener, and S. Akbarinasaji. “A systematic literature review on 

the applications of Bayesian networks to predict software quality”. SQJ 25(1), 

2017. 

[3] A. Freire, M. Perkusich, R. Saraiva, H. Almeida, and A. Perkusich. “A 

Bayesian networks-based approach to assess and improve the teamwork quality 

of agile teams”. IST 100, 2018. 

[4] N. E. Fenton, P. Hearty, M. Neil, and Ł. Radliński. “Software Project and 

Quality Modelling Using Bayesian Networks”. Artif. Intell. Appl. Improv. 

Softw. Eng. Dev. New Prospect., 2009. 

[5] L. Radlinski. “A survey of bayesian net models for software development effort 

prediction,” Int. J. Softw. Eng. Comput. 2(2), 2010. 

[6] I. M. del Águila and J. del Sagrado. “Bayesian networks for enhancement of 

requirements engineering: a literature review”. Requir. Eng., 21(4), 2016. 

[7] A. Okutan, Olcay, T. Yıldız, A. Okutan, and O. T. Yıldız, “Software defect 

prediction using Bayesian networks”. Empir Softw. Eng, 2014. 

[8] E. Mendes, P. Rodriguez, V. Freitas, S. Baker, and M. A. Atoui. “Towards 

improving decision making and estimating the value of decisions in value-based 

software engineering: the VALUE framework”. SQJ 26(2), 2017. 

[9] A. T. Misirli and A. B. Bener. “Bayesian networks for evidence-based decision-

making in software engineering”. IEEE Trans. Softw. Eng., 2014. 

[10] C. Gómez et al. “Towards an Ontology for Strategic Decision Making: The 

Case of Quality in Rapid Software Development Projects”. MREBA@ER 2017. 

[11] S. Martínez-Fernández, A. Jedlitschka, L. Guzmán, A. M. Vollmer. 

“A Quality Model for Actionable Analytics in Rapid Software Development”. 

CoRR abs/1803.09670, 2018. 

[12] X. Franch et al. “Data-driven requirements engineering in agile projects: the Q-

rapids approach”. REW 2017. 

[13] X. Franch et al. “Data-Driven Elicitation, Assessment and Documentation of 

Quality Requirements in Agile Software Development”. CAiSE 2018. 

[14] E. Mendes. “Using knowledge elicitation to improve Web effort estimation: 

Lessons from six industrial case studies”. ICSE 2012. 

[15] B. Das. “Generating Conditional Probabilities for Bayesian Networks: Easing 

the Knowledge Acquisition Problem,” CoRR, 2004. 

[16] E. A. Drost. “Validity and Reliability in Social Science Research”. Educ. Res. 

Perspect., 2011. 

[17] E. Mendes, Practitioner’s knowledge representation: A pathway to improve 

software effort estimation. Springer, 2014. 

[18] J. Pitchforth and K. Mengersen, “A proposed validation framework for expert 

elicited Bayesian Networks,” Expert Syst. Appl., 40(1), 2013. 

[19] H. Washizaki and K. Honda Fukazawa. “Predicting release time for open source 

software based on the generalized software reliability model”. AGILE, 2015. 

http://dblp.uni-trier.de/pers/hd/j/Jedlitschka:Andreas
http://dblp.uni-trier.de/pers/hd/g/Guzm=aacute=n:Liliana
http://dblp.uni-trier.de/pers/hd/v/Vollmer:Anna_Maria
http://dblp.uni-trier.de/db/journals/corr/corr1803.html#abs-1803-09670

