
ar
X

iv
:1

70
1.

07
51

7v
2

 [
cs

.A
R

]
 1

5
Fe

b
20

17

Hardware Translation Coherence for Virtualized Systems

Zi Yan, Guilherme Cox, Ján Veselý, Abhishek Bhattacharjee
Department of Computer Science

{zi.yan, guilherme.cox, jan.vesely, abhib}@cs.rutgers.edu

ABSTRACT

To improve system performance, modern operating systems
(OSes) often undertake activities that require modification
of virtual-to-physical page translation mappings. For exam-
ple, the OS may migrate data between physical frames to
defragment memory and enable superpages. The OS may
migrate pages of data between heterogeneous memory de-
vices. We refer to all such activities as page remappings. Un-
fortunately, page remappings are expensive. We show that
translation coherence is a major culprit and that systems em-
ploying virtualization are especially badly affected by their
overheads. In response, we propose hardware translation

invalidation and coherence or HATRIC, a readily im-
plementable hardware mechanism to piggyback translation
coherence atop existing cache coherence protocols. We per-
form detailed studies using KVM-based virtualization, show-
ing that HATRIC achieves up to 30% performance and 10%
energy benefits, for per-CPU area overheads of 2%. We also
quantify HATRIC’s benefits on systems running Xen and
find up to 33% performance improvements.

1. INTRODUCTION

As the computing industry designs systems for big-memo-
ry workloads, systems architects have begun embracing het-
erogeneous memory architectures. For example, Intel is in-
tegrating high-bandwidth on-package memory in its Knight’s
Landing chip, and 3D Xpoint memory in several products
[1]. AMD and Hynix are releasing High-Bandwidth Mem-
ory or HBM [2, 3]. Similarly, Micron’s Hybrid Memory
Cube [4, 5] and byte-addressable persistent memories [6–9]
are quickly gaining traction. Vendors are combining these
high-performance memories with traditional high-capacity
and low-cost DRAM, prompting research on heterogeneous
memory architectures [2, 9–15].

Fundamentally, heterogeneous memories are dependent
on the concept of page remapping to migrate data between
diverse memory devices for good performance. Page remap-
ping is not a new concept – OSes have long used it to migrate
physical pages to defragment memory and create superpages
[16–19], to migrate pages among NUMA sockets [20, 21],
and to deduplicate memory by enabling copy-on-write opti-
mizations [22–24]. However, while page remappings were
used sparingly in those scenarios, they are likely to be used
more frequently for heterogeneous memories. This is be-
cause page remapping is essential to adapt data placement to
the memory access patterns of workloads, and to harness the

performance and energy potential of memories with differ-
ent latency, bandwidth, and capacity characteristics. Conse-
quently, developers at IBM and Redhat are already deploy-
ing Linux patchsets to enable page remapping amongst co-
herent heterogeneous memory devices [25–27].

Unfortunately, these efforts face an obstacle – the high
performance and energy penalty of page remapping. There
are two components to this cost. The first is the overhead
of copying data. The second is the cost of translation co-
herence. When privileged software remaps a physical page,
it has to update the corresponding virtual-to-physical page
translation in the page table. Translation coherence is the
means by which caches dedicated to translations (e.g., Trans-
lation Lookaside Buffers or TLBs [28–31], etc.) are kept up
to date with the latest page table mappings.

Past work has shown that translation coherence overheads
can easily consume 10-30% of system performance [10, 32,
33]. These overheads are even more alarming on virtualized
systems, which are used in the server and cloud settings ex-
pected to be early adopters of heterogeneous memories. We
are the first to show that as much as 40% of their runtime can
be wasted on translation coherence. The key culprit is vir-
tualization’s use of multiple page tables. Architectures with
hardware assists for virtualization like Intel VT-x and AMD-
V use a guest page table to map guest virtual pages to guest
physical pages, and a nested page table to map guest phys-
ical pages to system physical pages. Changes to the guest
page table and in particular, the nested page table, prompt
expensive translation coherence activity.

The problem of coherence is not restricted to translation
mappings. In fact, the systems community has studied prob-
lems posed by cache coherence for several decades [34] and
has developed efficient hardware cache coherence protocols
[35]. What makes translation coherence challenging is that
unlike cache coherence, it relies on cumbersome software
support. While this may have sufficed in the past when page
remappings were used relatively infrequently, they are prob-
lematic for heterogeneous memories where page remapping
is more frequent. Consequently, we believe that there is a
need to architect better support for translation coherence. In
order to understand what this support should constitute, we
list three attributes desirable for translation coherence.

1© Precise invalidation: Processors use several hardware
translation structures – TLBs, MMU caches [36, 37], and
nested TLBs (nTLBs) [38] – to cache portions of the page
table(s). Ideally, translation coherence should invalidate the

http://arxiv.org/abs/1701.07517v2

translation structure entries corresponding to remapped pages,
rather than flushing all the contents of these structures.

2© Precise target identification: The CPU running privi-
leged code that remaps a page is known as the initiator. An
ideal translation coherence protocol would allow the initiator
to identify and alert only CPUs whose TLBs, MMU caches,
and nTLBs actually cache the remapped page’s translation.
By restricting coherence messages to only these targets, other
CPUs remain unperturbed by coherence activity.

3© Lightweight target-side handling: Target CPUs should
invalidate their translation structures and relay acknowledg-
ment responses to the initiator quickly, without excessively
interfering with workloads executing on the target CPUs.

Unfortunately, translation coherence meets none of these
goals today. Consider, for example, changes to the nested
page table. Further, consider 1©; when hypervisors change a
nested page table entry, they track guest physical and system
physical page numbers, but not the guest virtual page. Un-
fortunately, as we describe in Sec. 2, translation structures
on architectures like x86-64 permit invalidation of individ-
ual entries only if their guest virtual page is known. Con-
sequently, hypervisors completely flush all translation struc-
tures, even when only a single page is remapped. This de-
grades performance since virtualized systems need expen-
sive two-dimensional page table walks to re-populate the
flushed structures [22, 28, 29, 38–43].

Current translation coherence protocols also fail to achieve
2©. Hypervisors track the subset of CPUs that a guest VM

runs on but cannot (easily) identify the CPUs used by a pro-
cess within the VM. Therefore, when the hypervisor remaps
a page, it conservatively initiates coherence activities on all
CPUs that may potentially have executed any process in the
guest VM. While this does spare CPUs that never execute
the VM, it needlessly flushes translation structures on CPUs
that execute the VM but not the process.

Finally, 3© is also not met. Initiators currently use expen-
sive inter-processor interrupts (on x86) or tlbi instructions
(on ARM, Power) to prompt VM exits on all target CPUs.
Translation structures are flushed on a VM re-entry. VM ex-
its are particularly detrimental to performance, interrupting
the execution of target-side applications [38, 44].

We believe that the solution to these problems is to im-
plement translation coherence in hardware. This view is in-
spired by prior work on UNITD [32], which showcased the
potential of hardware translation coherence. Unfortunately,
UNITD is energy inefficient and, like other recent propos-
als [10,33], cannot support virtualized systems. In response,
we propose hardware translation invalidation and coh-

erence or HATRIC, a hardware mechanism to tackle these
problems and meet 1©- 3©. HATRIC extends translation struc-
ture entries with coherence tags (or co-tags) storing the sys-
tem physical address where the translation entry resides (not
to be confused with the physical address stored in the page
table). This solves 1©, since translation structures can now
be identified by the hypervisor without knowledge of the
guest virtual address. HATRIC exposes co-tags to the un-
derlying cache coherence protocol, achieving 2© and 3©.

We evaluate HATRIC for a forward-looking virtualized
system with a high-bandwidth die-stacked memory and a

slower off-chip memory. HATRIC drastically reduces trans-
lation coherence overheads, improving performance by 30%,
saving as much as 10% of energy, while adding less than 2%
of CPU area. Overall, our contributions are:

• We perform a characterization study to quantify the
overheads of translation coherence on hypervisor-man-
aged die-stacked memory. While we focus on KVM in
this paper, we have also studied Xen and quantified its
overheads.

• We design HATRIC to subsume translation coherence
in hardware by piggybacking on, without fundamen-
tally changing, existing cache coherence protocols. HA-
TRIC goes beyond UNITD [32] by a© accommodat-
ing translation coherence for both bare-metal and vir-
tualized scenarios; b© extending coherence to not just
TLBs, but also MMU caches and nTLBs; c© and achiev-
ing better energy efficiency.

• We perform several studies that illustrate the benefits
of HATRIC’s design decisions. Further, we discuss
HATRIC’s advantages over purely software approaches
to mitigate translation coherence issues.

Overall,HATRIC is efficient and versatile. While we mostly
focus on the particularly arduous challenges of translation
coherence due to nested page table changes, HATRIC is ap-
plicable to guest page tables and non-virtualized systems.

2. BACKGROUND

We begin by presenting an overview of the key hardware
and software structures involved in page remapping. Our
discussion focuses on x86-64 systems. Other architectures
are broadly similar but differ in some low-level details.

2.1 HW and SW Support for Virtualization

Virtualized systems accomplish virtual-to-physical address
translation in one of two ways. Traditionally, hypervisors
have used shadow page tables to map guest virtual pages
(GVPs) to system physical pages (SPPs), keeping them syn-
chronized with guest OS page tables [40]. However, the
overheads of page table synchronization can often be high
[41]. As a result, most modern systems now use two dimen-
sional page tables instead. Figure 1 illustrates two-dimensi-
onal page table walks (see past work for more details [22,
36,38,40,42,45,46]). Guest page tables map GVPs to guest
physical pages (GPPs). Nested page tables map GPPs to
SPPs. x86-64 systems use 4-level forward mapped radix
trees for both page tables [22, 38, 45, 46]. We refer to these
as levels 4 (the root level) to 1 (the leaf level) as per re-
cent work [36–38]. When a process running in a guest VM
makes a memory reference, its GVP must be translated to an
SPP. Consequently, the guest CR3 register is combined with
the requested GVP (not shown in the picture) to deduce the
GPP of level 4 of the guest page table (shown as GPP Req.).
However, to look up the guest page table (gL4-gL1), the GPP
must be converted into the SPP where the page table actually
resides. Therefore, we first use the GPP to look up the nested

!"#$!"%$!"&$!"'$ ("#$
)**$

("#$

+**$

,-./$

+**$

("%$

!"#$!"%$!"&$!"'$ ("%$
)**$

("%$

+**$

("&$

!"#$!"%$!"&$!"'$ ("&$
)**$

("&$

+**$

("'$

!"#$!"%$!"&$!"'$ ("'$
)**$

("'$
+**$

,-./$

!"#$!"%$!"&$!"'$
)**$

,-./$

0012$!3"4$

Figure 1: Two-dimensional page table walks for virtualized systems.

Nested page tables are represented by boxes and guest page tables are

represented by circles. Each page table’s levels from 4 to 1 are shown.

We show items cached by MMU caches and nTLBs. TLBs (not shown)

cache translations from the requested guest virtual page (GVP) to the

requested system physical page (SPP).

page tables (nL4-nL1), to find SPP gL4. Looking up gL4
then yields the GPP of the next guest page table level (gL3).
The rest of the page table walk proceeds similarly, requiring
24 memory references in total. This presents a performance
problem as the number of references is significantly more
than the 4 references needed for non-virtualized systems.
Further, the references are entirely sequential. CPUs use
three types of translation structures to accelerate this walk:

a© Private per-CPU TLBs cache the requested GVP to SPP
mappings, short-circuiting the entire walk. TLB misses trig-
ger hardware page table walkers to look up the page table.

b© Private per-CPU MMU caches store intermediate page
table information to accelerate parts of the page table walk
[36–38]. There are two flavors of MMU cache. The first is a
page walk cache and is implemented in AMD chips [37,38].
Figure 1 shows the information cached in page walk caches.
Page walk caches are looked up with GPPs and provide SPPs
where page tables are stored. The second is called a paging
structure cache and is implemented by Intel [36,37]. Paging
structure caches are looked up with GVPs and provide the
SPPs of page table locations. Paging structure caches gener-
ally perform better, so we focus mostly on them [36, 37].

c© Private per-CPU nTLBs short-circuit nested page table
lookups by caching GPP to SPP translations [38]. Figure 1
shows the information cached by nTLBs.

Concomitantly, CPUs cache page table information in pri-
vate L1 (L2, etc.) caches and the shared last-level cache
(LLC). The presence of separate private translation caches
poses coherence problems. While standard cache coherence
protocols ensure that page table entries in private L1 caches
are coherent, there are no such guarantees for TLBs, MMU
caches, and nTLBs. Instead, privileged software keeps trans-
lation structures coherent with data caches and one another.

2.2 Page Remapping in Virtualized Systems

We now detail the ways in which a virtualized system can
trigger coherence activity in translation structures. All page
remappings can be classified by the data they move, and the
software agent initiating the move.

Remapped data: Systems may remap a page storing (i) the
guest page table; (ii) the nested page table; or (iii) non-page
table data. Most remappings are from (iii) as they constitute
most memory pages. We have found that less than 1% of
page remappings correspond to (i)-(ii). We therefore high-
light HATRIC’s operation using (iii); nevertheless, HATRIC
also implicitly supports the first two cases.

Remapping initiator: Pages can be remapped by (i) a guest
OS; or (ii) the hypervisor. When a guest OS remaps a page,
the guest page table changes. Past work achieves low-overhe-
ad guest page table coherence with relatively low-complexity
software extensions [47]. Unfortunately, there are no such
workarounds to mitigate the translation coherence overheads
of hypervisor-initiated nested page table remappings. For
these reasons, cross-VM memory deduplication [22,48] and
page migration between NUMA memories on multi-socket
systems [49–51] are known to be expensive. In the past,
such overheads may have been mitigated by using these op-
timizations sparingly. However, nested page table remap-
pings become frequent with heterogeneous memories, mak-
ing hypervisor-initiated translation coherence problematic.

3. SHORTCOMINGS OF CURRENT TRANS-

LATION COHERENCE MECHANISMS

Our goal is to ensure that translation coherence does not
impede the adoption of heterogeneous memories. We study
forward-looking die-stacked DRAM as an example of an im-
portant heterogeneous memory system. Die-stacked mem-
ory uses DRAM stacks that are tightly integrated with the
processor die using high-bandwidth links like through-silicon
vias, or silicon interposers [10, 52]. Die-stacked memory is
expected to be useful for multi-tenant and rack-scale com-
puting where memory bandwidth is often a performance bot-
tleneck, and will require a combination of application, guest
OS, and hypervisor management [10, 53–55]. We take the
first steps towards this, by showing the problems posed by
translation coherence on hypervisor management.

3.1 Translation Coherence Overheads

We quantify translation coherence overheads on a die-
stacked system that is virtualized with KVM. We modify
KVM to page between the die-stacked and off-chip DRAM.
Since ours is the first work to consider hypervisor manage-
ment of die-stacked memory, we implement a variety of pag-
ing policies. Rather than focusing on developing a single
“best” policy, our objective is to show that current transla-
tion coherence overheads are so high that they curtail the
effectiveness of practically any paging policy.

Our paging mechanisms extend prior work that explores
basic software-guided die-stacked DRAM paging [10]. When
off-chip DRAM data is accessed, there is a page fault. KVM
then migrates the desired page into an available die-stacked
DRAM physical page frame. The GVP and GPP remain un-
changed, but KVM changes the SPP and hence, its nested
page table entry. This triggers translation coherence.

!"
!#$%"
!#%"

!#&%"
'"

'#$%"
'#%"

(
)
*+
,
-
"

./
00
*,
1
23
"

4
.+
51
6
4
,
71
"

5(
8*
+
,
-
"

(
)
*+
,
-
"

./
00
*,
1
23
"

4
.+
51
6
4
,
71
"

5(
8*
+
,
-
"

(
)
*+
,
-
"

./
00
*,
1
23
"

4
.+
51
6
4
,
71
"

5(
8*
+
,
-
"

(
)
*+
,
-
"

./
00
*,
1
23
"

4
.+
51
6
4
,
71
"

5(
8*
+
,
-
"

(
)
*+
,
-
"

./
00
*,
1
23
"

4
.+
51
6
4
,
71
"

5(
8*
+
,
-
"

.4((147" 9434".4.+5(:" :04;+%!!" 3/(<04(<" 84.125-"

=
/
(
>
-
1
"(
)
0-

4
75
?1
9
"3
)
"

(
)
*+
,
-
"

Figure 2: Performance of no-hbm (no die-stacked DRAM), inf-hbm

(data always in die-stacked DRAM), curr-best (best die-stacked DRAM

paging policy with current software translation coherence overheads),

and achievable (best achievable paging policy, assuming no translation

coherence overheads). All data is normalized to no-hbm runtime.

We run our modified KVM on the detailed cycle-accurate
simulator described in Sec. 5. Like prior work [10], we
model a system with 2GB of die-stacked DRAM with 4×
the memory bandwidth of a slower off-chip 8GB DRAM.
This is a total of 10GB of addressable DRAM. Further, we
model 16 CPUs based on Intel’s Haswell architecture.

Figure 2 quantifies the performance of hypervisor-manag-
ed die-stacked DRAM, and translation coherence’s impact
on it. We normalize all performance numbers to the run-
time of a system with only off-chip DRAM and no high-
bandwidth die-stacked DRAM (no-hbm). Further, we show
an unachievable best-case scenario where all data fits in an
infinite-sized die-stacked memory (inf-hbm). After profiling
several paging strategies (evaluated in detail in Sec. 6), we
plot the best-performing ones with the curr-best bars. These
results assume cumbersome software translation coherence
mechanisms. In contrast, the achievable bars represent the
potential performance of the best paging policies with zero-
overhead (and hence ideal) translation coherence.

Figure 2 shows that unachievable infinite die-stacked DR-
AM can improve performance by 25-75% (inf-hbm versus
no-hbm). Unfortunately, the current “best” paging policies
we achieve in KVM (curr-best) fall far short of the ideal inf-
hbm case. Translation coherence overheads are a big cul-
prit – when these overheads are eliminated in achievable,
system performance comes within 3-10% of the case with
infinite die-stacked DRAM capacity (inf-hbm). In fact, Fig-
ure 2 shows that translation coherence overheads can be so
high that they can prompt die-stacked DRAM to counterintu-
itvely worsen performance. For example, data caching and
tunkrank actually suffer 23% and 10% performance degra-
dations in curr-best, respectively, despite using high-bandwi-
dth die-stacked memory. Though omitted to save space, we
have also profiled the Xen hypervisors and found similar
trends (presented in Sec. 6). Overall, translation coherence
overheads threaten the use of die-stacked, and indeed any
heterogeneous, memory.

3.2 Page Remapping Anatomy

We now shed light on the sources of overheads from trans-
lation coherence. While we use page migration between
off-chip and die-stacked DRAM as our driving example, the
same mechanisms are used today to migrate pages between
NUMA memories, or to defragment memory, etc.

When a VM is configured, KVM assigns it virtual CPU

!"#$%&'()&&

*+,-.!/01.&

!"#$2&

!"#$3&

$(4',&&

'&,'5-&&

6-7&89:&;<0*&

.-=<-07&>/7&&

?1.&'@@&!"#$0&

&A#A0&&
B'/7&&

?1.&'CD0&

E@<0*&89:F&

GG$&HF&&

(89:&

I<-07&

I<-07&

I<-07&

JK/7&

LCD&

LCD&

E@<0*&89:F&

GG$&HF&&

(89:&

E@<0*&89:F&

GG$&HF&&

(89:&

I<-07&

I<-07&

JK/7&

Figure 3: Sequence of operations associated with a page unmap. Ini-

tiator to target IPIs are shown in blue 1©, VM exits are shown in green

2©, and translation structure flushes are shown in black 3©.

threads or vCPUs. Figure 3 assumes 3 vCPUs executing
on physical CPUs. Suppose vCPU 0 frequently demands
data in GVP 3, which maps to GPP 8 and SPP 5, and that
SPP 5 resides in off-chip DRAM. The hypervisor may want
to migrate SPP 5 to die-stacked memory (e.g., SPP 512) to
improve performance. On a VM exit (assumed to have oc-
curred prior in time to Figure 3), the hypervisor modifies the
nested page table to update the SPP, triggering translation
coherence. There are three problems with this:

All vCPUs are identified as targets: Figure 3 shows that
the hypervisor initiates translation coherence by setting the
TLB flush request bit in every vCPU’s kvm vcpu structure.
kvm vcpu stores vCPU state; when a vCPU is scheduled
on a physical CPU, it provides register content, instruction
pointers, etc. By setting these bits, the hypervisor signals
that TLB, MMU cache, and nTLB entries need to be flushed.

Ideally, we would like the hypervisor to identify only the
CPUs that actually cache the stale translation as targets. The
hypervisor does spare physical CPUs that never executed the
VM. However, it flushes all physical CPUs that ran any of
the vCPUs of the VM, regardless of whether they cache the
modified page table entries.

All vCPUs suffer VM exits: In the next step, the hypervi-
sor launches inter-processor interrupts (IPIs) to all the vC-
PUs. IPIs use the processor’s advanced programmable in-
terrupt controllers (APICs). APIC implementations vary;
depending on the APIC technology, KVM converts broad-
cast IPIs into a loop of individual IPIs, or a loop across
processor clusters. We have profiled the overheads of IPIs
using microbenchmarks on Haswell systems, and like past
work [10, 33], find that they are expensive, consuming thou-
sands of clock cycles. If the receiving CPUs are running
vCPUs, they suffer VM exits, compromising 3© from Sec.
1. Targets then acknowledge the initiator, which is paused
waiting for all vCPUs to respond.

All translation structures are flushed: The next step is
to invalidate stale mappings in translation structure entries.
Current architectures provide ISA and microarchitectural sup-
port for this via, for example, invlpg instructions in x86,
etc. There are two caveats however. First, these instructions
need the GVP of the modified nested page table mapping to
identify the TLB entries that need to be invalidated. This
is largely because modern TLBs maintain GVP bits in the
tag. While this is a good design choice for non-virtualized

systems, it is problematic for virtualized systems because
hypervisors do not have easy access to GVPs. Instead, they
have GPPs and SPPs. Consequently, KVM, Xen, etc., flush
all TLB contents when they modify a nested page table en-
try, rather than selectively invalidating TLB entries. Second,
there are currently no instructions to selectively invalidate
MMU caches or nTLBs, even though they are tagged with
GPPs and SPPs. The is because the marginal benefits of
adding ISA support for selective MMU cache and nTLB in-
validation are limited when the more performance-critical
TLBs are flushed.

3.3 Hardware Versus Software Solutions

It is natural to ask whether translation coherence problems
can be solved with smarter software. We have studied this
possibility and have concluded that hardware solutions are
superior. Fundamentally, software solutions only partially
solve the problem of flushing all translation structures, and
cannot solve the problem of identifying all vCPUs as trans-
lation coherence targets and prompting VM exits.

Consider the problem of flushing all translation structures.
One might consider tackling this problem by modifying the
guest-hypervisor interface to enable the hypervisor to use ex-
isting ISA support (e.g., invlpg instructions) to selectively
invalidate TLB entries. But this only fixes TLB invalidation
– no architectures today maintain selective invalidation in-
structions for MMU caches and nTLBs, so these would still
have to be flushed.

Even if this problem could be solved, making target-side
translation coherence handling lightweight is challenging.
Fundamentally, handling translation coherence in software
means that a context switch of the CPUs is unavoidable.
One alternative to expensive VM exits might be to switch
to lighterweight interrupts to query the guest OS for GVP-
SPP mappings. Unfortunately, even these interrupts remain
expensive. Specifically, we profiled interrupt costs using
microbenchmarks on Intel’s Haswell machines and found
that they require 640 cycles on average, which is just half of
the average of 1300 cycles required for a VM exit. HATRIC,
however, entirely eliminates these costs by never disrupting
the operation of the guest OS or requiring context switching.

4. HARDWARE DESIGN

We now detail HATRIC’s design, focusing mostly on hyp-
ervisor-initiated paging which modifies the nested page ta-
ble. HATRIC achieves all three goals set out in Sec. 1. It
does so by adding co-tags to translation structures to achieve
precise invalidation. It then exposes these co-tags to the
cache coherence protocol to precisely identify coherence tar-
gets and to eliminate VM exits.

4.1 Co-Tags

We describe co-tags by discussing what they are, what
they accomplish, how they are designed, and who sets them.

What are co-tags? Consider the page tables of Figure 4
and suppose that the hypervisor modifies the GPP 2-SPP 2
nested page table mapping, making the TLB entry caching
information about SPP 2 stale. Since the TLB caches GVP-
SPP mappings rather than GPP-SPP mappings, this means

!"#$%&'(&

&

!)'&*& & &!''&*&

!)'&+ & &!''&+&

!)'&, & &!''&,&

-&

(./&

&

&

&

&

!(01!!!!!20%0&

!)'*&&3''*&

!)'+&&3'',&

4056705#&

!"#$%&83&

9#$%#6&'(&

&

!''&*& & &3''&*&

!''&+ & &3''&+&

!''&, & &3''&,&

-&

4:;#5<=$>5&

?>@%01&

*A+**B&

*A+**C&

3>D705#&

*A****&

*A***B&

*A***C&

*A+***&

*A+**B&

*A+**C&

Figure 4: We add co-tags to store the system physical addresses where

nested page table entries are stored. In our final implementation, we

only store a subset of the system physical address bits.

that we’d like to selectively invalidate GVP 1-SPP 2 from the
TLB, and although not shown, corresponding MMU cache
and nTLB entries. Co-tags allow us to do this by acting
as tag extensions that allow precise identification of transla-
tions when the hypervisor does not know the GVP. Co-tags
store the system physical address of the nested page table en-
try (nL1 from the bottom-most row in Figure 1). For exam-
ple, GVP 1-SPP 2 uses the nested page table entry at system
physical address 0x100c, which is stored in the co-tag.

What do co-tags accomplish? Co-tags not only permit pre-
cise translation information identification but can also be
piggybacked on existing cache coherence protocols. When
the hypervisor modifies a nested page table translation, cache
coherence protocols detect the modification to the system
physical address of the page table entry. Ordinarily, all pri-
vate caches respond so that only one amongst them holds
the up-to-date copy of the cache line storing the nested page
table entry. With co-tags, HATRIC extends cache coher-
ence as follows. Coherence messages, previously restricted
to just private caches, are now also relayed to translation
structures. Co-tags are used to identify which (if any) TLB,
MMU cache, and nTLB entries correspond to the modified
nested page table cache line. Overall, this means that co-
tags: a© pick up on nested page table changes entirely in
hardware, without the need for IPIs, VM exits, or invlpg in-
structions; b© rely on, without fundamentally changing, ex-
isting cache coherence protocols; c© permit selective TLBs,
MMU caches, and nTLBs rather than flushes.

How are co-tags implemented? Co-tags have one impor-
tant drawback. System physical addresses on 64-bit systems
require 8 bytes. If all 8 bytes are realized in the co-tag, each
TLB entry doubles in size. MMU cache and nTLB entries
triple in size. Since address translation can account for 13-
15% of processor energy [56–60], these area and associated
energy overheads are unacceptable.

Therefore, we decrease the resolution of co-tags, using
fewer bits. This means that groups, rather than individual
TLB entries may be invalidated when one nested page table
entry is changed. However, judiciously-sized co-tags gener-
ally achieve a good balance between invalidation precision,
and area/energy overheads. Sec. 6 shows, using detailed
RTL modeling, that 2-byte co-tags (a per-core area overhead
of 2%) strike a good balance. We specify the exact subset of
address bits make up the co-tag in subsequent sections.

Who sets co-tags? For good performance, co-tags must be
set by hardware without an OS or hypervisor interrupt. HA-

!"#$

$

$

"%$&$

$

$

'()$*$ '()$%$ '()$+$ '()$,$

""'$#-./$ ""'$#-./$ ""'$#-./$ ""'$#-./$

012345627$

$

012345627$

$

012345627$

$

012345627$

$

!"#$

$

$

"%$&$

$

$

!"#$

$

$

"%$&$

$

$

!"#$

$

$

"%$&$

$

$

8(!$.(!$9$!-8$9$:;-232<$

$*$$$$$$$%$$$9$!-8$9$=*>$%>$,?$

%$

+$

@$

A$

,B$
,-$

C-$

C4$

CB$

CD$

Figure 5: Coherence directories identify translation structures

caching page table entries, aside from private L1 cache contents.

TRIC uses the page table walker to do this. On TLB, MMU
cache, and nTLB misses, the page table walker performs a
two-dimensional page table walk. In so doing, it infers the
system physical address of the page table entries and stores
it in the TLB, MMU cache, and nTLB co-tags.

4.2 Integration with Cache Coherence

Modern cache coherence protocols can integrate not only
readable and writable private caches, but also read-only in-
struction caches (though instruction caches do not have to
be read-only). Since TLBs, MMU caches, and nested TLBs
are fundamentally read-only structures, HATRIC integrates
them into the existing cache coherence protocol in a manner
similar to read-only instruction caches. Beyond this, HA-
TRIC has minimal impact on the cache coherence protocol.
We describeHATRIC’s operation on a directory-based MESI
protocol, with the coherence directories located at the shared
LLC cache banks. Without loss of generality, we use dual-
grain coherence directories from recent work [61].

Translation structure coherence states: Since translation
structures are read-only, their entries require only two coher-
ence states: Shared (S), and Invalid (I). These two states may
be realized using per-entry valid bits. When a translation is
entered into the TLB, MMU cache, or nTLB, the valid bit is
set, representing the S state; the translation can be accessed
by the local CPU. The translation structure entry remains in
this state until it receives a coherence message. Co-tags are
compared to incoming messages; when an invalidation re-
quest matches the co-tag, the translation entry is invalidated.

Translation coherence initiators: Consider Figure 5. Be-
fore detailing the numbered transactions, let us considerHA-
TRIC’s components. We show a 4-CPU system, with private
L1 caches, 4 shared LLC banks, and per-bank coherence di-
rectories. We show TLBs and though they also exist, we
omit MMU caches and nTLBs to save space. MMU caches
and nTLBs interact with the cache coherence protocol in a
manner that mirrors TLBs. We show 8 cached page table
entries, represented as green and black boxes. Translation
coherence is initiated by the hardware page table walker or
OS/hypervisor software.

Page table walkers: These are hardware finite state machines
that are invoked on TLB misses. Walkers traverse the page
tables and are responsible for filling translation information

into the translation structures and setting the co-tags. Walk-
ers cannot map or unmap pages.

OS and hypervisor: These can traverse, map, and unmap
page table entries using standard load/store instructions. HA-
TRIC picks up these changes, and keeps all private cache and
translation structures coherent.

Coherence directory: HATRIC minimally changes the co-
herence directory. Key design considerations are:

Directory entry changes: Figure 5 shows that the coherence
directory tracks non-page table and page table cache lines.
We make a minor change to directory entries, adding two
bits to record whether cache lines belong to a guest page ta-
ble (gPT) or nested page table (nPT). HATRIC uses these
bits to identify the case when a line holding page table data
is modified in the private caches. When this happens, coher-
ence transactions need to be sent to the translation structures.

The nPT and gPT bits are set by the hardware page ta-
ble walkers on fills to the TLBs, MMU caches, and nTLBs.
One might initially expect this to be problematic in the case
where the OS or hypervisor reads or writes a page table
cache line in software. In reality however, this does not
present correctness issues. Two situations are possible. In
the first situation, the page table walker has previously ac-
cessed the cache line, and has already set the nPT or gPT
bit in the cache line’s directory entry. There are no correct-
ness issues in this case. In the second situation, the OS or
hypervisor reads or writes a page table cache line that has
previously never been looked up by the page table walker.
In this case, there is actually no need to set the nPT or gPT
bits in the coherence directory entry yet since no translations
from this line are cached in the TLB, MMU cache, or nTLB
anyway. Modifying the cache line at this point does not re-
quire coherence messages to be sent to the translation struc-
tures. When the page table walker does eventually access
a translation from this cache line and fills it into the transla-
tion structures, it checks the access bit already maintained by
x86-64 translation entries. The access bit records whether an
entry has previously been filled into the TLB or accessed by
the page table walker [62]. If this bit is clear, this means that
the entry (and hence the cache line it resides in) has not been
accessed by the page table walker yet. In this case, the page
table walker sends a message to the coherence directory to
update the nPT and gPT bits of the relevant cache line.

Coherence granularity: Figure 5 shows that directory en-
tries store information at the cache line granularity. x86-
64 systems cache 8 page table entries per 64-byte cache
line. Hence, similar to false sharing in caches [63], HA-
TRIC conservatively invalidates all translation structure en-
tries caching these 8 page table entries, even if only a single
page table entry is modified. For example, consider CPU 3
in Figure 5, where the TLB caches two translations mapped
to the same cache line. If any CPU modifies either one of
these translations, HATRIC has to invalidate both TLB en-
tries. This has implications on the size of co-tags. Recall that
in Sec. 4.1, we stated that co-tags use a subset of the address
bits. We want use the least significant, and hence, highest
entropy bits as co-tags. But since cache coherence protocols
track groups of 8 translations, co-tags do not store the 3 least

!"#$%$

"&'()*+$,$ -'&+.*/&0$
!"#1

"&'()*+$,$

2('.*$$

"3$4'5+$

-+6/*+$
#78)*+$$

9:)&+&$4'9*$

;$&+<=$

>?!"#1$

@!A$

B&'*+$"3$

4'5+$

"3$4'5+$$

!$;$

!"#$%$

"&'()*+$,$ -'&+.*/&0$
!"#1

"&'()*+$,$

2('.*$$

"3$4'5+$

-+6/*+$

C/$.:)5D+$

;$&+<=$
>?!"#%$

C/&6)4$ E@3FG!$

B&'*+$"3$

4'5+$

"3$4'5+$$

!$;$

G5($

>7H&'/H9$

@!A$

C/$

6)*.:$
>?!"#1$

Figure 6: Coherence activity from the eviction of a cache line holding

page table entries from CPU0’s private cache. HATRIC updates sharer

list information lazily in response to cache line evictions.

significant address bits. Our 2 byte co-tags use bits 19-3 of
the system physical address storing the page table. Natu-
rally, this means that translations from different addresses in
the page table may alias to the same co-tag. In practice, this
has little adverse affect on HATRIC’s performance.

Coherence specificity issues: To simplify hardware, coher-
ence directories do not track where among the private caches,
TLB, MMU cache, and nTLB the page table entries are cach-
ed. Instead, coherence directories are pseudo-specific. For
example, Figure 5 shows that CPU 0 caches page table en-
tries in the TLB and L1 cache, CPU 1 only caches them in
the L1 cache, while CPU 3 only caches them in the TLB.
Nevertheless, the coherence directory’s sharer list does not
capture this distinction. Therefore, when a CPU modifies
page table contents and invalidation messages need to be
sent to the sharers, they are relayed to the L1 caches and
all translation structures, regardless of which ones actually
cache page tables. This results in spurious coherence activ-
ity (e.g., CPU 3’s L1 cache need not be relayed an inval-
idation message for any of the page table entries shown).
In practice though, because modifications of the page table
are rare compared to other coherence activity, this additional
traffic is tolerable. Ultimately, the gains from eliminating
high-latency software TLB coherence far outweigh these rel-
atively minor overheads (see Sec. 6).

Cache and translation structure evictions: Directories track
translations in a coarse-grained and pseudo-specific manner.
This has important implications on cache line evictions. Or-
dinarily, when a private cache line is evicted, the coherence
directory is relayed a message to update the line’s sharer
list [61]. An up-to-date sharer list eliminates spurious co-
herence traffic to this line in the future. We continue to em-
ploy this strategy for non-page table cache lines but use a
slightly different approach for page tables. When a cache
line holding page table entries is evicted, its content may
still be cached in the TLB, MMU cache, nTLB. Even worse,
other translations with matching co-tags may still be resid-
ing in the translation structures. One option may be to detect
all translations with matching co-tags and invalidate them.
This hurts energy because of the additional translation struc-
ture lookups, and performance because of unnecessary TLB,
MMU cache, and nTLB entry invalidations.

Figure 6 shows how HATRIC handles this problem, con-
trasting it with traditional cache coherence. Suppose CPU 0

evicts a cache line with page table entries. Both approaches
relay a message to the coherence directory. Ordinarily, we
remove CPU 0 from the sharer list. However, if HATRIC
sees that this message corresponds to a cache line storing
a page table (by checking the directory entry’s page table
bits), the sharer list is untouched. This means that if CPU 1
subsequently writes to the same cache line, HATRIC sends
spurious invalidate messages to CPU 0, unlike traditional
cache coherence. However, we mitigate frequency of spu-
rious messages; when CPU 0 sees spurious coherence traf-
fic, it sends a message back to the directory to demote CPU
0 from the sharer list. Sharer lists are hence lazily updated.
For similar reasons, evictions from translation structures also
lazily update coherence directory sharer lists.

Directory evictions: Finally, past work shows that coherence
directory entry evictions require back-invalidations of the as-
sociated cache lines in the cores [61]. This is necessary for
correctness; all lines in private caches must always have a di-
rectory entry. HATRIC extends this approach to relay back-
invalidations to the TLBs, MMU caches, and nTLBs too.

4.3 Putting It All Together

Figure 5 details HATRIC’s overall operation. Initially,
CPU 0’s TLB and L1 caches are empty. On a memory ac-
cess, CPU 0 misses in the TLB and walks the page table 1©.
Whenever a request is satisfied from a page table line in the
L1 cache in the M, E, or S state, there is no need to initi-
ate coherence transactions. However, suppose that the last
memory reference in the page table walk from Figure 1 is
absent in the L1 cache. A read request is sent to the coher-
ence directory in step 2©.

Two scenarios are possible. In the first, the translation
may be uncached in the private caches, and there is no co-
herence directory entry. A directory entry is allocated and
the gPT or nPT bit is set. In the second scenario (shown
in Figure 5), the request matches an existing directory entry.
The nPT bit already is set and HATRIC reads the sharer list
which identifies CPUs 1 and 3 as also caching the desired
translation (and the 7 adjacent translations in the cache line)
in shared state. In response, the cache line with the desired
translations is sent back to CPU 0 (from CPU 1, 3, or mem-
ory, whichever is quicker), updating the L1 cache 3a and

TLB 3b . Subsequently, the sharer list adds CPU 0.

Now suppose that CPU 1 runs the hypervisor and unmaps
the solid green translation from the nested page table in step
4©. To transition the L1 cache line into the M state, the cache

coherence protocol relays a message to the coherence direc-
tory. The corresponding directory entry is identified in 5©,
and we find that CPU 0 and 3 need to be sent invalidation
requests. However, the sharer list is (i) coarse-grained and
(ii) pseudo-specific. Because of (i), CPU 0 has to invali-

date not only its TLB entry 6a but also 8 translations in the

L1 cache 6b , and CPU 3 has to invalidate the 2 TLB en-

tries with matching co-tags 6c . Because of (ii), CPU 1’s L1

cache receives a spurious invalidation message 6d .

4.4 Other Key Observations

Scope: HATRIC is applicable to virtualized and non-virtualized

systems. For the latter, the co-tags may simply be used to
store the physical addresses of page tables. Further, while
we have focused on nested page table coherence, HATRIC
can also be trivially modified to support shadow page tables
too [40]. The co-tags merely have to store the memory ad-
dresses where shadow page tables are stored.

Metadata updates: Beyond software changes to the trans-
lations, they may also be changed by hardware page table
walkers. Specifically, page table walkers update dirty and
access bits to aid page replacement policies [22]. But since
these updates are picked up by the standard cache coherence
protocol, HATRIC naturally handles these updates too.

Prefetching optimizations: Beyond simply invalidating stale
translation structure entries, HATRIC could potentially di-
rectly update (or prefetch) the updated mappings into the
translation structures. Since a thorough treatment of these
studies requires an understanding of how to manage transla-
tion access bits while speculatively prefetching into transla-
tion structures [62], we leave this for future work.

Coherence protocols: We have studied a MESI directory
based coherence protocol but we have also implementedHA-
TRIC atop MOESI protocols too, as well as snooping pro-
tocols like MESIF [64]. HATRIC requires no fundamental
changes to support these protocols.

Synonyms and superpages: HATRIC naturally handles syn-
onyms or virtual address aliases. This is because synonyms
are defined by unique translations in separate page table lo-
cations, and hence separate system physical addresses. There-
fore, changing or removing a translation has no impact on
other translations in the synonym set, allowing HATRIC to
be agnostic to synonyms. Similarly, HATRIC supports su-
perpages, which also occupy unique translation entries and
can hence be easily detected by co-tags.

Multiprogrammed workloads: One might expect that when
an application’s physical page is remapped, there is no need
for translation coherence activities to the other applications,
because they operate on distinct address spaces. Unfortu-
nately, however, hypervisors do not know which physical
CPUs an application executed on; all they know is the vC-
PUs and the physical the entire VM uses. Therefore, the hy-
pervisor conservatively flushes the even the translation struc-
tures of CPUs that never ran the offending application. HA-
TRIC completely eliminates this problem by precisely track-
ing the correspondence between translations and CPUs.

Comparison to past approaches: HATRIC is inspired by
past work on UNITD [32]. Like HATRIC, UNITD piggy-
backs translation coherence atop cache coherence protocols.
UnlikeHATRIC however,UNITD cannot support virtualized
systems or MMU cache and nTLB coherence. Further, HA-
TRIC uses energy-frugal co-tags instead of UNITD’s large
reverse-lookup CAM circuitry, achieving far greater energy
efficiency. We showcase this in Sec. 6 where we compare
the efficiency of HATRIC versus an enhancedUNITD design
for virtualization. Beyond UNITD, past work on DiDi [33]
also targets translation coherence for non-virtualized sys-
tems. Similarly, recent work investigates translation coher-
ence overheads in the context of die-stacked DRAM [10].

While this work mitigates translation coherence overheads,
it does so specifically for non-virtualized x86 architectures,
and ignores MMU caches and nTLBs. Finally, recent work
uses software mechanisms to reduce translation overheads
for guest page table modifications [47], while HATRIC also
solves the problem of nested page table coherence.

5. METHODOLOGY

Our experimental methodology has two steps. First, we
modify KVM to implement paging on a two-level mem-
ory with die-stacked DRAM. Second, we use detailed cycle-
accurate simulation to assess performance and energy.

5.1 Die-Stacked DRAM Simulation

We evaluate HATRIC’s performance on a detailed cycle-
accurate simulation framework that models the operation of
a 32-CPU Haswell processor. We assume 2GB of die-stacked
DRAM with 4× the bandwidth of slower 8GB off-chip DRA-
M, similar to prior work [10]. Each CPU maintains 32KB
L1 caches, 256KB L2 caches, 64-entry L1 TLBs, 512-entry
L2 TLBs, 32-entry nTLBs [38], and 48-entry paging struc-
ture MMU caches [37]. Further, we assume a 20MB LLC.
We model the energy usage of this system using the CACTI
framework [65]. We use Ubuntu 15.10 Linux as our guest
OS. Further, we evaluate HATRIC in detail using KVM. Be-
yond this, we have also run Xen to highlight HATRIC’s gen-
erality with other hypervisors.

We use a trace-based approach to drive our simulation
framework. We collect instruction traces from our modi-
fied hypervisors with 50 billion memory references using a
modified version of Pin which tracks all GVPs, GPPs, and
SPPs, as well as changes to the guest and nested page ta-
bles. In order to collect accurate paging activity, we collect
these traces on a real-system. Ideally, we would like this sys-
tem to use die-stacked DRAM but since this technology is in
its infancy, we are inspired by recent work [10] to modify a
real-system to mimic the activity of die-stacking. We take an
existing multi-socket NUMA platform, and by introducing
contention, creates two different speeds of DRAM. We use
a 2-socket Intel Xeon E5-2450 system, running our software
stack. We dedicate the first socket for execution of the soft-
ware stack and mimicry of fast or die-stacked DRAM. The
second socket mimics the slow or off-chip DRAM. It does so
by running several instances of memhog on its cores. Simi-
lar to prior work [22, 28, 43], we use memhog to carefully
generate memory contention to achieve the desired band-
width differential between the fast and slow DRAM of 4×.
By using Pin to track KVM and Linux paging code on this
infrastructure, we accurately generate instruction traces to
test HATRIC.

5.2 KVM Paging Policies

Our goal is to showcase the overheads imposed by trans-
lation coherence on paging decisions rather than design the
optimal paging policy, leaving this for future work. So, we
pick well-known paging policies that cover a wide range of
design options. For example, we have studied FIFO and
LRU replacement policies, finding the latter to perform bet-
ter, as expected. We implement LRU policies in KVM by
repurposing Linux’s well-known pseudo-LRU CLOCK pol-

!"
!#$%"
!#%"

!#&%"
'"

'#$%"

(
")
*
+
,
-"

.
")
*
+
,
-"

'
/
")
*
+
,
-"

(
")
*
+
,
-"

.
")
*
+
,
-"

'
/
")
*
+
,
-"

(
")
*
+
,
-"

.
")
*
+
,
-"

'
/
")
*
+
,
-"

(
")
*
+
,
-"

.
")
*
+
,
-"

'
/
")
*
+
,
-"

(
")
*
+
,
-"

.
")
*
+
,
-"

'
/
")
*
+
,
-"

0122314" 5161"0107829" 9:1;7%!!" 6<2=:12=" >103-8?"

@
<
2
A
?
3
"2
B
:?

#"
6B
"-
4B
C
"

-C"

716:80"

85314"

Figure 7: For varying vCPUs, runtime of the best KVM paging policy

without HATRIC (sw), with HATRIC (hatric), and with zero-overhead

translation coherence (ideal). All results are normalized to the case

without die-stacked DRAM.

icy [66]. LRU alone doesn’t always provide good perfor-
mance since it is expensive to traverse page lists to iden-
tify good candidates for eviction from die-stacked memory.
Instead, performance is improved by moving this operation
off the critical path of execution; we therefor pre-emptively
evict pages from die-stacked memory so that a pool of free
pages are always maintained. We call this migration dae-
mon and combine it with LRU. We have also investigated
the benefits of page prefetching; that is, when an application
demand fetches a page from off-chip to die-stacked memory,
we also prefetch a set number of adjacent pages. Generally,
we have found that the best paging policy uses a combina-
tion of these approaches.

5.3 Workloads

Our focus is on two sets of workloads. The first set com-
prises applications that benefit from the higher bandwidth of
die-stacked memory. We use canneal and facesim from the
Parsec suite [67], data caching and tunkrank from Cloud-
suite [68], and graph500 as part of this group. We also cre-
ate 80 multiprogrammed combinations of workloads from
all the Spec applications to showcase the problem of impre-
cise target identification in virtualized translation coherence.

Our second group of workloads is made up of smaller-
footprint applications whose data largely fits within the die-
stacked DRAM. We use these workloads to evaluate HA-
TRIC’s overheads in situations where hypervisor-mediated
paging (and hence translation coherence) between die-stacked
and off-chip DRAM is rarer. We use the remaining Parsec
applications, and Spec applications for these studies.

6. EVALUATION

Performance as a function of vCPU counts: Figure 7 shows
HATRIC’s runtime, normalized as a fraction of application
runtime in the absence of any die-stacked memory (no-hbm
from Figure 2). We compare runtimes for the best KVM
paging policies (sw), HATRIC, and ideal unachievable zero-
overhead translation coherence (ideal). Further, we vary the
number of vCPUs per VM and observe the following.
HATRIC is always within 2-4% of the ideal performance.

In some cases, HATRIC is instrumental in achieving any
gains from die-stacked memory at all. Consider data caching,
which slows down when using die-stacked memory, because
of translation coherence overheads. HATRIC cuts runtimes

!"
!#$%"
!#%"

!#&%"
'"

'#$%"

()
*
"

+
,
-.
/0
,
1
"

+
2
)3
4"

()
*
"

+
,
-.
/0
,
1
"

+
2
)3
4"

()
*
"

+
,
-.
/0
,
1
"

+
2
)3
4"

()
*
"

+
,
-.
/0
,
1
"

+
2
)3
4"

()
*
"

+
,
-.
/0
,
1
"

+
2
)3
4"

561136(" 0676"5658-1." .)628%!!" 7*19)619" 4653:-,"

;
*
1
<
,
3
"1
=
),

#"
7=
":
(=
>
"

:>"

867)-5"

-036("

'#%?"'#@'"

Figure 8: HATRIC’s performance benefits as a function of KVM pag-

ing policies, with LRU, migration daemons (mig-dmn), and prefetching

(pref.). Results are normalized to the case without die-stacked DRAM.

!"

!#$%"

!#%"

!#&%"

'"

'#$%"

'("$(")(" '("$(")(" '("$(")(" '("$(")(" '("$(")("

+,,-+." /+0+"+*12,3" 34+51%!!" 06,74+,7" 8+*-92:"

;
6
,
<
:
-
",
=
4:

#"
0=
"'
(
"

+
,
/
"9
.=
>
"

9>"

1+042*"

2/-+."

Figure 9: HATRIC’s performance benefits as a function of translation

structure size. 1× indicates default sizes, 2× doubles sizes, and so on.

All results are normalized to the case without die-stacked DRAM.

down to roughly 75% of the baseline runtime in all cases.
Figure 7 also shows that HATRIC is valuable at all vCPU

counts. In some cases, more vCPUs exacerbate translation
coherence overheads. This is because IPI broadcasts be-
come more expensive and more vCPUs suffer VM exits.
This is why, for example, data caching and tunkrank be-
come slower (see sw) when vCPUs increase from 4 to 8.
HATRIC eliminates these problems, flattening runtime im-
provements across vCPU counts. In other scenarios, fewer
vCPUs worsen performance since each vCPU performs more
of the application’s total work. Here, the impact of a full
TLB, nTLB, and MMU cache flush for every page remap-
ping is very expensive (e.g., graph500 and facesim). Here,
HATRIC again eliminates these overheads almost entirely.

Performance as a function of paging policy: Figure 8 also
shows HATRIC performance, but this time as a function of
different KVM paging policies. We study three policies with
16 vCPUs. First, we show lru, which determines which
pages to evict from die-stacked DRAM. We then add the mi-
gration daemon (&mig-dmn), and page prefetching (&pref).

Figure 8 shows HATRIC improves runtime substantially
for any paging policy. Performance is best when all tech-
niques are combined, but HATRIC achieves 10-30% perfor-
mance improvements even for just lru. Furthermore, Figure
8 shows that translation coherence overheads can often be
so high that the paging policy itself makes little difference
to performance. Consider tunkrank, where the difference
between lru versus the &pref bars is barely 2-3%. With HA-
TRIC, however, paging optimizations like prefetching and
migration daemons help.

Impact of translation structure sizes: One of HATRIC’s
advantages is that it converts translation structure flushes to
selective invalidations. This improves TLB, MMU cache,

!"

!#$"

%"

%#$"

&"

&#$"

'
(
)
*
+
,
")
-
.
+
#"
/-
"

0
1-
2
"

3-.41-560"

02" 75/.89"

!"

%"

&"

:"

;"

$"

3-.41-560"

02" 75/.89"

Figure 10: (Left) Weighted runtime for all 80 multi-programmed

workloads on VMs without (actual) and with HATRIC (hatric); (right)

the same for the slowest application in mix.

and nTLB hit rates substantially, obviating the need for ex-
pensive two-dimensional page table walks. We expect HA-
TRIC to improve performance even more as translation struc-
tures become bigger (and flushes needlessly evict more en-
tries). Figure 9 quantifies the relationship. We vary TLB,
nTLB, and MMU cache sizes from the default (see Sec. 5)
to double (2×) and quadruple (4×) the number of entries.

Figure 9 shows that translation structure flushes largely
counteract the benefits of greater size. Specifically, the sw
results see barely any improvement, even when sizes are
quadrupled. Inter-DRAM page migrations essentially flush
the translation structures so often that additional entries are
not effectively leveraged. Figure 9 shows that this is a wasted
opportunity since zero-overhead translation coherence (ideal)
actually does enjoy 5-7% performance benefits. HATRIC
solves this problem, comprehensively achieving within 1%
of the ideal, thereby exploiting larger translation structures.

Multi-programmed workloads: We now focus on mul-
tiprogrammed workloads made up sequential applications.
Each workload runs 16 Spec benchmarks on a Linux VM
atop KVM. As is standard for multiprogrammed workloads,
we use two performance metrics [69,70]. The first is weighted
runtime improvement, which captures overall system perfor-
mance. The second is the runtime improvement of the slow-
est application in the workload, capturing fairness.

Figure 10 shows our results. The graph on the left plots
the weighted runtime improvement, normalized to cases with-
out die-stacked DRAM. As usual, sw represents the best
KVM paging policy. The x-axis represents the workloads,
arranged in ascending order of runtime. The lower the run-
time, the better the performance. Similarly, the graph on
the right of Figure 9 shows shows the runtime of the slow-
est application in the workload mix; again, lower runtimes
indicate a speedup in the slowest application.

Figure 10 shows that translation coherence can be disas-
trous to the performance of multiprogrammed workloads.
More than 70% of the workload combinations suffer per-
formance degradation with die-stacking. These applications
suffer from unnecessary translation structure flushes and VM
exits, caused by software translation coherence’s imprecise
target identification. Runtime is more than 2× for 11 work-
loads. Additionally, translation coherence degrades applica-
tion fairness. For example, in more than half the workloads,
the slowest application’s runtime is (2×)+ with a maximum
of (4×)+. Applications that struggle are usually those with
limited memory-level parallelism that benefit little from the
higher bandwidth of die-stacked memory and instead, suffer

!"#$%

!"$&%

&"!'%

!"(% !")% !"#% !"*% !"$% &%

+
,
-.

"%
/
0
/
-1
2
%

+,-."%-304./%

!"#$%

!"$&%

&"!'%

!"(% !")% !"#% !"*% !"$% &% &"&%+
,
-.

"%
/
0
/
-1
2
%

+,-."%-304./%

5,6781%9:% 5,6781%&:% 5,6781%':%

Figure 11: (Left) Performance-energy plots for default HATRIC con-

figuration compared to a baseline with the best paging policy; and

(right) impact of co-tag size on performance-energy tradeoffs.

from the additional translation coherence overheads.
HATRIC solves all these issues, achieving improvements

for every single weighted runtime, and even for each of the
slowest applications. In fact, HATRIC entirely eliminating
translation coherence overheads, reducing runtime to 50-80%
of the baseline without die-stacked DRAM. The key enabler
is HATRIC’s precise identification of coherence targets – ap-
plications that do not need to participate in translation coher-
ence operations have their translation structure contents left
unflushed and do not suffer VM exits.

Performance-energy tradeoffs: Intuitively, we expect that
since HATRIC reduces runtime substantially, it should re-
duce static energy sufficiently to offset the higher energy
consumption from the introduction of co-tags. Indeed, this is
true for workloads that have sufficiently large memory foot-
prints to trigger inter-memory paging. However, we also
assess HATRIC’s energy implications on workloads that do
not frequently remap pages (i.e., their memory footprints fit
comfortably within die-stacked DRAM).

The graph on the left of Figure 11 plots all the workloads
including the single-threaded and multithreaded ones that
benefit from die-stacking and those whose memory needs
fit entirely in die-stacked DRAM. The x-axis plots the work-
load runtime, as a fraction of the runtime of sw results. The
y-axis plots energy, similarly normalized. We desire points
that converge towards the lower-left corner of the graph.

The graph on the left of Figure 11 shows that HATRIC
always boosts performance, and almost always improves en-
ergy too. Energy savings of 1-10% are routine. In fact, HA-
TRIC even improves the performance and energy of many
workloads that do not page between the two memory lev-
els. This is because these workloads still remap pages to de-
fragment memory (to support superpages) and HATRIC mit-
igates the associated translation coherence overheads. There
are some rare instances (highlighted in black) where energy
does exceed the baseline by 1-1.5%. These are workloads
for whom efficient translation coherence does not make up
for the additional energy of the co-tags. Nevertheless, these
overheads are low, and their instances rare.

Co-tag sizing: We now turn to co-tag sizing. Excessively
large co-tags consume significant lookup and static energy,
while small ones forceHATRIC to invalidate too many trans-
lation structures on a page remap. The graph on the right
of Figure 11 shows the performance-energy implications of
varying co-tag size from 1 to 3 bytes.

First and foremost, 2B co-tags – our design choice – pro-
vides the best balance of performance and energy. While

!"#$

!"%$

&$

'
(
)
*
+,
$

-
.
*
/0
12
/

3
4
0
5
67
$

8
.
/6
25
9:
1;
<
$

=
>
/?
5
9:
/1
;
@
$

(
AA
$

=
>
2B

5
A1
C7
0
$6
>
$?
7
D6
$

4
5
<
1;
<
$4
>
A1
9E
$

*3;FB7$

-;72<E$

Figure 12: Baseline HATRIC versus approaches with eager update

of directory on cache and translation structure evictions (EGR-dir-

update), fine-grained tracking of translations (FG-tracking), and an in-

finite directory with no back-invalidations (No-back-inv). All comines

these approach. We show average runtime and energy, normalized to

the metrics for the best paging policy without HATRIC.

3B co-tags track page table entries at a finer granularity,
they only modestly improve performance over 2B co-tags,
but consume much more energy. Meanwhile 1B co-tags suf-
fer in terms of both performance and energy. Since 1B co-
tags have a coarser tracking granularity, they invalidate more
translation entries from TLBs, MMU caches, and nTLBs
than larger co-tags. And while the smaller co-tags do con-
sume less lookup and static energy, these additional invali-
dations lead to more expensive two-dimensional page table
walks and a longer system runtime. The end result is an in-
crease in energy too.

Coherence directory design decisions: Sec. 4 detailed the
nuances modifying traditional coherence directories to sup-
port translation coherence. Figure 12 captures the perfor-
mance and energy (normalized to those of the best paging
policy or sw in previous graphs) of these approaches. We
consider the following options, beyond baseline HATRIC.

EGR-dir-update: This is a design that eagerly updates coher-
ence directories whenever a translation entry is evicted from
a CPU’s L1 cache or translation structures. While this does
reduce spurious coherence messages, it requires expensive
lookups in translation structures to ensure that entries with
the same co-tag have been evicted. Figure 12 shows that the
performance gains from reduced coherence traffic is almost
negligible, while energy does increase, relative to HATRIC.

FG-tracking: We study a hypothetical design with greater
specificity in translation tracking. That is, coherence direc-
tories are modified to track whether translations are cached
in the TLBs, MMU caches, nTLBs, or L1 caches. Unlike
HATRIC, if a translation is cached only in the MMU cache
but not the TLB, the latter is not sent invalidation requests.
Figure 12 shows that while one might expect this specificity
to result in reduced coherence traffic, system energy is ac-
tually slightly higher than HATRIC. This is because more
specificity requires more complex and area/energy intensive
coherence directories. Further, since the runtime benefits are
small, we believe HATRIC remains the smarter choice.

No-back-inv: We study an unrealistically ideal design with
infinitely-sized coherence directories which never need to
relay back-invalidations to private caches or translation struc-
tures. We find that this does reduce energy and runtime, but
not significantly from HATRIC’s dual-grain coherence di-

!"

!#$%"

!#%"

!#&%"

'"

'#$%"

()
*
+
,
-
"

-
*
-
(.
/
"

()
*
+
,
-
"

-
*
-
(.
/
"

()
*
+
,
-
"

-
*
-
(.
/
"

()
*
+
,
-
"

-
*
-
(.
/
"

()
*
+
,
-
"

-
*
-
(.
/
"

01**-12" 3141"01056*." .(175%!!" 4)*8(1*8" 910-:6,"

;
<
(,

#"
4<
":
2<
=
"

:="

514(60"

)*643>>"

Figure 13: Comparison of HATRIC’s performance and energy versus

UNITD++. All results are normalized to results for a system without

die-stacked memory and compared to sw.

rectory based on [61].

All: Figure 12 comparesHATRIC to an approach which mar-
ries all the optimizations discussed. HATRIC almost exactly
meets the same performance and is actually more energy-
efficient, largely because the eager updates of coherence di-
rectories add significant translation structure lookup energy.

Comparison with UNITD: We now compare HATRIC to
prior work on UNITD [32]. To do this, we first upgrade the
baseline UNITD design in several ways. First, and most im-
portantly, we extend add support for virtualization by storing
the system physical address of nested page tables entries are
stored in the reverse-lookup CAM originally proposed [32].
Second, we extend UNITD to work seamlessly with coher-
ence directories. We call this upgraded design UNITD++.

Figure 13 comparesHATRIC and UNITD++ results, nor-
malized to results from the case without die-stacked DRAM.
As expected, both approaches outperform a system with only
traditional software-based translation coherence (sw). How-
ever, HATRIC typically provides an additional 5-10% per-
formance boost versusUNITD++ by also extending the ben-
efits of hardware translation coherence to MMU caches and
nTLBs. Further, HATRIC is more energy efficient than UNI-
TD++ as it boosts performance (saving static energy) but
also does not need reverse-lookup CAMs.

Xen results: In order to assess HATRIC’s generality across
hypervisors, we have begun studying it’s effectiveness on
Xen. Because our memory traces require months to collect,
we have thus far evaluated canneal and data caching, as-
suming 16 vCPUs. Our initial results show that Xen’s per-
formance is improved by 21% and 33% for canneal and data
caching respectively, over the best paging policy employing
software translation.

7. CONCLUSION

We present a case for folding translation coherence atop
existing hardware cache coherence protocols. We achieve
this with simple modifications to translation structures (TLBs,
MMU caches, and nTLBs) and with state-of-the-art coher-
ence protocols. Our solutions are general (they support nested
and guest page table modifications) and readily-implementable.
We believe, therefore, that HATRIC will become essential
for upcoming systems, especially as they rely on page mi-
gration to exploit heterogeneous memory systems.

8. REFERENCES

[1] Intel, “Introducing Intel Optane Technology - Bringing 3D XPoint
Memory to Storage and Memory Products,”
https://newsroom.intel.com/press-kits/introducing-intel-optane-
technology-bringing-3d-xpoint-memory-to-storage-and-memory-
products,
2015.

[2] J. Kim and Y. Kim, “HBM: Memory Solution for Bandwidth-Hungry
Processors,” Hot Chips, 2014.

[3] B. Black, “Die Stacking is Happening,” MICRO, 2013.

[4] A. Shah, “Micron’s Revolutionary Hybrid Memory Cube Tech is 15
Times Faster than Today’s DRAM,”
http://www.pcworld.com/article/2366680/computer-memory-
overhaul-due-with-microns-hmc-in-early-2015.html,
2014.

[5] J. Pawlowski, “Hybrid Memory Cube,” Hot Chips, 2011.

[6] Y. Xie, “Modeling, Architecture, and Applications for Emerging
Non-Volatile Memory Technologies,” IEEE Computer Design and
Test, 2011.

[7] Y. Xie, “Emerging Memory Technologies: Design, Architecture, and
Applications,” Springer, 2013.

[8] X. Dong, N. Jouppi, and Y. Xie, “A Circuit-Architecture
Co-Optimization Framework for Exploring Non-Volatile Memory
Hierarchies,” TACO, vol. 10, no. 4, 2013.

[9] L. Ramos, E. Gorbatov, and R. Bianchini, “Page Placement in Hybrid
Memory Systems,” ICS, 2011.

[10] M. Oskin and G. Loh, “A Software-Managed Approach to
Die-Stacked DRAM,” PACT, 2015.

[11] S. Phadke and S. Narayanasamy, “MLP Aware Heterogeneous
Memory System,” DATE, 2011.

[12] M. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski, and
G. Loh, “Heterogeneous Memory Architectures: A HW/SW
Approach for Mixing Die-Stacked and Off-Package Memories,”
HPCA, 2015.

[13] R. Ausavarungnirun, K. Chang, L. Subramanian, G. Loh, and
O. Mutlu, “Staged Memory Scehduling: Achieving High
Performance and Scalability in Heterogeneous Systems,” ISCA,
2012.

[14] N. Agarwal, D. Nellans, M. Stephenson, M. O’Connor, and
S. Keckler, “Page Placement Strategies for GPUs within
Heterogeneous Memory Systems,” ASPLOS, 2015.

[15] J. Vesely, A. Basu, M. Oskin, G. Loh, and A. Bhattacharjee,
“Observations and Opportunities in Architecting Shared Virtual
Memory for Heterogeneous Systems,” ISPASS, 2016.

[16] A. Arcangeli, “Transparent Hugepage Support,” KVM Forum, 2010.

[17] J. Navarro, S. Iyer, P. Druschel, and A. Cox, “Practical, Transparent
Operating System Support for Superpages,” OSDI, 2002.

[18] M. Talluri and M. Hill, “Surpassing the TLB Performance of
Superpages with Less Operating System Support,” ASPLOS, 1994.

[19] Y. Kwon, H. Yu, S. Peter, C. Rossbach, and E. Witchel, “Coordinated
and Efficient Huge Page Management with Ingens,” OSDI, 2016.

[20] F. Gaud, B. Lepers, J. Decouchant, J. Funston, and A. Fedorova,
“Large Pages May be Harmful on NUMA Systems,” USENIX ATC,
2014.

[21] B. Lepers, V. Quema, and A. Fedorova, “Thread and Memory
Placement on NUMA Systems: Asymmetry Matters,” USENIX ATC,
2015.

[22] B. Pham, J. Vesely, G. Loh, and A. Bhattacharjee, “Large Pages and
Lightweight Memory Management in Virtualized Systems: Can You
Have it Both Ways?,” MICRO, 2015.

[23] B. Pham, J. Vesely, G. Loh, and A. Bhattacharjee, “Using TLB
Speculation to Overcome Page Splintering in Virtual Machines,”
Rutgers Technical Report DCS-TR-713, 2015.

[24] V. Seshadri, G. Pekhimenko, O. Ruwase, O. Mutlu, P. Gibbons,
M. Kozuch, T. Mowry, and T. Chilimbi, “Page Overlays: An
Enhanced Virtual Memory Framework to Enable Fine-grained
Memory Management,” ISCA, 2015.

[25] A. Khandaul, “Define coherent device memory node,”
http://lwn.net/Articles/404403, 2016.

[26] J. Glisse, “HMM (Heterogeneous memory management) v5,”
http://lwn.net/Articles/619067, 2016.

[27] J. Corbet, “Heterogeneous memory management,”
http://lwn.net/Articles/684916, 2016.

[28] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee, “CoLT:
Coalesced Large-Reach TLBs,” MICRO, 2012.

[29] B. Pham, A. Bhattacharjee, Y. Eckert, and G. Loh, “Increasing TLB
Reach by Exploiting Clustering in Page Translations,” HPCA, 2014.

[30] A. Bhattacharjee, D. Lustig, and M. Martonosi, “Shared Last-Level
TLBs for Chip Multiprocessors,” HPCA, 2011.

[31] D. Lustig, A. Bhattacharjee, and M. Martonosi, “TLB Improvements
for Chip Multiprocessors: Inter-Core Cooperative Prefetchers and
Shared Last-Level TLBs,” TACO, 2012.

[32] B. Romanescu, A. Lebeck, D. Sorin, and A. Bracy, “UNified
Instruction/Translation/Data (UNITD) Coherence: One Protocol to
Rule Them All,” HPCA, 2010.

[33] C. Villavieja, V. Karakostas, L. Vilanova, Y. Etsion, A. Ramirez,
A. Mendelson, N. Navarro, A. Cristal, and O. Unsal, “DiDi:
Mitigating the Performance Impact of TLB Shootdowns Using a
Shared TLB Directory,” PACT, 2011.

[34] D. Sorin, M. Hill, and D. Wood, “A Primer on Memory Consistency
and Cache Coherence,” Synthesis Lectures on Computer
Architecture, 2011.

[35] M. Martin, M. Hill, and D. Sorin, “Why On-Chip Cache Coherence
is Here to Stay,” CACM, 2012.

[36] T. Barr, A. Cox, and S. Rixner, “Translation Caching: Skip, Don’t
Walk (the Page Table),” ISCA, 2010.

[37] A. Bhattacharjee, “Large-Reach Memory Management Unit Caches,”
MICRO, 2013.

[38] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne, “Accelerating
Two-Dimensional Page Walks for Virtualized Systems,” ASPLOS,
2008.

[39] K. K.-W. Chang, D. Lee, Z. Chishti, A. Alameldeen, C. Wilkerson,
Y. Kim, and O. Mutlu, “Improving DRAM Performance by
Parallelizing Refreshes with Accesses,” HPCA, 2014.

[40] J. Ahn, S. Jin, and J. Huh, “Revisiting Hardware-Assisted Page Table
Walks for Virtualized Systems,” ISCA, 2012.

[41] J. Gandhi, M. Hill, and M. Swift, “Agile Paging: Exceeding the Best
of Nested and Shadow Paging,” ISCA, 2016.

[42] G. Cox and A. Bhattacharjee, “Efficient Address Translation for
Architectures with Multiple Page Sizes,” ASPLOS, 2017.

[43] A. Bhattacharjee, “Translation-Triggered Prefetching,” ASPLOS,
2017.

[44] K. Adams and O. Agesen, “A Comparison of Software and Hardware
Techniques for x86 Virtualization,” ASPLOS, 2006.

[45] J. Gandhi, A. Basu, M. Hill, and M. Swift, “Efficient Memory
Virtualization,” MICRO, 2014.

[46] T. Barr, A. Cox, and S. Rixner, “SpecTLB: A Mechanism for
Speculative Address Translation,” ISCA, 2011.

[47] J. Ouyang, J. Lange, and H. Zheng, “Shoot4U: Using VMM Assists
to Optimize TLB Operations on Preempted vCPUs,” VEE, 2016.

[48] F. Guo, S. Kim, Y. Baskakov, and I. Banerjee, “Proactively Breaking
Large Pages to Improve Memory Overcommitment Performance in
VMware ESXi,” VEE, 2015.

[49] D. S. Rao and K. Schwann, “vNUMA-mgr: Managing VM Memory
on NUMA Platforms,” HiPC, 2010.

[50] J. Rao, K. Wang, X. Zhou, and C.-Z. Xu, “Optimizing Virtual
Machine Scheduling in NUMA Multicore Systems,” HPCA, 2013.

[51] A. Banerjee, R. Mehta, and Z. Shen, “NUMA Aware I/O in
Virtualized Systems,” HOT Interconnects, 2015.

[52] A. Kannan, N. E. Jerger, and G. Loh, “Enabling Interposer-Based
Disintegration of Multi-Core Processors,” MICRO, 2015.

[53] B. Falsafi, T. Harris, D. Narayanan, and D. Patterson, “Rack-Scale

Computing,” Report from Dagstuhl Seminar 15421, vol. 5, no. 10,
2015.

[54] VMware, “Performance Best Practices for VMware vSphere 5.0,”
VMware, 2011.

[55] G. Loh and M. Hill, “Supporting Very Large DRAM Caches with
Compound-Access Scheduling and Missmaps,” IEEE Micro, 2012.

[56] D. Fan, Z. Tang, H. Huang, and G. Gao, “An Energy Efficient TLB
Design Methodology,” ISLPED, 2005.

[57] V. Karakostas, J. Gandhi, A. Cristal, M. Hill, K. McKinley,
M. Nemirovsky, M. Swift, and O. Unsal, “Energy-Efficient Address
Translation,” HPCA, 2016.

[58] T. Juan, T. Lang, and J. Navarro, “Reducing TLB Power
Requirements,” ISLPED, 1997.

[59] I. Kadayif, A. Sivasubramaniam, M. Kandemir, G. Kandiraju, and
G. Chen, “Generating Physical Addresses Directly for Saving
Instruction TLB Energy,” MICRO, 2002.

[60] A. Sodani, “Race to Exascale: Opportunities and Challenges,”
MICRO Keynote, 2011.

[61] J. Zebchuk, B. Falsafi, and A. Moshovos, “Multi-Grain Coherence
Directories,” MICRO, 2013.

[62] D. Lustig, G. Sethi, M. Martonosi, and A. Bhattacharjee,
“COATCheck: Verifying Memory Ordering at the Hardware-OS
Interface,” ASPLOS, 2016.

[63] L. Luo, A. Sriraman, B. Fugate, S. Hu, G. Pokam, C. Newburn, and
J. Devietti, “LASER: Light, Accurate Sharing dEtection and Repair,”
HPCA, 2016.

[64] J. Goodman and H. Hum, “MESIF: A Two-Hop Cache Coherency
Protocol for Point-to-Point Interconnects,” University of Auckland
Technical Report, 2004.

[65] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “CACTI 6.0:
A Tool to Model Large Caches,” MICRO, 2007.

[66] M. Easton and P. Franaszek, “Use Bit Scanning in Replacement
Decisions,” IEEE Transactions on Computers, 1979.

[67] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC
Benchmark Suite: Characterization and Architectural Simplications,”
PACT, 2008.

[68] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, , and B. Falsafi,
“Clearing the Clouds: A Study of Emerging Scale-out Workloads on
Modern Hardware,” ASPLOS, 2012.

[69] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu,
“BLISS: Balancing Performance, Fairness, and Complexity in
Memory Access Scheduling,” TPDS, 2016.

[70] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu, “The
Blacklisting Memory Scheduler: Achieving High Performance and
Fairness at Low Cost,” ICCD, 2014.

	1 Introduction
	2 Background
	2.1 HW and SW Support for Virtualization
	2.2 Page Remapping in Virtualized Systems

	3 Shortcomings of Current Translation Coherence Mechanisms
	3.1 Translation Coherence Overheads
	3.2 Page Remapping Anatomy
	3.3 Hardware Versus Software Solutions

	4 Hardware Design
	4.1 Co-Tags
	4.2 Integration with Cache Coherence
	4.3 Putting It All Together
	4.4 Other Key Observations

	5 Methodology
	5.1 Die-Stacked DRAM Simulation
	5.2 KVM Paging Policies
	5.3 Workloads

	6 Evaluation
	7 Conclusion
	8 References

