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Semantic image segmentation is one the most demanding task, especially for analysis of traffic conditions 

for self-driving cars. Here the results of application of several deep learning architectures (PSPNet and 

ICNet) for semantic image segmentation of traffic stereo-pair images are presented. The images from 

Cityscapes dataset and custom urban images were analyzed as to the segmentation accuracy and image 

inference time. For the models pre-trained on Cityscapes dataset, the inference time was equal in the limits 

of standard deviation, but the segmentation accuracy was different for various cities and stereo channels 

even. The distributions of accuracy (mean intersection over union — mIoU) values for each city and channel 

are asymmetric, long-tailed, and have many extreme outliers, especially for PSPNet network in comparison 

to ICNet network. Some statistical properties of these distributions (skewness, kurtosis) allow us to 

distinguish these two networks and open the question about relations between architecture of deep learning 

networks and statistical distribution of the predicted results (mIoU here). The results obtained demonstrated 

the different sensitivity of these networks to: (1) the local street view peculiarities in different cities that 

should be taken into account during the targeted fine tuning the models before their practical applications, 

(2) the right and left data channels in stereo-pairs. For both networks, the difference in the predicted results 

(mIoU here) for the right and left data channels in stereo-pairs is out of the limits of statistical error in 

relation to mIoU values. It means that the traffic stereo pairs can be effectively used not only for depth 

calculations (as it is usually used), but also as an additional data channel that can provide much more 

information about scene objects than simple duplication of the same street view images. 
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1 INTRODUCTION AND BACKGROIUND 

With the development of machine learning, in particular deep neural networks, new methods 

for obtaining information from images of different content appear. The semantic image 

segmentation is one of the most fundamental and complicated tasks in computer vision. It allows 

to predict labels for all pixels in the image for deep understanding of scene as a whole, availability 

of classes of objects (and instances even), their locations, and spatial limits. During the last years 

new architectures of neural networks appeared, which introduced new improvements to achieve 

greater accuracy of results for this problems [1]. For example, AlexNet [2], VGG-16 [3], 

GoogLeNet [4] and ResNet [5] became well-known standard and building blocks for new 

architectures. Recently, interest to deep learning networks and especially to Fully Convolutional 

Networks (FCN) increased in the context of image semantic segmentation tasks [1]. The goal of 

that approach is to take advantage of existing convolutional neural networks (CNNs) to learn 

hierarchies of features. For this purpose, researchers tried to transform the aforementioned models 

into fully convolutional ones by replacing fully connected layers with convolutional ones to 
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output spatial maps instead of classification scores. Recently, several new FCN networks, like 

SegNet [6], ENet [7], PSPNet [8], ICNet [9], DeepLab [10], ResNet [5], and many others, 

demonstrated the high performance with regard to accuracy and speed of prediction. Usually, 

performance of these networks is tested against some popular datasets of traffic road conditions 

like Cityscapes [11] and their results can be found elsewhere (see for example, 

https://www.cityscapes-dataset.com/benchmarks).  

The current tendency is to monitor street scenes by multiple input modalities, for example: by 

a stereo camera rig in streets from 50 different cities in Cityscapes public dataset [11]; stereo 

camera, traffic light camera, localization camera [12]; and many others including Tesla Autopilot 

proprietary solution (https://www.tesla.com/autopilot) with 8 surround cameras in addition to 12 

ultrasonic sensors and forward-facing radar; the radar can see vehicles through heavy rain, fog or 

dust. Using the input data from multiple input modalities, several approaches to process them 

were applied, for example, stereo datasets (which are of greatest interest for us now) mostly used 

to get depth information, for example, for semantic segmentation [13-14].  

In the view of these background results, the main aim of this paper is to present results of 

application of several deep learning architectures for semantic image segmentation of traffic 

stereo-pair images from the public Cityscapes dataset [11] with a quantitative characterization of 

the prediction results for the left and right channels (parts) of stereo-pairs. 

2 EXPERIMENTAL AND COMPUTATIONAL DETAILS 

For this investigation the images from Cityscapes dataset were used (Fig.1,a-c) that correspond 

to several German cities like Frankfurt (267 images), Munster (174 images), and Lindau (59 

images), which were used for validation in Cityscapes dataset. The wider test Cityscape datasets 

are under work now and will reported separately. The ground truth images labeled for the left 

channel images were also used for the right channel images to compare the actual difference 

between them. Also some custom street view images were taken from the city of Kyiv (Ukraine) 

(Fig.1,d) just for visual for comparison to give immediate impression that variations between 

local conditions can be much crucial for cities from different countries. But these results are under 

work yet and will be reported in details elsewhere. 

 a)  b) 

 c)  d) 

Fig. 1. Examples of images from Cityscapes database: (a) Frankfurt, (b) Lindau, (c) Munster; and custom 

database: Kyiv (d). 

FCN-based PSPNet [8] network and its compressed high-speed version ICNet [9] were 

selected for semantic image segmentation of traffic stereo-pair images as representatives of the 

same family of FCN-based networks targeted for semantic image segmentation. All experiments 



Performance Evaluation of Deep Learning Networks for Semantic Segmentation  3 

 

  

were conducted on the basis of TensorFlow platform on the workstation with the single NVIDIA 

Titan 1080 GPU card with CUDA 8.0 and CUDNN 7.  

3 RESULTS AND DISCUSSION 

Both PSPNet and ICNet perform the semantic segmentation of the selected original images 

(Fig.2a and Fig.2c) of traffic conditions and provide their segmented versions (Fig.2b and Fig.2d). 

The obtained segmented images have the different quality of predicted classes which can 

obviously seen by the naked eye even (Fig.2), especially for the custom street view images that 

were not present in Cityscapes dataset (these results will be reported later elsewhere). 

 a)    b) 

 c)  d) 

Fig. 2. Original images (a, c) and their segmented versions (b, d) obtained by PSPNet network from 

Cityscapes (a) and custom (c) images. 

Accuracy (mean intersection over union — mIoU) and inference time were used to compare 

performance of PSPNet and ICNet networks for different cities and channels of stereo-pair. 

3.1 Accuracy 

The accuracy of semantic segmentation measured by mIoU parameter was determined for all 

images from the mentioned subset of Cityscapes dataset. The distributions of mIoU values were 

determined for each city (Frankfurt, Munster, Lindau), each channel (left and right), and as a total 

(Fig.3). Then they were analyzed with regard to their basic distribution parameters: mean, 

standard deviation, skewness, and kurtosis. 

a) b) 
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Fig. 3. Distributions of accuracy values (mIoU) for the set of left images obtained by: (a) ICNet network and 

(b) PSPNet network. 

The qualitative analysis of these distributions allows to make assumptions that they are 

asymmetric, long-tailed, and have many extreme outliers. The quantitative statistical analysis of 

prediction distributions is used here that recently proved to be effective to find the differences and 

change of behavior in various ensembles of objects in different applications [15-16]. Below the 

results of the quantitative analysis of these distributions are given by means of estimation of mean 

and standard deviation (Fig.4), skewness and kurtosis (Fig.5). 

The mean mIoU values for right and left sets of images are quite different for both ICNet and 

PSPNet networks, and this difference is much bigger than standard deviation for each set (Fig.4). 

a) b) 

Fig. 4. Mean and standard deviations of accuracy (mIoU) obtained by: (a) ICNet and (b) PSPNet network. 

The skewness and kurtosis (Fig.5) are different for both ICNet and PSPNet networks. The 

distributions of accuracy (mIoU) values for various cities obtained by ICNet network are much 

closer to the normal distribution than the distributions of accuracy (mIoU) values for various 

cities obtained by PSPNet. It can be observed by the relative positions of the skewness and 

kurtosis values in relation to the location of the normal distribution (Fig.5; black square). 

a) b) 

Fig. 5. Skewness and kurtosis of accuracy (mIoU) obtained by: (a) ICNet network and (b) PSPNet network. 

The green arrow shows the skewness and kurtosis for the set including all (left and right) images for all 

cities. The black square denotes the place of the normal distribution. 

3.2 Inference time 

The similar analysis was applied for the inference time determined for all images from the 

mentioned subsets of Cityscapes dataset and the distributions of the inference time values (Fig.6) 

were analyzed in the same way (Fig.7-8). 
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a) b) 

Fig. 6. Distributions of inference times obtained by: (a) ICNet network and (b) PSPNet network. 

The qualitative analysis of these distributions allows to make assumptions that they are close to 

symmetric, short-tailed, and have fewer outliers. Below the results of the quantitative analysis of 

these distributions are given by means of estimation of mean and standard deviation (Fig.7), 

skewness and kurtosis (Fig.8).  

The mean inference time values for right and left sets of images are not very different for both 

ICNet and PSPNet networks, and this difference is much lower than standard deviation for each 

set (Fig.7). 

a) b) 

Fig. 7. Time of inference obtained by: (a) ICNet network and (b) PSPNet network. 

The skewness and kurtosis (Fig.8) demonstrate the similar tendency for both ICNet and 

PSPNet networks. The total distribution of the inference time values (Fig.8; green circle) for all 

cities is close to the normal distribution (Fig.8; black square) for both ICNet and PSPNet 

networks. But the distributions for each of the cities demonstrate the positive skewness values that 

is characteristic for the right-skewed distributions where the right-tail corresponds to the bigger 

inference times. The skewness and kurtosis for right and left sets of images are not very different 

for both ICNet and PSPNet networks. 
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a)  b) 

Fig. 8. Time of inference obtained by: (a) IC network and (b) PSPNet network. The green circle shows the 

skewness and kurtosis for the set including all (left and right) images for all cities. The black square denotes 

the place of the normal distribution. 

3.2 Comparison of mIoU and inference time 

The combined plots mIoU vs. inference times (Fig.9) allowed us to make comparison of these 

values with regard to the network applied (ICNet and PSPNet) and the input channel (left and 

right). For ICNet, the mean mIoU values for all left images (Fig.9; red) are quite different in 

comparison to mean mIoU for all right (Fig.9; blue) images. And the mean mIoU value for the 

total distribution (including images from all cities and all channels) is closer to the mean mIoU 

value for the left input channel. But for PSPNet, the mean mIoU values are not so different for all 

left (Fig.9; red) and all right (Fig.9; blue) images. And the mean mIoU value for the total 

distribution is located between the mean mIoU values for the left and right input channels. 

a)  b) 

Fig. 9. Accuracy and time of inference obtained by: (a) ICNet network and (b) PSPNet network. Each 

symbol corresponds to some city (without labels here). 

The common plot for both networks (Fig.10) allows to compare their relative position with 

regard to accuracy (mIoU) and inference time with taking into account the standard deviation of 

these values for city subsets. Variations of mIoU among cities can be very big, for example, for 

left images the mIoU obtained by PSPNet for Lindau was equal to 0.65±0.03, while for Frankfurt 

it was equal to 0.75±0.02. The difference of mIoU values between left and right input channels is 

evidently big for the both networks also. For example, the mean mIoU obtained by ICNet was 

equal to 0.80±0.03 for all left images and 0.58±0.02 for all right images, but the mean mIoU 

obtained by PSPNet was equal to 0.74±0.04 for all left images and 0.52±0.02 for all right images. 

In this context, information from the additional right data channel is radically different from the 

point of view of both networks, because it is out of the limits of statistical error. 
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As to the inference time, ICNet is more stable than PSPNet, because ICNet demonstrates the 

much narrower (by 10 times) scatter of the inference time values with the total mean 0.026 (left 

green circle) and standard deviation 0.004 (left green error bars) in comparison to PSPNet with 

the total mean 0.63 (right green circle) and standard deviation 0.04 (right green error bars). 

 

Fig. 10. Accuracy (mIoU) versus inference time obtained by: (a) ICNet network and (b) PSPNet network. 

4 CONCLUSIONS 

In summary, we have carried out the performance tests of PSPNet an ICNet against several 

subsets of Cityscapes dataset including stereo-pair images taken by left and right cameras for 

different cities. It was found that the distributions of mIoU values for each city and channel are 

asymmetric, long-tailed, and have many extreme outliers, especially for PSPNet network in 

comparison to ICNet network. To the moment the reasons of these statistical properties are 

unclear yet, but they allow us to distinguish these two networks and open the question about 

relation between architecture of deep learning networks and statistical distribution of the predicted 

results (mIoU here). The results obtained demonstrated the different sensitivity of these networks 

to: (1) the local street view peculiarities (among different cities), (2) the change of viewing angle 

on the same street view image (right and left data channels). The differences with regard to the 

local street view peculiarities should be taken into account during the targeted fine tuning the 

models before their practical applications. For both networks, information from the additional 

right data channel is radically different from the left channel, because it is out of the limits of 

statistical error in relation to mIoU values. It means that the traffic stereo pairs can be effectively 

used not only for depth calculations (as it is usually used), but also as an additional data channel 

that can provide much more information about scene objects than simple duplication of the same 

street view images. 

We believe that this work can stimulate more interest to relation between architectures of deep 

learning networks and statistical distributions of the predicted results, and also to the deeper 

investigation of the multichannel data extension in deep learning tasks, especially for other uses 

of the traffic stereo-pair images for semantic segmentation of traffic conditions, and in more 

applications like robotics, online face/gesture recognition, symbol/writing recognition [17], and 

even wearable computing in the context of elderly care [18]. 
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