
Data Driven Auto-completion for Keyframe Animation

by

Xinyi Zhang

B.Sc, Massachusetts Institute of Technology, 2014

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)

August 2018

c© Xinyi Zhang, 2018

The following individuals certify that they have read, and recommend to the Fac-
ulty of Graduate and Postdoctoral Studies for acceptance, the thesis entitled:

Data Driven Auto-completion for Keyframe Animation

submitted by Xinyi Zhang in partial fulfillment of the requirements for the degree
of Master of Science in Computer Science.

Examining Committee:

Michiel van de Panne, Computer Science
Supervisor

Leonid Sigal, Computer Science
Second Reader

ii

Abstract

Keyframing is the main method used by animators to choreograph appealing mo-

tions, but the process is tedious and labor-intensive. In this thesis, we present a

data-driven autocompletion method for synthesizing animated motions from input

keyframes. Our model uses an autoregressive two-layer recurrent neural network

that is conditioned on target keyframes. Given a set of desired keys, the trained

model is capable of generating a interpolating motion sequence that follows the

style of the examples observed in the training corpus.

We apply our approach to the task of animating a hopping lamp character and

produce a rich and varied set of novel hopping motions using a diverse set of hops

from a physics-based model as training data. We discuss the strengths and weak-

nesses of this type of approach in some detail.

iii

Lay Summary

Computer animators today use a tedious process called keyframing to make anima-

tions. In this process, animators must carefully define a large number of guiding

poses, also known as keyframes for a character at different times in an action.

The computer then generates smooth transitions between these poses to create the

final animation. In this thesis, we develop a smart animation auto-completion sys-

tem to speed up the keyframing process by making it possible for animators to

define fewer keyframes. Using statistical models, our system learns a character’s

movement patterns from previous animation examples and then incorporates this

knowledge to generate longer intervals between keyframes.

iv

Preface

This thesis is submitted in partial fulfillment of the requirements for a Master of

Science Degree in Computer Science. The entire work presented here is original

work done by the author, Xinyi Zhang, performed under the supervision of Dr.

Michiel Van De Panne with code contributions from Ben Ling on the 3D visualizer

for displaying results. A version of this work is currently in review for the 2018

Motion, Interaction, and Games conference.

v

Table of Contents

Abstract . iii

Lay Summary . iv

Preface . v

Table of Contents . vi

List of Tables . viii

List of Figures . ix

Glossary . xii

Acknowledgments . xiii

1 Introduction . 1
1.1 Problems and Challenges . 2

1.2 Our approach . 2

1.3 Thesis Overview . 3

2 Related Work . 4
2.1 Hand-drawn In-Betweening . 4

2.2 Computer-based In-Betweening 5

2.3 Physics-based Methods for Animation 6

2.4 Data-driven Motion Synthesis and Animation 6

vi

2.5 Deep Learning for Motion Synthesis 7

3 Method Overview . 10
3.1 The Animation Database . 11

3.1.1 Physics-based Method for Generating Animations 11

3.1.2 The Articulated Lamp Model 12

3.1.3 Control Scheme for Jumping 13

3.1.4 Finding Motions with Simulated Annealing 14

3.2 Data Preprocessing . 17

3.3 ARNN Network . 17

3.4 Training . 20

3.4.1 Loss Function . 21

3.4.2 Curriculum Learning . 22

3.4.3 Training Details . 23

4 Results . 24
4.1 Comparison to Other Architectures 33

5 Conclusions . 36

Bibliography . 39

vii

List of Tables

Table 3.1 The autoregressive recurrent neural network (ARNN) trained with

vs without curriculum on a smaller sample set of 80 jump se-

quences for 20000 epochs. Curriculum learning results lower

loss values. 22

Table 4.1 The test losses from other network architectures vs the ARNN.

The ARNN produces the best overall losses. 34

viii

List of Figures

Figure 2.1 Visualization of the Vector Animation Complex [11] data struc-

ture (top) for a 2D bird animation (bottom). (Reproduced from

Figure 10 of [11] with permission.) 5

Figure 2.2 (a) The neural network architecture developed by Holden et al.

[16] for motion synthesis. The feed forward network network

maps high level control parameters to motion in the hidden

space of a convolutional autoencoder. (b) Character motion

generated from an input trajectory using the method developed

in [16]. (Reproduced from Figure 1 and 2 of [16] with permis-

sion.) . 9

Figure 3.1 The three stages of our system: creation of the animation database,

training of the ARNN network, and generation of believable

motions at runtime. 11

Figure 3.2 The mechanical configuration of Luxo. 12

Figure 3.3 Pose control graph for jumping Luxo. The control graph is

parameterized by the target poses for the 4 states and the tran-

sition durations t1,t2,t3,t4. 13

Figure 3.4 The energy, acceptance probability, and temperature values for

a single run of the simulated annealing algorithm over 1000

search iterations. 16

ix

Figure 3.5 Preprocessed training data with extracted keyframes for each

degree of freedom. There are 25 frames of animation for each

full jump, punctuated by 6 frames of still transition between

jumps. The bold open circles indicate extracted key frames. . 18

Figure 3.6 Architecture of the ARNN. The ARNN is composed of a recur-

rent portion and a feed-forward portion. 19

Figure 3.7 Curriculum learning schedules used to train the ARNN net-

work during 60000 training epochs: teacher forcing ratio de-

cay (Green Curve) and key importance weight ω annealing

(Blue Curve) . 23

Figure 4.1 Motion reconstruction of four jumps taken from the test set.

animation variables (AVARS) from the original simulated mo-

tion trajectory from the test set is plotted in light green. Ex-

tracted keyframes are circled in dark green. The resulting mo-

tion generated using our network is displayed in dark blue. . . 25

Figure 4.2 Height edits. Keyframes extracted from the original test jump

are shown in green. The trajectory of the generated motion

smoothly tracks the new apex keyframes edited to have base

heights of 0.7 (top), 1.5 (middle), and 1.8 (bottom) times the

original base height. 27

Figure 4.3 Timing edits. Input keyframes extracted from the original test

jump are shown in green. The predicted pose at key locations

are shown in dark gray. The top figure shows the prediction

using unmodified keyframes; the keyframe of the pose at the

top of the 3 jumps occur at t=13,46,79. In the middle figure,

the jumps are keyed to have faster take off. The new keyframes

with the same pose are newly located to be at t=7, 40, 73. The

bottom figure shows the jumps with slower takeoff with the

jump top keyframes shifted to be at t=19, 52, 85. 28

Figure 4.4 Motion generation with sparse keyframes. The apex and land-

ing keyframes for the above jumps have been removed from

the input. 30

x

Figure 4.5 Coupled nature of the motion synthesis model. Edits to a sin-

gle degree of freedom (top graph, base y position) leads to

different warping functions for the other degrees of freedom. . 31

Figure 4.6 Motion synthesis from novel keyframe inputs. We created new

keyframes from randomly sampled and perturbed keys taken

from the test set (green). The output motion from the network

is shown with predicted poses at input key locations shown in

dark gray. 32

Figure 4.7 Architecture of the segregated network which combines a RNN

only prediction produced by the Motion Pattern Network, with

a keyframe conditioned correction produced by a feed-forward

Interpolation Network. 33

Figure 4.8 Qualitative comparison between results for (a) a feed-forward

net; (b) a segregated net; and (c) the ARNN. The ARNN and

segregated nets produce smoother motions at key transitions

with the use of memory. 35

xi

Glossary

ARNN autoregressive recurrent neural network

AVAR animation variable

FSM finite state machine

GRU gated recurrent unit

RNN recurrent neural network

SELU scaled exponential linear unit

xii

Acknowledgments

Firstly, I would like to thank my supervisor Dr. Michiel van de Panne for help-

ing me turn my fanciful ideas about animation into reality. His optimism and

good cheer are truly inspiring. Whenever I encountered moments of difficulty,

Michiel would always patiently work with me to find ways to move forward. I

am incredibly grateful to have had the opportunity to learn from his wisdom and

knowledge.

I wish to thank my lab mates Glen Berseth, Boris Dalstein, Xue Bin Peng,

Jacob Chen, Zhaoming Xie, and Chenxi Liu for helping me feel at home in gradu-

ate school with their companionship and support. Additionally, I extend my thanks

to Dr. Leonid Sigal for his suggestions and comments on my thesis and Dr. Daniel

Holden for his helpful advice on troubleshooting neural networks. I also wish to

thank all of my colleagues and friends from the computer graphics community who

have supported me throughout this journey.

To my parents, Hongbing Zhang and Manhua Song, and the best brother one

could ever have, Daniel Zhang, thank you for always being there for me, for sup-

porting me through the tough times, and for helping me discover the good in life.

I’m forever grateful for all that you’ve given me and all that you continue to give

me.

xiii

My time in Vancouver has been magical because of my wonderful friends.

I’d never imagined I’d be snow camping, having bear adventures (I forgive you

Sabnam), or wearing yoga leggings everywhere, but here I am, kind of missing

the rain. A special thanks to Sabnam, Jessica Yu, and my Vancouver friends for

showing me the beauty of this city. I would also like to thank my friends at home

and abroad for their messages and visits, which made my days so much brighter.

Finally, all of this is really the fault of Charles Badiller and Omar Elhindi, two

very talented animators I met during my internship at Disney in 2014. If I hadn’t

sat next to them that summer witnessing their frustrations, none of this work would

have been possible. I wish to thank Charles, Omar, and artists everywhere for their

dedication and passion. Your work has been the inspiration for all that I’ve done

here.

xiv

Chapter 1

Introduction

Animation is a beautiful art form that has evolved artistically and technically over

many years. However, despite advancements in tools and technologies, one of the

main methods used to produce animation, keyframing, remains a labor-intensive

and challenging process. In this process, sets of poses, or keyframes, are placed at

critical moments in an action, and the animation system generates smoothly tran-

sitioning inbetweens between keys to complete the motion. For artists, keyframing

offers a low-level degree of timing and positional control that enables them to cre-

ate highly expressive animations. However, the keyframing process is slow and

labor-intensive. The spline curves generally used for interpolation are not aware of

the type of motion, nor its style or physics. Stated another way, the motion inbe-

tweening process is agnostic to what is being animated. Consequently, animators

must often do extra work to achieve a desired result, either by manually adjusting

the interpolation curve parameters or by inserting many additional keyframes. In

a production environment where characters often have with hundreds of animation

variables (AVARS) controlling different degrees of freedom, this way of working

quickly becomes unmanageable[35]. It is not uncommon for artists to spend many

hours posing and defining key frames or poses to choreograph motions, with a typ-

ical animator at Pixar producing around only 4 seconds of animation every one or

two weeks.

1

1.1 Problems and Challenges
Over the years, many researchers have sought ways to automate the animation pro-

cess, but this a challenging task. To be helpful to animators, a good system would

need to generate motions comparable to those produced by professionals. How-

ever, crafting high-quality motions requires tremendous expertise, and animators

take into account many factors in the creation of animations, including advanced

knowledge of physical laws, acting, and visual appeal. In order to achieve non-

trivial levels of automation, parts of this expertise must somehow be emulated.

Further, being able to generate quality motions is not enough. In order to be prac-

tically useful, an automation system should afford artists a high degree of creative

freedom and facilitate artistic control. Previous approaches to the problem using

physics-based or data-driven techniques to augment the animation process are sel-

dom used in practice because they fail to support low-level timing or positional

control of motions. An ideal automation system should support and accelerate the

work flow while still allowing for precise art-direction of motions by artists.

1.2 Our approach
In this thesis, we address the issues discussed above by introducing a novel data-

driven method for automation that supports low-level keyframe control. The core

component of our method is a new autoregressive recurrent neural network (ARNN)

architecture that is conditioned on the target keyframes. These are trained using a

specialized loss function that places extra importance on the accuracy of the pose

predictions made at the designated keyframe times. Given a set of example mo-

tions of a character to be animated, the ARNN learns the motion characteristics

of the character, along with a blending function for key frame interpolation. As

a consequence, motions produced by the ARNN match the style and movement

characteristics of the character and conform to the art-direction provided by the

artist through keyframing. Additionally, the flexibility of an recurrent neural net-

work (RNN) model allows our method to naturally support the ability for artists to

control the level of automation by applying the method to either tightly-spaced or

loosely spaced keyframes.

We train our network on a database of physics-based motion samples of a pla-

2

nar articulated hopping Luxo character, and generate novel motions of the char-

acter choreographed using keyframing. The results demonstrate the expressibility

and flexibility of our system.

1.3 Thesis Overview
The remainder of this thesis is organized as follows. In Chapter 2, we review pre-

vious approaches for automatic inbetweening and related work in motion synthesis

and deep learning. Chapter 3 describes our process for constructing the animation

data set we use to train the ARNN network. Chapter 4 details the network architec-

ture and training procedure. Chapter 5 presents and discusses the results produced

using our method. Lastly, in Chapter 6, we discusses the limitations of our system

and possible future directions for the work.

3

Chapter 2

Related Work

There is an abundance of related work that serves as inspiration and as building

blocks for our work, including inbetweening, physics-based methods, data-driven

animation methods, and machine learning methods as applied to computer anima-

tion. Below we note the most relevant work in each of these areas in turn.

2.1 Hand-drawn In-Betweening
Methods for automatically inbetweening hand-drawn key frames have a long his-

tory, dating back to Burtnyk and Wein [6]. Kort introduced an automatic system

for inbetweening 2D drawings which identifies stroke correspondences between

drawings and then interpolates between the matched strokes [20]. Whited et al.

[34] focus on the case in which two key frames are very similar in shape. They use

a graph-based representation of strokes to find correspondences, and then perform

a geometric interpolation to create natural, arc shaped motion between keys. More

recently, Dalstein et al. [11] introduced a novel data structure, the Vector Anima-

tion Complex, shown in Figure 2.1 to enable continuous interpolation in both space

and time for 2D vector drawings. The VAC handles complex changes in drawing

topology and supports a keyframing paradigm similar to that used by animators.

For our work, we focus on the problem of inbetweening for characters that are

modeled as articulated rigid bodies.

4

Figure 2.1: Visualization of the Vector Animation Complex [11] data struc-
ture (top) for a 2D bird animation (bottom). (Reproduced from Fig-
ure 10 of [11] with permission.)

2.2 Computer-based In-Betweening
Inbetweening in computer animation is performed semi-automatically. Animators

use control points to precisely define interpolating splines which blend between pa-

rameters (i.e AVARS) at keyframes to generate smooth animations. As noted in Sec-

tion 1, animators typically touch hundreds of AVARS when animating, and defining

spline curves for individual AVARS tedious. Methods enabling faster edits of ani-

mation curves include motion warping [37], which preserves local movement pat-

terns during edits by shifting and scaling original animation curves to satisfy new

keyframe constraints, reducing the work required to adjust individual splines. Stag-

gered poses [9] encode timing relationships between coordinated AVARS and pre-

serves inter-AVAR movement patterns during edits of correlated movements. There

has been less work on the generation of inbetweening splines. Shen et al. [29]

developed a procedural method for automatically generating detailed coordinated

motions using a minimum number of AVARS. However, their method is limited

to mostly cyclical motions. Nebel et al. [25] generated interpolating splines from

keyframes with the objective of avoiding self-collisions between the limbs of char-

acters. Our objective in this thesis of generating appealing, style and motion aware

5

inbetweens is more complex.

2.3 Physics-based Methods for Animation
Another important class of methods relies on simulation to automatically generate

motions. However, although physics-based methods excel at producing realistic

and plausible motions, they are inherently difficult to control. This is because the

motions are defined by an initial state and the equations of motion, which are then

integrated forward in time. However, keyframes require motions to reach pose

objectives at specific instants of time in the future. One approach to the control

problem for rigid bodies generates collections of likely trajectories for objects by

varying simulation parameters and leave users to select the most desirable trajec-

tory out of the possibilities, e.g., [7, 31]. Space-time constraint methods [3, 15, 36]]

take another approach, treating animation as a trajectory optimization problem.

These methods can treat the keyframe poses and timing as hard constraints and are

capable of producing smooth and realistic interpolating motions. However, these

methods are generally complex to implement, can be problematic to use when-

ever collisions are involved, and require explicitly-defined objective functions to

achieve desired styles. The recent work of Bai et al. [2] combine interpolation

with simulation to enable more expressive animation of non-physical actions for

keyframed 2D cartoon animations. Their method focuses on secondary animation

of shape deformations and is agnostic to the style and context of what is being

animated, a drawback shared by physics-based methods. Our work focuses on the

animation of articulated figures and the desire to achieve context-aware motion

completion for primary animation.

2.4 Data-driven Motion Synthesis and Animation
Techniques to synthesize new motions from an existing motion database include

motion blending and motion graphs. Motion graphs organize large datasets of

motion clips into a graph structure in which edges mark transitions between mo-

tion segments located at nodes. New motions can be generated by traversing

walks on the graph, which can follow high-level constraints placed by the user,

e.g., [22]. Such methods cannot generalize beyond the space of motions present

6

in the database. To create larger variations in what an be generated, motion blend-

ing may be used. Motion blending techniques can generate new motions satis-

fying high-level control parameters by interpolating between motion examples,

e.g., [13, 21, 27]. Relatedly, motion edits can also be performed using motion

warping to meet specific offset requirements [38]. The parameterizations of most

motion blending methods do not support precise art-direction.

Subspace methods choose to identify subspace of motions, usually linear, in

which to perform trajectory optimization. The work of Safonova et al. [28] was

among the first to propose this approach. Min et al. [24] construct a space-time

parameterized model which enables users to make sequential edits to the timing

or kinematics. Their system models the timing and kinematic components of the

motions separately and fails to capture spatio-temporal correlations. Additionally,

their system is based on a linear analysis of the motions that have been put into

correspondence with each other, whereas our proposed method builds on an au-

toregressive predictive model that can in principle be more flexible and therefore

more general. In related work, Wei et al. [33] develop a generative model for hu-

man motion that exploits both physics-based priors and statistical priors based on

GPLVMs. As with [24], this model uses a trajectory optimization framework.

2.5 Deep Learning for Motion Synthesis
Recently, researchers have begun to exploit deep learning algorithms for motion

synthesis. One such class of methods uses recurrent neural networks (RNNs),

which can model temporal dependencies between data points. Fragkiadaki et al. [12]

used an Encoder-Recurrent-Decoder network for motion prediction and mocap

data generation. Crnkovic-Friis [10] use an RNN to generate dance choreogra-

phy with globally consistent style and composition. However, the above methods

provide no way of exerting control over the generated motions. Additionally, since

RNNs can only generate data points similar to those seen in the training data set in

a forward manner, without modification, they cannot be used for in-filling. Recent

work by Holden et al. [16, 17] takes a step towards controllable motion generation

using deep neural networks. In one approach [16] illustrated in Figure 2.2 they

construct a manifold of human motion using a convolutional autoencoder trained

7

on a motion capture database, and then train another neural network to map high-

level control parameters to motions on the manifold. In [17], the same authors take

a more direct approach for real-time controllable motion generation and train a

phase-functioned neural network to directly map keyboard controls to output mo-

tions. Since [16] synthesizes entire motion sequences in parallel using a CNN,

their method is better suited for motion editing, and does not support more pre-

cise control through keyframing. The method proposed in [17] generates motion

in the forward direction only and requires the desired global trajectory for every

time step. The promise (and challenge) of developing stable autoregressive mod-

els of motion is outlined in a number of recent papers, e.g., [16, 23]. The early

NeuroAnimator work [14] was one of the first to explore learning control policies

for physics-based animation. Recent methods also demonstrate the feasibility of

reinforcement learning as applied to physics-based models, e.g., [26]. These do

not provide the flexibility and control of keyframing, however, and they currently

work strictly within the space of physics-based simulations.

8

(a)

(b)

Figure 2.2: (a) The neural network architecture developed by Holden et al.
[16] for motion synthesis. The feed forward network network maps high
level control parameters to motion in the hidden space of a convolutional
autoencoder. (b) Character motion generated from an input trajectory
using the method developed in [16]. (Reproduced from Figure 1 and 2
of [16] with permission.)

9

Chapter 3

Method Overview

In this section, we describe the details of our system, which is show in Figure 3.1.

First, to create our dataset for training, we use simulation to generate a set of

jumping motions for our linkage-based Luxo lamp character (see Section 3.1) and

preprocess the simulation data (see 3.2) to extract sequences of animation frames

along with ”virtual” keyframes and timing information for each sequence. During

training, we feed the ARNN network keyframes of sequences and drive the net-

work to learn to reproduce the corresponding animation sequence using a custom

loss function (see Section 3.3, Section 3.4). Once the network is trained, users

can synthesize new animations by providing the network with a sequence of input

keyframes.

The structure of our ARNN neural network is illustrated in Figure 3.6 and de-

scribed in greater detail in Section 3.3. The ARNN is a neural network composed of

a recurrent portion and feedforward portion. The recurrent portion in conjunction

with the the feedforward portion helps the net learn both the motion characteristics

of the training data keyframe constraints. The ARNN takes as input a sequence of

n key frames X = {X0,X1, ...,Xn}, along with timing information describing the

temporal location of keys, T = {T0,T1, ...,Tn}, and outputs a final interpolating se-

quence of frames Y = {Y0,Y1, ...,Ym} of length m = Tn−T0 + 1. Frames are pose

representations, where each component X i or Y i describes the scalar value of a

degree of freedom of Luxo.

10

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ba
se
 y
 p
os

In-between Frames
Keys

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Ba
se
 x
 p
os

−0.8

−0.6

−0.4

−0.2

0.0

Ba
se
 o
rie

nt
at
io
n

−0.4

−0.2

0.0

0.2

0.4

0.6

Le
g
lin

k
an

gl
e

0.5

1.0

1.5

2.0

Ne
ck
 li
nk

 a
ng

le

0 100 200 300 400 500 600 700
Time

−2.0

−1.5

−1.0

−0.5

0.0

0.5

He
ad

 li
nk

 a
ng

le

1. Create Animation Database 2. Train Neural Network 3. Motion Generation at Runtime

Figure 3.1: The three stages of our system: creation of the animation
database, training of the ARNN network, and generation of believable
motions at runtime.

3.1 The Animation Database
In this section, we describe our physics-based method for generating motion sam-

ples for Luxo and our procedure for transforming the motion data into a format

suitable for training. Our animation database for training consists of hopping mo-

tions of a 2D Luxo character.

3.1.1 Physics-based Method for Generating Animations

In order to efficiently train an expressive network, we need a sufficiently-sized

motion database containing a variety of jumping motions. Creating such a dataset

of jumps by hand would be impractical, so we developed a physics-based solution

to generate our motion samples. We build a physics-based model of the Luxo

character in Bullet with actuated joints, and use simulated annealing to search for

control policies that make Luxo hop off the ground.

11

3.1.2 The Articulated Lamp Model

Figure 3.2 shows the mechanical configuration of Luxo which we use for simu-

lation. The model is composed of 4 links and has 6 degrees of freedom: the x

position of the base link (L1), the y position of the base link, the orientation of the

base link θ1, the joint angle θ1 between the base link ad the the leg link (L2), the

joint angle θ2 between the leg link ad the the neck link (L3), and the joint angle

θ3 at the lamp head (L4). Despite its simple construction, the primitive Luxo is

expressive and capable of a rich range of movements. To drive the motion of the

character, we equip each joint with a proportional-derivative (PD) controller. The

PD controller computes an actuating torque τ that moves the link towards a given

target pose θd according to τ = kp(θd−θ)−kdω where θ and ω denote the current

link position and velocity, and k and ω are stiffness and damping parameters for

the controller. By finding suitable pose targets for the PD controllers over time,

we can drive the lamp to jump. However, searching for admissible control policies

can be intractable due to the large space of possible solutions. Thus, we restrict the

policy search space by developing a simple control scheme for hops which makes

the optimization problem easier.

X
Y

θ1
L1

θ2

A1

L2

θ3

A2

L3

A3

L4

θ4

Figure 3.2: The mechanical configuration of Luxo.

12

Figure 3.3: Pose control graph for jumping Luxo. The control graph is pa-
rameterized by the target poses for the 4 states and the transition dura-
tions t1,t2,t3,t4.

3.1.3 Control Scheme for Jumping

Our control scheme for Luxo, shown in Figure 3.3, is based on the periodic con-

troller synthesis technique presented in [32]. It consists of a simple finite state

machine finite state machine (FSM) with a cyclic sequence of timed state transi-

tions.The FSM behavior is governed by a set of transition duration parameters, and

the target poses for each state, which then dictate the amount of torque applied to

Luxo’s joints, via PD controllers, when in a given state.

Given this control scheme, we can find parameter values for the transition du-

rations and pose targets that propel Luxo forward in a potentially rich variety of

hop styles. To this end, we use simulated annealing, which finds good motions by

iteratively searching the parameter space using forward simulation.

13

3.1.4 Finding Motions with Simulated Annealing

Algorithm 1 gives the pseudocode for the simulated annealing algorithm. The al-

gorithm starts with an initial guess for the transition durations and target poses.

At each step, the algorithm seeks to improve upon the current best guess s for the

control parameters by selecting a candidate solution s′ and comparing the quality,

or energy of the resulting motions. If the s′ produces a better jump with lower en-

ergy, the algorithm updates the current best guess. Otherwise, the algorithm prob-

abilistically decides whether to keep the current guess according to a temperature

parameter, T . At the beginning, T is set to be high to encourage more exploration

of unfavorable configurations, and slowly tapered off until only a strictly better

solutions are accepted.

Algorithm 1 Simulated Annealing

1: function SIMULATEDANNEALING()
2: T ← Tmax

3: K← Kmax

4: s← INIT()
5: while K > Kmax do
6: s′← NEIGHBOUR(s)
7: ∆E← E(s′) − E(s)
8: if RANDOM() < ACCEPT(T,∆E) then
9: s← s′

10: end if
11: T ← COOLING(K)
12: end while
13: return s
14: end function

The Energy Function

The quality of motions is measured by the energy function

E(s) =−(1.0−we)D−weHmax. (3.1)

This function is a weighted sum of the total distance D and maximum height

14

Hmax reached by Luxo after cycling through the pose control graph three times

using a particular policy, corresponding to three hops. To obtain a greater variety

of hops, we select a random value for we between 0.0 and 1.0 for each run of the

simulated annealing algorithm and biasing the search towards different trajectories.

After Kmax iterations of search, we record the trajectory of the best jump found if

it is satisfactory, i.e reaches a certain distance and max height, and contains three

hops.

Picking Neighboring Candidate Solutions s′

At each iteration of the simulated annealing algorithm, we choose a new candidate

solution by slightly perturbing the current best state s. We select one of the 4

transition durations to perturb by 7 ms and one joint angle for each of the 4 target

poses to perturb by 0.5 radians.

Temperature And Acceptance Probability

The probability of transitioning from the current state s to the new candidate state

s′ for each iteration of search is specified by the following function:

ACCEPT(T,E(s),E(s′)) =

1, if E(s′)< E(s′)

exp(−(E(s
′)−E(s))
T), otherwise

(3.2)

Thus, we transition to the new candidate state if it has strictly lower energy

than the current state s′. Otherwise, we decide probabilistically whether we should

explore the candidate state. From (3.2), we see that this probability is higher for

states with lower energy and for higher temperature values T . As T cools down

to 0, the algorithm increasingly favors transitions that move towards lower energy

states.

Implementation Details

We use the Bullet physics engine [1] to control and simulate the Luxo charac-

ter. We use a temperature cooling schedule of T (K) = 2 ∗ 0.999307K and search

15

for Kmax = 1000 iterations for our implementation of simulated annealing. After

around 10000 total runs of the algorithm, we obtained 300 different successful ex-

amples of repeatable hops for our final motion dataset. For each type we use three

successive hops for training.

Figure 3.4: The energy, acceptance probability, and temperature values for a
single run of the simulated annealing algorithm over 1000 search itera-
tions.

16

3.2 Data Preprocessing
The raw simulated data generated from the above procedure consists of densely

sampled pose information for jumps and must be preprocessed into a suitable for-

mat that includes plausible keyframes for training. We note that in most animation

systems, a keyframe could also allows a user to define the incoming and outgo-

ing tangents, which allows for incoming and outgoing velocities to be specified, as

well as motion discontinuities, but this is not the case for our system. For hops, we

use the liftoff pose, the landing pose, and any pose with Luxo in the air as the 3

key poses for each jump action. To create a larger variety of motions in the training

set, we also randomly choose to delete 0-2 arbitrary keys from each jump sequence

every time it is fed into the network during training, so the actual training data set

is much larger.

In order to extract the above key poses along with inbetween frames, we first

identify events corresponding to jump liftoffs and landings in the raw data. Once

the individual jump segments are located, we evenly sample each jump segment,

beginning at the liftoff point and ending at the landing point, to obtain 25 frames

for each hop. We then take one of those 25 frames with Luxo in the air to be an-

other keyframe, along with its timing relative to the previous keyframe. Although

individual jumps may have different durations, we choose to work with the rel-

ative timing of poses within jumps rather than the absolute timing of poses for

our task, and thus sample evenly within each hop segment. In the pause between

landings and liftoffs, we take another 6 samples inbetween frames to be included

in the final sequence. The fully processed data consists of a list of key frames

X = {X0,X1, ...,Xn} and their temporal locations, T = {T0,T1, ...,Tn}, and the full

sequence including key frames and inbetween frames Y = {Y0,Y1, ...,Ym}, where

m = Tn−T0+1. Figure 3.5 shows a preprocessed jump sequence from our training

set.

3.3 ARNN Network
Given a sequence of key poses X and timing information T , the task of the ARNN

is to progressively predict the full sequence of frames Y that interpolate between

keys. The network makes its predictions sequentially, making one frame prediction

17

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ba
se
 y
 p
os

In-between Frames
Keys

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Ba
se
 x
 p
os

−0.8

−0.6

−0.4

−0.2

0.0

Ba
se
 o
rie

nt
at
io
n

−0.4

−0.2

0.0

0.2

0.4

0.6

Le
g
lin

k
an

gl
e

0.5

1.0

1.5

2.0

Ne
ck
 li
nk

 a
ng

le

0 100 200 300 400 500 600 700
Time

−2.0

−1.5

−1.0

−0.5

0.0

0.5

He
ad

 li
nk

 a
ng

le

Figure 3.5: Preprocessed training data with extracted keyframes for each de-
gree of freedom. There are 25 frames of animation for each full jump,
punctuated by 6 frames of still transition between jumps. The bold open
circles indicate extracted key frames.

at a time. To make a pose prediction for a frame t, temporally located in the interval

between key poses XK and XK+1, the network takes as input the keys XK and XK+1,

the previous predicted pose Y ′t−1, the previous recurrent hidden state Ht−1, and

the relative temporal location of t, which is defined according to trel =
t−TK

TK+1−TK
,

where TK and TK+1 are the temporal locations of XK and XK+1 respectively. Note

that we use absolute positions for the x and y locations of Luxo’s base, rather

than using the relative ∆x and ∆y translations with respect to the base position

in the previous frame. This does not yield the desired invariance with respect to

horizontal or vertical positions. However, our experiments when using absolute

18

GRU Layer

GRU Layer

Recurrent Network

Ht−1

Ht

FC Layer

FC Layer Output Layer

Feedforward Network

residualt−1

Y ′t−1 XK XK+1

+

Pose Feature Preprocessing

t−TK

TK+1−TK

Y ′t

Figure 3.6: Architecture of the ARNN. The ARNN is composed of a recurrent
portion and a feed-forward portion.

positions produced smoother and more desirable results than when using relative

positions.

We now further describe the details of the ARNN network structure, which is

composed of a recurrent and a feedforward portion, and then discuss the loss func-

tion and procedure we use to train the network to accomplish our objectives.

In the first stage of prediction, the network takes in all the relevant inputs in-

cluding the previous predicted frame Y ′t−1, the previous hidden state Ht−1, the pre-

ceding key frame XK , the next key frame XK+1, and the relative temporal location

of t, trel to produce a new hidden state Ht .

Y ′t−1, XK , and XK+1 are first individually preprocessed by a feedforward net-

work composed of two linear layers as a pose feature extraction step before they

are concatenated along with trel to form the full input feature vector at time t,

xt . This concatenated feature vector along with the hidden state Ht−1 is fed into

19

the recurrent portion of the network, composed of two layers of gated recurrent

units (GRUS) [8]. We use scaled exponential linear unit (SELU) activations [19]

between intermediate outputs. The GRU cells have 100 hidden units each, with

architectures described by the following equations:

rt = σ(Wirxt +bir +WhrH(t−1)+bhr)

zt = σ(Wizxt +biz +WhzH(t−1)+bhz)

nt = tanh(Winxt +bin + rt(WhnH(t−1)+bhn))

Ht = (1− zt)nt + ztH(t−1)

(3.3)

For the second stage of the prediction, the network takes the hidden output

from the previous stage Ht as input into a feedforward network composed of two

linear layers containing 10 hidden units each. This output from the feedforward

network is then mapped to a 6 dimensional residual pose vector which is added to

the previous pose prediction Y ′t−1 to produce the final output Y ′t .

The recurrent and feedforward portions of the network work together to accu-

mulate knowledge about keyframe constraints while learning to make predictions

that are compatible with the history of observed outputs. This dual-network struc-

ture arose from experiments showing that a RNN only network/a feedforward only

network is insufficient for meeting the competing requirements of self-consistency

with the motion history and consistency with the keyframe constraints. Our exper-

iments with other architectures are detailed in Section 4.1.

3.4 Training
During the training process, we use backpropagation to optimize the weights of the

ARNN network so that the net can reproduce the full sequence of frames Y given the

input keyframe information X and T . In this section, we describe the details of our

training process, including the loss function and the curriculum learning strategy

we use to train the network.

20

3.4.1 Loss Function

To drive the network to learn to interpolate between keyframe constraints, we de-

veloped a custom loss function for the task,

LARNN = 100ω

n

∑
K=1

(XK−Y ′TK
)2 +MSE(Y,Ŷ)

MSE(W,Z) =
1
N

N

∑
i=1

(Wi−Zi)
2.

(3.4)

This custom loss function is composed of two parts - the frame prediction loss

and the key loss. The frame prediction loss, MSE(Y,Y ′), is the vanilla mean-

squared error loss which calculates the cumulative pose error between poses in the

final predicted sequence and the ground truth sequence. This loss helps the network

encode movement information about the character during training as it is coerced

to reproduce the original motion samples. By itself this frame loss is insufficient

for our inbetweening task because it fails to model the influence of keyframe con-

straints on the final motion sequence. In order to be consistent with the keyframing

paradigm, inbetween frames generated by the network should be informed by the

art-direction of the input keys and interpolate between them. Consequently, we

introduce an additional loss term to the total loss - the key loss, ∑
n
K=1(XK −Y ′tK)

2

to penalize discrepancies between predicted and ground truth keys, forcing the net-

work to pay attention to the input keyframe constraints. Amplifying the weight of

this loss term simulates placing a hard constraint on the network to always produce

frame predictions that hit the original input keyframes. In experiments, we found

that a weight of 100 was sufficient. However, because the network must incorpo-

rate the contrasting demands of learning both the motion pattern of the data as well

as keyframe interpolation during training, setting the weight of the key loss to 100

in the beginning is not optimal. Consequently, we introduce ω , the Key Impor-

tance Weight, which we anneal during the training process as part of a curriculum

learning method [5] to help the network learn better during training.

21

3.4.2 Curriculum Learning

In our curriculum learning method, we set ω to be 0 in the beginning stages of train-

ing and slowly increase ω during the latter half of the training process. Thus, for

the first part of the training process the network primarily focuses on learning the

motion characteristics of the data. Once the first stage of learning has stabilized, we

increase ω so the network can begin to consider the keyframe constraints.During

the first phase of the training, we apply scheduled sampling [4] as another cur-

riculum learning regime to help the recurrent portion of the net learn movement

patterns. In this scheme, we feed the recurrent network the ground truth input for

the previous predicted pose Yt−1 instead of the recurrent prediction Y ′t−1 at the start

of training, and gradually change the training process to fully use generated predic-

tions Y ′t−1, which corresponds to the inference situation at test time. The probability

of using the ground truth input at each training epoch is controlled by the teacher

forcing ratio which is annealing using an inverse sigmoid schedule shown by the

green curve of Figure 3.7. Once the learning has stabilized, we gradually increase

ω and push the network to learn the interpolation aspect of the prediction until the

network is able to successfully make predictions for the training samples under the

new loss function. The sigmoid decay schedule for ω is shown by the blue curve

in Figure 3.7.

Without curriculum learning, the network has a harder time learning during

the training process and we observe a large error spike in the learning curve at

the beginning of training. In contrast, using the above curriculum learning method

produces a smoother learning curve and superior qualitative and quantitative results

as shown in Table 3.1.

Training Procedure Key Loss Frame Loss Total Loss
With ω annealing 0.00100392 0.00395658 0.00496051
No ω annealing 0.00120846 0.00670011 0.00790857

Table 3.1: The ARNN trained with vs without curriculum on a smaller sample
set of 80 jump sequences for 20000 epochs. Curriculum learning results
lower loss values.

22

0 20000 40000 60000
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.7: Curriculum learning schedules used to train the ARNN network
during 60000 training epochs: teacher forcing ratio decay (Green
Curve) and key importance weight ω annealing (Blue Curve)

3.4.3 Training Details

The final model we use to produce motions in the results section is trained on 240

jump sequences, with 3 jumps per sequence. As noted above, from each jump

sequence we obtain many more sequences by randomly removing 0-2 arbitrary

keys from the sequence each time it is fed into the network. The model is optimized

for 60000 epochs using Adam [18] with an initial learning rate of 0.001, 1 = 0.9, 2

= 0.999 and ε = 108 and regularized using dropout [30] with probabilities 0.9 and

0.95 for the first and second GRU layers in the recurrent portion of the network and

probabilities 0.8 and 0.9 for the first and second linear layers in the feedforward

portion. The current training process takes 130 hours on an NVIDIA GTX 1080

GPU, although we expect that significant further optimizations are possible.

23

Chapter 4

Results

We demonstrate the autocompletion method by choreographing novel jumping mo-

tions using our system. When given keyframe constraints that are similar to those

in the training set, our system reproduces the motions accurately. For keyframe

constraints that deviate from those seen in the training dataset, our system gener-

alizes, synthesizing smooth motions even with keyframe inputs that are physically

unfeasible. Results are best seen in the accompanying video.

We first test our system’s ability to reproduce motions from the test dataset, i.e.,

motions that are excluded from the training data, based on keyframes derived from

those motions. The AVARS for two synthesized jumps from the test set are plotted

in Figure 4.1. More motions can be seen in the video. The trajectories generated

using our system follow the original motions closely, and accurately track almost

all of the keyframe AVARS. The motions output by our system are slightly smoother

than the original jumps, possibly due to predictions regressing to an average or the

residual nature of the network predictions.

24

0.0

0.2

0.4

0.6

0.8

1.0
Ba

se
 y

 p
os

0

2

4

6

8

10

Ba
se

 x
 p

os

0.8

0.6

0.4

0.2

0.0

Ba
se

 O
rie

nt
at

io
n

0.2

0.0

0.2

0.4

0.6

Le
g

lin
k

an
gl

e

0.5

1.0

1.5

2.0

Ne
ck

 li
nk

 a
ng

le

0 100 200 300 400 500 600
Time

1.0

0.5

0.0

He
ad

 li
nk

 a
ng

le

In-between Frames
Prediction
Keys

0.0

0.5

1.0

1.5

Ba
se

 y
 p

os

0

2

4

6

8

10

Ba
se

 x
 p

os

0.6

0.4

0.2

0.0

Ba
se

 O
rie

nt
at

io
n

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Le
g

lin
k

an
gl

e

0.5

1.0

1.5

Ne
ck

 li
nk

 a
ng

le

0 100 200 300 400 500 600
Time

1.5

1.0

0.5

0.0

0.5
He

ad
 li

nk
 a

ng
le

In-between Frames
Prediction
Keys

0.0

0.5

1.0

1.5

2.0

Ba
se

 y
 p

os

0

2

4

6

Ba
se

 x
 p

os

0.2

0.0

0.2

0.4

0.6

0.8

Ba
se

 O
rie

nt
at

io
n

0.8

0.6

0.4

0.2

0.0

0.2

0.4

Le
g

lin
k

an
gl

e

0.5

1.0

1.5

2.0

Ne
ck

 li
nk

 a
ng

le

0 100 200 300 400 500 600
Time

1.0

0.5

0.0

0.5

He
ad

 li
nk

 a
ng

le

In-between Frames
Prediction
Keys

0.00

0.25

0.50

0.75

1.00

1.25

Ba
se

 y
 p

os

0

2

4

6

8

Ba
se

 x
 p

os

0.4

0.2

0.0

0.2

Ba
se

 O
rie

nt
at

io
n

0.50

0.25

0.00

0.25

0.50

0.75

Le
g

lin
k

an
gl

e

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Ne
ck

 li
nk

 a
ng

le

0 100 200 300 400 500
Time

1.5

1.0

0.5

0.0

He
ad

 li
nk

 a
ng

le

In-between Frames
Prediction
Keys

Figure 4.1: Motion reconstruction of four jumps taken from the test set.
AVARS from the original simulated motion trajectory from the test set
is plotted in light green. Extracted keyframes are circled in dark green.
The resulting motion generated using our network is displayed in dark
blue.

25

We next demonstrate generalization by applying edits of increasing amplitudes

to motions in the test set. Our system produces plausible interpolated motions as

we modify keyframes to demand motions that are increasingly non-physical and

divergent from the training sets. Figure 4.2 shows a sequence of height edits to a

jump taken from the test set. As we decrease or increase the height of the keyframe

at the apex, the generated motion follows the movements of the original jump and

tracks the new keyframe constraints with a smooth trajectory. The generated mo-

tion also appears to be natural and physically correct. The character accelerates

during liftoff, decelerates nearing the apex of the jump before accelerating again at

landing. Next, we modify the timing of another sequence from the test set. Timing

edits are shown in Figure 4.3. Here, our system generates reasonable results. The

spacing of the generated trajectory again appears to follow the laws of physics and

the character accelerates and decelerates at the right moments in the jump. How-

ever, we do note that the generated motion do not track the keyframe constraints

as precisely. In the second figure the new timing requires that Luxo cover the first

portion of the jump in half the original amount of time. This constraint deviates

far from motions of the training set, and motion generated by the network is biased

toward a more physically plausible result.

26

(a) Jump apex keyframed at 0.7x original height

(b) Jump apex keyframed at 1.5x original height

(c) Jump apex keyframes at 1.8x original height

Figure 4.2: Height edits. Keyframes extracted from the original test jump are
shown in green. The trajectory of the generated motion smoothly tracks
the new apex keyframes edited to have base heights of 0.7 (top), 1.5
(middle), and 1.8 (bottom) times the original base height.

27

(a) Prediction using original keyframes extracted from a test jump.

(b) Prediction with 2x faster jump takeoffs.

(c) Prediction with 1.5x slower jump takeoffs.

Figure 4.3: Timing edits. Input keyframes extracted from the original test
jump are shown in green. The predicted pose at key locations are shown
in dark gray. The top figure shows the prediction using unmodified
keyframes; the keyframe of the pose at the top of the 3 jumps occur at
t=13,46,79. In the middle figure, the jumps are keyed to have faster take
off. The new keyframes with the same pose are newly located to be at
t=7, 40, 73. The bottom figure shows the jumps with slower takeoff with
the jump top keyframes shifted to be at t=19, 52, 85.

28

We next show that in the absence of keyframe direction, i.e, with sparse key

inputs, our network is still able to output believable trajectories, demonstrating that

the predictions output by the network are style-and-physics aware. In Figure 4.4,

we have removed the apex keyframe and the landing keyframe of the second jump

in the sequence. Our network creates smooth jump trajectories following the move-

ment characteristics of the Luxo character despite the lack of information. This is

enabled by the memory embodied in the recurrent model, which allows the network

to build an internal motion model of the character to make rich predictions.

29

0.2

0.4

0.6

0.8

1.0

Ba
se

 y
 p

os

0

2

4

6

Ba
se

 x
 p

os

0.5

0.4

0.3

0.2

0.1

0.0

0.1

Ba
se

 O
rie

nt
at

io
n

0.4

0.2

0.0

0.2

0.4

Le
g

lin
k

an
gl

e

0.50

0.75

1.00

1.25

1.50

1.75

Ne
ck

 li
nk

 a
ng

le

0 100 200 300 400 500
Time

1.00

0.75

0.50

0.25

0.00

0.25

0.50

He
ad

 li
nk

 a
ng

le

In-between Frames
Prediction
Keys

Figure 4.4: Motion generation with sparse keyframes. The apex and landing
keyframes for the above jumps have been removed from the input.

30

The non-linearity and complexity of the motions as output by the network can

also be seen in Figure 4.5. It shows the changes of individual degrees of freedom

resulting from an edit to the height of the keyframe, as seen in the top graph. If this

edit were made with a simple motion warping model, applied individually to each

degree of freedom, then we would expect to see an offset in the top graph that is

slowly blended in and then blended out. Indeed, for the base position, the motion

deformation follows a profile of approximately that nature. However, the curves

for the remaining degrees of freedom are also impacted by the edit, revealing the

coupled nature of the motion synthesis model.

0

1

2

3

4

Ba
se
 y

os

Ground Truth
Keys
Prediction
Deformation

0

1

2

3

4

Ba
se
 x

os

−0.25

0.00

0.25

0.50

0.75

1.00

Ba
se
 O
rie

nt
at
io
n

−0.75

−0.50

−0.25

0.00

0.25

0.50

Le
g
lin
k
an
gl
e

0.0

0.5

1.0

1.5

2.0

Ne
ck
 li
nk
 a
ng
le

0 25 50 75 100 125 150 175 200
Time

−1.5

−1.0

−0.5

0.0

0.5

He
ad
 li
nk
 a
ng
le

Figure 4.5: Coupled nature of the motion synthesis model. Edits to a single
degree of freedom (top graph, base y position) leads to different warping
functions for the other degrees of freedom.

31

A number of results are further demonstrated by randomly sampling, mixing,

and perturbing keyframes from the test dataset, as shown in Figure 4.6.

Figure 4.6: Motion synthesis from novel keyframe inputs. We created new
keyframes from randomly sampled and perturbed keys taken from the
test set (green). The output motion from the network is shown with
predicted poses at input key locations shown in dark gray.

32

4.1 Comparison to Other Architectures
We evaluate other network architectures for the task of keyframe auto-completion

including a keyframe conditioned feed-forward network with no memory and a

segregated network which separates the motion pattern and interpolation portions

of the task. The architecture of the segregated network is show in Figure 4.7. This

produces a pure RNN prediction with no keyframe conditioning that is then cor-

rected with a residual produced by a keyframe conditioned feed-forward network.

The number of layers and hidden units for all the networks are adjusted to produce

a fair comparison and all networks are trained on 80 sample jump sequences until

convergence.

Recurrent Net

Y ′t−1 Ht−1

Recurrent residualt−1+

HtLinear Map

Recurrent Prediction Ŷt

Motion Pattern Network

FeedForward Net

t−tK
tK+1−tK XK XK+1

FeedForward residualt−1

+

Final Prediction Y ′t

Interpolation Network

Figure 4.7: Architecture of the segregated network which combines a RNN
only prediction produced by the Motion Pattern Network, with a
keyframe conditioned correction produced by a feed-forward Interpo-
lation Network.

33

Quantitatively, the ARNN produces the lowest total loss out of the three archi-

tectures Table 4.1 and the segregated net produces the worst loss.

Architecture Key Loss Frame Loss Total Loss

ARNN 0.00100392 0.00395658 0.00496051

No Memory Net 0.000183804 0.0081695 0.00835331

Segregated Net 0.00124264 0.0160917 0.0189122

Table 4.1: The test losses from other network architectures vs the ARNN. The
ARNN produces the best overall losses.

The ARNN also produces the best results qualitatively, while the feed-forward

only network produces the least-desirable results due to motion discontinuities.

Figure 4.8 shows the failure case when a network has no memory component. Al-

though the feed-forward only network generates interpolating inbetweens that are

consistent with one another locally within individual motion segments, globally

across multiple keys, the inbetweens are not coordinated, leading to motion dis-

continuities. This is most evident in the predictions for the base x AVAR. The seg-

regated net and the ARNN both have memory, which allows these nets to produce

smoother predictions with global consistency. Ultimately however, the combined

memory and keyframe conditioning structure of the ARNN produces better results

than the segregated net which separates the predictions.

34

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Ba

se
 y

 p
os

0

2

4

6

Ba
se

 x
 p

os

0.5

0.4

0.3

0.2

0.1

0.0

Ba
se

 O
rie

nt
at

io
n

0.4

0.2

0.0

0.2

Le
g

lin
k

an
gl

e

0.50

0.75

1.00

1.25

1.50

1.75

Ne
ck

 li
nk

 a
ng

le

0 100 200 300 400 500
Time

1.00

0.75

0.50

0.25

0.00

0.25

0.50

He
ad

 li
nk

 a
ng

le

In-between Frames
Prediction
Keys

(a)

0.00

0.25

0.50

0.75

1.00

1.25

Ba
se

 y
 p

os

0

2

4

6

Ba
se

 x
 p

os

0.5

0.4

0.3

0.2

0.1

0.0

Ba
se

 O
rie

nt
at

io
n

0.4

0.2

0.0

0.2

Le
g

lin
k

an
gl

e

0.50

0.75

1.00

1.25

1.50

1.75

Ne
ck

 li
nk

 a
ng

le

0 100 200 300 400 500
Time

1.00

0.75

0.50

0.25

0.00

0.25

0.50

He
ad

 li
nk

 a
ng

le

In-between Frames
Prediction
Keys

(b)

0.0

0.2

0.4

0.6

0.8

1.0

Ba
se

 y
 p

os

0

2

4

6

Ba
se

 x
 p

os

0.5

0.4

0.3

0.2

0.1

0.0

Ba
se

 O
rie

nt
at

io
n

0.4

0.2

0.0

0.2

0.4

Le
g

lin
k

an
gl

e

0.50

0.75

1.00

1.25

1.50

1.75

Ne
ck

 li
nk

 a
ng

le

0 100 200 300 400 500
Time

1.00

0.75

0.50

0.25

0.00

0.25

0.50

He
ad

 li
nk

 a
ng

le

In-between Frames
Prediction
Keys

(c)

Figure 4.8: Qualitative comparison between results for (a) a feed-forward
net; (b) a segregated net; and (c) the ARNN. The ARNN and segregated
nets produce smoother motions at key transitions with the use of mem-
ory.

35

Chapter 5

Conclusions

In this thesis, we explored a conditional autoregressive method for motion-aware

keyframe completion. Our method synthesizes motions adhering to the art-direction

of input keyframes while following the style of samples from the training data,

combining intelligent automation with flexible controllability to support and accel-

erate the animation process. In our examples, the training data comes from physics-

based simulations, and the model produces plausible reconstructions when given

physically-plausible keyframes. For motions that are non-physical, our model is

capable of generalizing to produce smooth motions that adapt to the given keyframe

constraints.

The construction of autoregressive models allows for a single model to be

learned for a large variety of character movements. Endowed with memory, our

network can learn an internal model of the movement patterns of the character

and use this knowledge to intelligently extrapolate frames when in the absence of

from keyframe guidance. The recurrent nature of our model allows it to operate

in a fashion that is more akin to a simulation, i.e., it is making forward predic-

tions based on a current state. This has advantages, i.e., simplicity and usability

in online situations, and disadvantages, e.g., lack of consideration of more than

one keyframe in advance, as compared to motion trajectory optimization methods.

As noted in previous work, e.g., [23], the construction of predictive autoregressive

models can be challenging, and thus the proposed conditional model is a further

proof of feasibility for this class of model and its applications.

36

Trajectory optimization methods are different in nature to our work, as they

require require an explicit model of the physics and the motion style objectives.

In contrast, autoregressive models such as ours make use of a data-driven implicit

model of the dynamics that encompasses both the physics and style of the example

motions. These differences make a meaningful direct comparison difficult. The

implicit modeling embodied by the data-driven approach offers convenience and

simplicity, although this comes at the expense of needing a sufficient number (and

coverage) of motion examples.

The method we present, together with its evaluation, still has numerous limi-

tations. If target keyframes go well beyond what was seen in the training set, the

motion quality may suffer. We wish to further improve the motion coverage of the

method via data augmentation methods, e.g., collecting physics-based motions in

reduced gravity environments. While the current results represents an initial vali-

dation of our approach, we wish to apply our model to more complex motions and

characters. A last general problem with the type of learning method we employ is

that of reversion to the mean when there are multiple valid possibilities for reach-

ing a given keyframe. In future work, we wish to develop methods that can sample

from trajectory distributions.

Currently a primary extrapolation artifact is an apparent loss of motion conti-

nuity in the vicinity of the keyframes, which can happen when the model generates

inbetweens that fail to interpolate the keyframes closely. This artifact could likely

be ameliorated with additional training that further weights the frame prediction

loss after ω has been annealed. This could help the network consolidate knowl-

edge and produce smoother results. Discontinuities in motions caused by collision

impulses are also not fully resolved in our method. These are modeled implicitly

in the learned model and the resulting motion quality suffers slightly as a result.

An alternative approach would be to add explicit structure to the learned model in

support of modeling collision events.

In terms of production usability, a limitation of the current model we have

developed is lack of support for partial keyframe control; the full set of AVARS for

the character must be specified per keyframe for our system. However, animators

working in production environments almost never specify the full set of AVARS

when keyframing. This limitation is in part due to the nature of the artificial training

37

data set we’ve created for this thesis, which does not include partial keyframes. In

future work, we would like to to add support for partial keyframing by using more

realistic animation dataset.

Lastly, there is still other significant work to be done before our system can be

incorporated into production tools in terms of required training data and tackling

issues that may only be observable with deployment at scale. The quality of results

produced by our system is dependent on the training data we use to train the ARNN.

If there is not enough training data or motion variation in the training data, the

quality of the output may deteriorate. Additionally, the Luxo character we created

for this thesis only has 6 degrees of freedom, but in production settings, animators

often work with characters controlled by hundreds of AVARS. We hope to test the

applicability of our system for production use on real animation data sets and in

real production settings in future work.

38

Bibliography

[1] Y. Bai and E. Coumans. a python module for physics simulation in robotics,
games and machine learning., 2016-2017. http://pybullet.org/. → page 15

[2] Y. Bai, D. M. Kaufman, C. K. Liu, and J. Popović. Artist-directed dynamics
for 2d animation. ACM Trans. Graph., 35(4):145:1–145:10, July 2016.
ISSN 0730-0301. doi:10.1145/2897824.2925884. URL
http://doi.acm.org/10.1145/2897824.2925884. → page 6

[3] J. Barbič, M. da Silva, and J. Popović. Deformable object animation using
reduced optimal control. In ACM SIGGRAPH 2009 Papers, SIGGRAPH
’09, pages 53:1–53:9, New York, NY, USA, 2009. ACM. ISBN
978-1-60558-726-4. doi:10.1145/1576246.1531359. URL
http://doi.acm.org/10.1145/1576246.1531359. → page 6

[4] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer. Scheduled sampling for
sequence prediction with recurrent neural networks. In Proceedings of the
28th International Conference on Neural Information Processing Systems -
Volume 1, NIPS’15, pages 1171–1179, Cambridge, MA, USA, 2015. MIT
Press. URL http://dl.acm.org/citation.cfm?id=2969239.2969370. → page 22

[5] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning.
In Proceedings of the 26th Annual International Conference on Machine
Learning, ICML ’09, pages 41–48, New York, NY, USA, 2009. ACM. ISBN
978-1-60558-516-1. doi:10.1145/1553374.1553380. URL
http://doi.acm.org/10.1145/1553374.1553380. → page 21

[6] N. Burtnyk and M. Wein. Computer animation of free form images. In ACM
SIGGRAPH Computer Graphics, volume 9, pages 78–80. ACM, 1975. →
page 4

[7] S. Chenney and D. A. Forsyth. Sampling plausible solutions to multi-body
constraint problems. In Proceedings of the 27th Annual Conference on

39

http://dx.doi.org/10.1145/2897824.2925884
http://doi.acm.org/10.1145/2897824.2925884
http://dx.doi.org/10.1145/1576246.1531359
http://doi.acm.org/10.1145/1576246.1531359
http://dl.acm.org/citation.cfm?id=2969239.2969370
http://dx.doi.org/10.1145/1553374.1553380
http://doi.acm.org/10.1145/1553374.1553380

Computer Graphics and Interactive Techniques, SIGGRAPH ’00, pages
219–228, New York, NY, USA, 2000. ACM Press/Addison-Wesley
Publishing Co. ISBN 1-58113-208-5. doi:10.1145/344779.344882. URL
http://dx.doi.org/10.1145/344779.344882. → page 6

[8] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio. On the properties
of neural machine translation: Encoder-decoder approaches. CoRR,
abs/1409.1259, 2014. URL http://arxiv.org/abs/1409.1259. → page 20

[9] P. Coleman, J. Bibliowicz, K. Singh, and M. Gleicher. Staggered poses: A
character motion representation for detail-preserving editing of pose and
coordinated timing. In Proceedings of the 2008 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’08,
pages 137–146, Aire-la-Ville, Switzerland, Switzerland, 2008. Eurographics
Association. ISBN 978-3-905674-10-1. URL
http://dl.acm.org/citation.cfm?id=1632592.1632612. → page 5

[10] L. Crnkovic-Friis and L. Crnkovic-Friis. Generative choreography using
deep learning. CoRR, abs/1605.06921, 2016. URL
http://arxiv.org/abs/1605.06921. → page 7

[11] B. Dalstein, R. Ronfard, and M. van de Panne. Vector graphics animation
with time-varying topology. ACM Trans. Graph., 34(4):145:1–145:12, July
2015. ISSN 0730-0301. doi:10.1145/2766913. URL
http://doi.acm.org/10.1145/2766913. → pages ix, 4, 5

[12] K. Fragkiadaki, S. Levine, and J. Malik. Recurrent network models for
kinematic tracking. CoRR, abs/1508.00271, 2015. URL
http://arxiv.org/abs/1508.00271. → page 7

[13] K. Grochow, S. L. Martin, A. Hertzmann, and Z. Popović. Style-based
inverse kinematics. ACM Trans. Graph., 23(3):522–531, Aug. 2004. ISSN
0730-0301. doi:10.1145/1015706.1015755. URL
http://doi.acm.org/10.1145/1015706.1015755. → page 7

[14] R. Grzeszczuk, D. Terzopoulos, and G. Hinton. Neuroanimator: Fast neural
network emulation and control of physics-based models. In Proceedings of
the 25th annual conference on Computer graphics and interactive
techniques, pages 9–20. ACM, 1998. → page 8

[15] K. Hildebrandt, C. Schulz, C. von Tycowicz, and K. Polthier. Interactive
spacetime control of deformable objects. ACM Trans. Graph., 31(4):

40

http://dx.doi.org/10.1145/344779.344882
http://dx.doi.org/10.1145/344779.344882
http://arxiv.org/abs/1409.1259
http://dl.acm.org/citation.cfm?id=1632592.1632612
http://arxiv.org/abs/1605.06921
http://dx.doi.org/10.1145/2766913
http://doi.acm.org/10.1145/2766913
http://arxiv.org/abs/1508.00271
http://dx.doi.org/10.1145/1015706.1015755
http://doi.acm.org/10.1145/1015706.1015755

71:1–71:8, July 2012. ISSN 0730-0301. doi:10.1145/2185520.2185567.
URL http://doi.acm.org/10.1145/2185520.2185567. → page 6

[16] D. Holden, J. Saito, and T. Komura. A deep learning framework for
character motion synthesis and editing. ACM Trans. Graph., 35(4):
138:1–138:11, July 2016. ISSN 0730-0301. doi:10.1145/2897824.2925975.
URL http://doi.acm.org/10.1145/2897824.2925975. → pages ix, 7, 8, 9

[17] D. Holden, T. Komura, and J. Saito. Phase-functioned neural networks for
character control. ACM Trans. Graph., 36(4):42:1–42:13, July 2017. ISSN
0730-0301. doi:10.1145/3072959.3073663. URL
http://doi.acm.org/10.1145/3072959.3073663. → pages 7, 8

[18] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980. → page
23

[19] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter. Self-normalizing
neural networks. CoRR, abs/1706.02515, 2017. URL
http://arxiv.org/abs/1706.02515. → page 20

[20] A. Kort. Computer aided inbetweening. In Proceedings of the 2Nd
International Symposium on Non-photorealistic Animation and Rendering,
NPAR ’02, pages 125–132, New York, NY, USA, 2002. ACM. ISBN
1-58113-494-0. doi:10.1145/508530.508552. URL
http://doi.acm.org/10.1145/508530.508552. → page 4

[21] L. Kovar and M. Gleicher. Automated extraction and parameterization of
motions in large data sets. ACM Trans. Graph., 23(3):559–568, Aug. 2004.
ISSN 0730-0301. doi:10.1145/1015706.1015760. URL
http://doi.acm.org/10.1145/1015706.1015760. → page 7

[22] L. Kovar, M. Gleicher, and F. Pighin. Motion graphs. ACM Trans. Graph.,
21(3):473–482, July 2002. ISSN 0730-0301. doi:10.1145/566654.566605.
URL http://doi.acm.org/10.1145/566654.566605. → page 6

[23] Z. Li, Y. Zhou, S. Xiao, C. He, and H. Li. Auto-conditioned lstm network
for extended complex human motion synthesis. arXiv preprint
arXiv:1707.05363, 2017. → pages 8, 36

[24] J. Min, Y.-L. Chen, and J. Chai. Interactive generation of human animation
with deformable motion models. ACM Trans. Graph., 29(1):9:1–9:12, Dec.
2009. ISSN 0730-0301. doi:10.1145/1640443.1640452. URL
http://doi.acm.org/10.1145/1640443.1640452. → page 7

41

http://dx.doi.org/10.1145/2185520.2185567
http://doi.acm.org/10.1145/2185520.2185567
http://dx.doi.org/10.1145/2897824.2925975
http://doi.acm.org/10.1145/2897824.2925975
http://dx.doi.org/10.1145/3072959.3073663
http://doi.acm.org/10.1145/3072959.3073663
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1706.02515
http://dx.doi.org/10.1145/508530.508552
http://doi.acm.org/10.1145/508530.508552
http://dx.doi.org/10.1145/1015706.1015760
http://doi.acm.org/10.1145/1015706.1015760
http://dx.doi.org/10.1145/566654.566605
http://doi.acm.org/10.1145/566654.566605
http://dx.doi.org/10.1145/1640443.1640452
http://doi.acm.org/10.1145/1640443.1640452

[25] J.-C. Nebel. Keyframe interpolation with self-collision avoidance. In
N. Magnenat-Thalmann and D. Thalmann, editors, Computer Animation and
Simulation ’99, pages 77–86, Vienna, 1999. Springer Vienna. ISBN
978-3-7091-6423-5. → page 5

[26] X. B. Peng, G. Berseth, K. Yin, and M. van de Panne. Deeploco: Dynamic
locomotion skills using hierarchical deep reinforcement learning. ACM
Transactions on Graphics (Proc. SIGGRAPH 2017), 36(4), 2017. → page 8

[27] C. Rose, M. F. Cohen, and B. Bodenheimer. Verbs and adverbs:
Multidimensional motion interpolation. IEEE Comput. Graph. Appl., 18(5):
32–40, Sept. 1998. ISSN 0272-1716. doi:10.1109/38.708559. URL
http://dx.doi.org/10.1109/38.708559. → page 7

[28] A. Safonova, J. K. Hodgins, and N. S. Pollard. Synthesizing physically
realistic human motion in low-dimensional, behavior-specific spaces. ACM
Transactions on Graphics (ToG), 23(3):514–521, 2004. → page 7

[29] C. Shen, T. Hahn, B. Parker, and S. Shen. Animation recipes: Turning an
animator’s trick into an automatic animation system. In ACM SIGGRAPH
2015 Talks, SIGGRAPH ’15, pages 29:1–29:1, New York, NY, USA, 2015.
ACM. ISBN 978-1-4503-3636-9. doi:10.1145/2775280.2792531. URL
http://doi.acm.org/10.1145/2775280.2792531. → page 5

[30] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. J.
Mach. Learn. Res., 15(1):1929–1958, Jan. 2014. ISSN 1532-4435. URL
http://dl.acm.org/citation.cfm?id=2627435.2670313. → page 23

[31] C. D. Twigg and D. L. James. Many-worlds browsing for control of
multibody dynamics. In ACM SIGGRAPH 2007 Papers, SIGGRAPH ’07,
New York, NY, USA, 2007. ACM. doi:10.1145/1275808.1276395. URL
http://doi.acm.org/10.1145/1275808.1276395. → page 6

[32] M. van de Panne, R. Kim, and E. Flume. Virtual wind-up toys for animation.
In Proceedings of Graphics Interface ’94, pages 208–215, 1994. → page 13

[33] X. Wei, J. Min, and J. Chai. Physically valid statistical models for human
motion generation. ACM Transactions on Graphics (TOG), 30(3):19, 2011.
→ page 7

[34] B. Whited, G. Noris, M. Simmons, R. Sumner, M. Gross, and J. Rossignac.
Betweenit: An interactive tool for tight inbetweening. Comput. Graphics
Forum (Proc. Eurographics), 29(2):605–614, 2010. → page 4

42

http://dx.doi.org/10.1109/38.708559
http://dx.doi.org/10.1109/38.708559
http://dx.doi.org/10.1145/2775280.2792531
http://doi.acm.org/10.1145/2775280.2792531
http://dl.acm.org/citation.cfm?id=2627435.2670313
http://dx.doi.org/10.1145/1275808.1276395
http://doi.acm.org/10.1145/1275808.1276395

[35] Wikipedia. Avar (animation variable) — Wikipedia, the free encyclopedia.
http://en.wikipedia.org/w/index.php?title=Avar%20(animation%20variable)
&oldid=815219789, 2018. [Online; accessed 18-April-2018]. → page 1

[36] A. Witkin and M. Kass. Spacetime constraints. In Proceedings of the 15th
Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’88, pages 159–168, New York, NY, USA, 1988. ACM. ISBN
0-89791-275-6. doi:10.1145/54852.378507. URL
http://doi.acm.org/10.1145/54852.378507. → page 6

[37] A. Witkin and Z. Popovic. Motion warping. In Proceedings of the 22Nd
Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’95, pages 105–108, New York, NY, USA, 1995. ACM. ISBN
0-89791-701-4. doi:10.1145/218380.218422. URL
http://doi.acm.org/10.1145/218380.218422. → page 5

[38] A. Witkin and Z. Popovic. Motion warping. In Proceedings of the 22nd
annual conference on Computer graphics and interactive techniques, pages
105–108. ACM, 1995. → page 7

43

http://en.wikipedia.org/w/index.php?title=Avar%20(animation%20variable)&oldid=815219789
http://en.wikipedia.org/w/index.php?title=Avar%20(animation%20variable)&oldid=815219789
http://dx.doi.org/10.1145/54852.378507
http://doi.acm.org/10.1145/54852.378507
http://dx.doi.org/10.1145/218380.218422
http://doi.acm.org/10.1145/218380.218422

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Acknowledgments
	1 Introduction
	1.1 Problems and Challenges
	1.2 Our approach
	1.3 Thesis Overview

	2 Related Work
	2.1 Hand-drawn In-Betweening
	2.2 Computer-based In-Betweening
	2.3 Physics-based Methods for Animation
	2.4 Data-driven Motion Synthesis and Animation
	2.5 Deep Learning for Motion Synthesis

	3 Method Overview
	3.1 The Animation Database
	3.1.1 Physics-based Method for Generating Animations
	3.1.2 The Articulated Lamp Model
	3.1.3 Control Scheme for Jumping
	3.1.4 Finding Motions with Simulated Annealing

	3.2 Data Preprocessing
	3.3 ARNN Network
	3.4 Training
	3.4.1 Loss Function
	3.4.2 Curriculum Learning
	3.4.3 Training Details

	4 Results
	4.1 Comparison to Other Architectures

	5 Conclusions
	Bibliography

