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B L O C KC H A I N S  H AV E  B E C O M E  a buzzword, and many 
blockchain proponents believe a smart contract is 
a panacea for redefining the digital economy. But 
the community has a misconception that any kind 
of contract could be implemented as a blockchain 
smart contract. There is no doubt that Turing-complete 
scripting languages in blockchain techniques, such as 
Ethereum, can be used to draft many important smart 
contracts, but the digital economy is much more than 
Turing-complete smart contracts. Many protocols/
contracts in our daily lives could not be implemented 
using Turing-complete smart contracts. As an example, 
we have formulated an Obama-Trump contract and 
show such a contract cannot be implemented using 
blockchain smart-contract techniques. 

As the Internet increasingly becomes 
part of our daily lives, it will be conve-
nient to have a digital payment system 
or design digital currency for society. It 
is generally easy to design an electronic 
cash system using public key infra-
structure (PKI) systems. But PKI-based 
electronic cash is also easy to trace. 
Theoretically, banknotes could be 
traced using sequence numbers, though 
there is no convenient infrastructure to 
trace banknote sequence numbers back 
to users. Banknotes thus maintain suffi-
cient anonymity.

An electronic cash system must 
avoid double spending and is preferred 
to be nontraceable and convenient for 
carrying out small transactions of, 
say, even a few cents. Such electronic 
cash systems could be designed using 
Chaum’s blind signatures for untrace-
able payments.4 Assume the bank has 
an RSA public key (e, N) and a private 
key d. In order for Alice to withdraw 
$10 from her bank account and con-
vert it to a digital coin m of $10, the sys-
tem carries out the following protocol: 

˲˲ Alice chooses a random number r 
and computes m′ = m · re(mod N).

˲˲ The bank generates a signature  
s′ = (m′)d on m′.

˲˲ Alice calculates a signature s on m 
as s = s′ · r−1 = (m · re)d · r−1 = md. 

˲˲ Alice spends (m, s) as $10, although 
the bank cannot link this coin m to Al-
ice’s account. 
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 key insights
˽˽ Smart contracts are self-executing Turing-

complete programs stored permanently 
on the blockchain, triggered by blockchain 
transactions and able to read/write data 
from/to the blockchain database.

˽˽ Expectations for what smart contracts 
can do are inflated; Turing completeness 
does not imply they are a comprehensive 
tool for implementing contracts, as some 
contracts in our daily lives cannot be 
realized through smart contracts.

˽˽ The limit of smart contracts is 
theoretically proven by using 
impossibility results in secure multiparty 
computation to show the infeasibility  
of implementing an Obama-Trump 
contract as a smart contract.
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There are various challenges to 
such a blindsignature-based electron-
ic cash system. The first is what hap-
pens if Alice asks the bank to sign m′ 
= 100 · re(mod N) instead of m′ = 10 · r e 

(mod N)? It could be resolved 
by requiring that all coins have 
the same value or by using the  
following probabilistic approach: 

˲˲ Alice generates 100 blind coins: 
 for i = 1, …, 100.

˲˲ The bank randomly selects 1 ≤  j1 < 
… < 

˲˲ Alice reveals the values  to 
the bank for i = 1, …, 99.

˲˲ The bank issues a signature on the 
remaining m′ only if the  and 

 for i = 1, …, 99.

The second challenge for Chaum’s 
blind-signature-based electronic 
cash system is a seller must contact 
the bank to make sure the coin m has 
not been spent yet before accepting the 
coin m from Alice. This requires that 
the bank remains online at all times. 
Chaum et al.5 constructed an electronic 
cash that does not need the bank to be 
online. Let H1, H2 be hash functions 
and k be a fixed even integer. Assume 
Alice has an account u with a bank, 

and the bank keeps a counter number 
v for Alice. In order for Alice to get a 
digital coin from the bank, the follow-
ing steps are carried out: 

˲˲ Alice chooses random ai, ci, di, and 
ri for 1 ≤ i ≤ k. 

˲˲ Alice sends k blind candidates 
 to the bank where

˲˲

˲˲ The bank chooses a random sub-
set R ⊂ {1, … k} of size k/2 and sends 
R to Alice. 

˲˲ Alice reveals ai, ci, di, and ri for all i ∈ R.
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Many other non-PKI-based digital 
cash systems have been proposed in 
the literature. For example, Rivest and 
Shamir12 proposed the PayWord and 
MicroMint payment schemes. In 
PawWord, Alice computes a sequence 
of binary strings w0, w1, w2, …, wn such 
that wi = H(wi+1), where H is a secure 
cryptographic hash function. Alice 
then commits w0 to the bank that can-
not be spent. Assume each payment is 
one cent, then the i-th cent is spent as 
(i, wi). In MicroMint, there is a central 
broker to mint the coins. For example, 
in order for the broker to mint 230 coins, 
it will use an array of 230. The broker will 
repeatedly hash randomly selected 
binary strings r and put the pair (r, 
H(r) ) in the bin labeled H(r). The mint 
process is finished when each of these 
bins contains four entries. Each bin is 
considered as one coin. That is, each 
coin is a tuple (x1, x2, x3, x4) such that 
H(x1) = H(x2) = H(x3) = H(x4).

Bitcoin 
The cryptographic currencies in the 
preceding section have never been 
adopted in practice. The situation 
has changed as the cryptographic 
currency Bitcoin was introduced 
in a paper by pseudonym “Satoshi 
Nakamoto.”10 Since 2009, Bitcoin 
has been in operation and widely 
adopted as one of the major crypto-
graphic currencies in the market. 
The cryptography behind Bitcoin is 
quite simple. The start coinbase by 
Satoshi Nakamoto is a binary string w0.  
In order to mine the first Bitcoin BTC, 
one needs to find a random num-
ber r0 such that the first 32 bits of  
w1 = H(w0, r0) are 0...0 (that is, ).  
Anyone who finds this r0 is rewarded 
with a few BTCs. The next person who 
finds another r1 such that the first 

two bits of w2 = H(w1, r1) are 0...0 will 
also be rewarded with a few BTCs. 
This process continues, and new 
blocks wi+1 keep adding to the exist-
ing block chain w0, …, wi. If the fre-
quency of finding a BTC block is less 
than 10 minutes, the community ini-
tiates a voting process to increase the 
number of 0s in the required prefix 
of the hash outputs. The Bitcoin is a 
chain w0, w1, …, wn, where wn is the 
current Bitcoin head everyone works 
on. The Bitcoin network is a peer-to-
peer (P2P) network with all partici-
pants working on the longest chain. 
There is no benefit for one to work 
on a shorter chain, as it is a waste of 
time and the transaction included 
in these chains will not be valid. The 
transactions of Bitcoins are included 
in the hash inputs so they can be ver-
ified later. Specifically, we have 

where TR is the Merkle hash of the 
transactions one wants to include and 
ri is a random number one finds to 
make wi+1 have a certain number of 0s; 
the Merkle hash tree is outlined in the 
figure here. 

In the Bitcoin system, a user is 
identified by a public key, and a trans-
action is in the format of “Alice pays x  
BTC to Bob.” Alice achieves a trans-
action by signing the message “ref-
erence number, Bob’s pub key, BTC 
amount x,” where the reference num-
ber refers to a block wi in the current 
BTC chain w0, w1, …, wn where Alice 
received at least x BTCs in a transac-
tion with the given reference num-
ber included in wi. For example, the 
block wi includes a transaction with 
this given reference number showing 
Alice received certain amount of BTCs. 
Bitcoin transactions are described 
using Forth-like scripts. The scripts 
enable smart contracts, such as “the 
transaction will be valid two days 
after all three persons have signed the 
contract.” The Forth-like scripts are a 
stack-based script language and was 
used mainly in calculators. For exam-
ple, in order to compute 25 × 10 + 50, 
one needs to initialize the stack as 
“[top] 25, 10, *, 50, + [bottom].” 

Though it is argued that if the ma-
jority of users are honest, then the Bit-
coin protocol should be reliable,10 Eyal 

˲˲ Bank signs , deducts the 
dollar from Alice’s account, and in-
creases v by k.

˲˲ Alice extracts coin  

When Alice wants to make a payment to 
Bob, Alice sends C to Bob. Assume 

Bob sends random bits  to 
Alice. For j = 1, …, k/2, Alice responds 
as follows:

1.	 If  then Alice sends  and 
 to Bob. In this case, Bob is able to com-

pute 
2.	 If , then Alice sends  

, and   to Bob. In this case, 
Bob is able to compute 

After receiving these values, Bob is able 
to verify that C is a signature on the 
message .

In this transaction process, Alice’s 
bank does not need to be online. 
In order for Bob to cash the coin C 
at Alice’s bank, Bob sends the coin 
C together with Alice’s response to 
Alice’s bank. One may wonder: If 
Alice’s bank is not online, how can 
we avoid double spending? If Alice 
spends the same coin both at Bob’s 
shop and at Charlie’s shop, then 
the challenge sequences  
from Bob and Charlie are differ-
ent with high probability. Assume 
the challenge bit  for Bob and 

 for Charlie. Then Alice has 
revealed ,  
and . That is, Alice’s account num-
ber u could be recovered from these 
revealed values. Or if Alice double 
spends, her identity will be revealed. 

Merkle hash tree.

H12=H(H1,H2)

H1=H(D1) H2=H(D2)

Data D2Data D1

H34=H(H3,H4)

H3=H(D3) H4=H(D4)

Data D4Data D3

root: TR=H(H12,H34)
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Turing-complete programming lan-
guage within the blockchain system so 
any kind of smart contract can be sup-
ported in the blockchain. Ethereum was 
designed as an Internet Service Platform 
with the goal that anybody can upload 
programs to the Ethereum World 
Computer, and anybody can request 
an uploaded program be executed. 
There are mainly two new functions in 
Ethereum compared with Bitcoin: 

˲˲ Ethereum is a blockchain with  
a built-in Turing-complete program-
ming language, allowing anyone to 
write smart contracts and decentral-
ized applications where they can cre-
ate their own arbitrary rules for own-
ership, transaction formats, and 
state transition functions.

˲˲ Bitcoin supports only “proof of 
work,” whereas Ethereum supports both 
“proof of stake” and “proof of work,” 
where “proof of stake” calculates the 
weight of a node as proportional to its 
currency holdings, not its computa-
tional resources. 

The runtime environment for 
smart contracts in Ethereum is based 
on the Ethereum virtual machine 
(EVM). The EVM can run any opera-
tions that are created by the user using 
the Turing-complete Ethereum script-
ing language called Solidity. An Ethe-
reum account is a 20-byte string with 
four fields: nonce, ether balance, con-
tract code (optional), and storage 
(empty by default). There are two 
kinds of Ethereum accounts: Ethere-
um externally owned accounts (EOAs) 
and contract accounts. An EOA is 
linked to a private key, and a contract 
account can be “activated” only by an 
EOA. A contract account is governed 
by its internal smart-contract code  
programmed to be controlled by an 
EOA with a certain address. A smart-
contract program within a contract 
account executes when a transaction 
is sent to that account. Senders of a 
transaction must pay for each step of 
the “program” they activate. This in-
cludes both computation and memo-
ry storage costs. Users can create new 
contracts by deploying code to the 
blockchain. 

Infeasibility of a Smart  
Obama-Trump Contract 
As blockchains use Turing-complete 
script languages to draft smart 

and Sirer7 showed this may not be true. 
In Eyal’s and Sirer’s attack, the adver-
sary controls 1/3 computing power of 
the entire Bitcoin community and does 
not reveal the block it mined if it leads. 
The other 2/3 of users will waste their 
time on a chain that will be abandoned 
at some point when the adversary re-
veals its own leading chain. As users 
could choose arbitrary public keys for 
Bitcoins, it is claimed that user priva-
cy is preserved in Bitcoins to some de-
gree.10 There have been significant ef-
forts to analyze the privacy issues in 
Bitcoin systems, and the conclusion 
is that a significant amount of private 
information could be recovered from 
Bitcoin chains. There have been many 
proposals concerning privacy-pre-
serving solutions in Bitcoin networks. 
Androulaki et al.2 tried to give a priva-
cy definition in Bitcoin networks 
based on the traditional definition of 
privacy in computer networks. Fol-
lowing these definitions, Androulaki 
et al.2 implemented a simulated Bit-
coin network and observed a 40% user 
profile could be identified in the sim-
ulated environments. Ober et al.11 an-
alyzed some global properties of Bit-
coin networks and their impact on 
user privacy. Möser9 analyzed three 
mixing services for Bitcoin networks: 
BTC Fog, BitLaundry, and Shared 
Wallet from Blockchain.info. Möser9 
observed that among these three ser-
vices, BTC Fog and Shared Wallet 
have good privacy protection, and 
tainted analysis could be used to trace 
Bitcoins in BitLaundry due to its low-
er volume per day. Moore and Chris-
tin8 analyzed 40 Bitcoin exchange 
centers, observing the smaller the vol-
ume, the shorter the lifetime of the 
exchange center. On the other hand, 
more recent work by Ahmed et al.1 
showed serious attacks against public 
cryptocurrency-mining pools, such as 
Minergate and Slush Pool. In them, an 
attacker needs only a small fraction 
(such as one millionth) of the resources 
of a victim-mining pool to render the 
victim-mining pool nonfunctional. 

Ethereum 
Though Forth-like scripts in Bitcoin 
are sufficient for designing various 
kinds of smart contracts, it has a lim-
ited capability. One underlying phi-
losophy in Ethereum is to include a 

If the contract 
language is Turing-
complete, then the 
required validation 
systems are 
equivalent to the 
problem of deciding 
whether a universal 
Turing machine 
halts on a specific 
input. 
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where Bob has forcibly made Alice 
involved in the contract is a voidable 
contract at the option of Alice. An il-
legal contract contains an unlawful ob-
ject. An unenforceable contract has not 
properly fulfilled legal formalities.

With the classification of these con-
tract types, it is important to design 
validation systems to check the valid-
ity of smart contracts. We would like to 
see the following validation systems: 

˲˲ Check whether one transaction is 
an implied contract; 

˲˲ Check whether one transaction 
follows a quasi contract; and 

˲˲ Check whether a contract is  
valid, void, voidable, illegal, or unen-
forceable.

If the contract language is Turing-
complete, then the required validation 
systems are equivalent to the problem 
of deciding whether a universal Tur-
ing machine halts on a specific input. 
It is thus infeasible to design efficient 
validation systems to carry out these 
tasks due to the nondecidability of 
the universal Turing machine halting 
problem. In the Ethereum EVM, gas 
is needed to evaluate a contract. If the 
gas runs out before the contract is vali-
dated, the contract will not be honored.

Furthermore, not all such contracts 
could be enforced in blockchain as 
smart contracts. In particular, when 
privacy does not have a reasonable 
price tag, it is generally difficult to for-
mulate a smart contract with private 
inputs. As an example, we show that a 
bilateral contract is difficult to imple-
ment if the second consideration in the 
bilateral contract is not a digital cash 
(such as not an Ethereum ETH). In 
April 2011, Donald Trump made the 
comment13 in an interview with ABC’s 
George Stephanopoulos: “Maybe 
I’m going to do the tax returns when 
Obama does his birth certificate … I’d 
love to give my tax returns. I may tie my 
tax returns into Obama’s birth certifi-
cate.” Based on this comment, we for-
mulate the following Obama-Trump 
contract and show this kind of bilateral 
contract is impossible to implement as 
a blockchain smart contract.

Obama-Trump Contract: Donald 
Trump releases his tax return forms 
as soon as Barack Obama releases his 
birth certificate. 

The infeasibility of implement-
ing the Obama-Trump contract as a 

blockchain smart contract can be math-
ematically proved using the infeasi-
bility results in secure multiparty 
computations. We first review Cleve’s 
result6 on the limits of coin flips when 
half of the participants are faulty. 

Theorem 4.1 (Cleve6) If at least half of 
the participants are faulty, then there 
is no protocol to allow an asynchronous 
network of participants to agree on ran-
dom (unbiased) bits.

Cleve6 defines a two-processor bit-
selection scheme as a sequence of 
pairs of processors  with 
the following properties. For each n, 
An and Bn each has access to a private 
supply of random bits and they 
can communicate with each other. 
If the system is executed, then An 
and Bn will output bits a and b, 
respectively, within a polynomial 
time. Assume the system consists of 
r (n) rounds where each round con-
sists of the following events: An 
performs some computations and 
sends a message to Bn, and then Bn 
performs some computations and 
sends a message to An. The two-pro-
cessor bit-selection scheme is said 
to be “correct” if after the scheme is 
run, we have a ≠ b with a negligible 
probability. The two-processor bit-
selection scheme is said to be “ran-
dom” if the scheme is correct and if 
after the scheme is run, the value 

 is negligible. If one 
of the two processors is faulty, then 
it is unrealistic to expect the cor-
rectness of the scheme as the faulty 
processor could output a bit that is 
independent of the scheme that was 
run. However, it is desirable that the 
output of the honest processor is 
still random. Cleve6 defines a two-
processor bit-selection scheme to 
be secure if the following holds: For 
each n, if one of An, Bn is faulty, then 

 is negligible where c 
is the output of the honest processor. 
Cleve6 shows that no secure two-pro-
cessor bit-selection scheme exists 
when one of the processors is faulty. 
A similar construction as in Cleve’s 
proof6 could be used to show the fol-
lowing theorem, as outlined here.

Theorem 4.2 Obama-Trump smart con-
tract cannot be enforced on blockchain.

contracts, many people might have the 
misconception that any kind of contract 
can be implemented in blockchains. 
Though most financial contracts can be 
implemented using Turing-complete 
script languages, there are challenges 
in implementing smart contracts with 
private inputs. In this section, we ana-
lyze the limit of smart contracts that 
can be implemented in blockchains. 
In particular, we show it is theoretically 
impossible to implement the so-called 
Obama-Trump contract.

In the legal system, there are four 
types of classifications of contracts with 
various bases: formation, nature of 
consideration, execution, and validity. 

1.	 On the basis of formation, there 
are three types of contracts: express, 
implied, and quasi contracts. For an 
express contract, there is an expres-
sion or conversation. For an implied 
contract, there is no expression. For 
example, sitting in an airplane incurs 
an implied contract between the pas-
senger and the airline. For a quasi con-
tract, there are no contractual relations 
between the partners. This kind of con-
tract is created by virtue of law.

2.	 On the basis of the nature of the 
consideration, there are two types of 
contracts: bilateral and unilateral. A bi-
lateral contract requires considerations 
in both directions to be moved after the 
contract, whereas a unilateral contract 
requires considerations to be moved in 
only one direction after the contract. An 
example of a bilateral contract is “Alice 
delivers goods to Bob on January 1st and 
Bob pays Alice on January 15th.”

3.	 On the basis of execution, there 
are two types of contracts: executed 
and executory. In an executed contract, 
the performance is completed. In an 
executory contract, the contractual 
obligations are to be performed in the 
future. 

4.	 On the basis of validity, there 
are five types of contracts: valid, void, 
voidable, illegal, and unenforceable. A 
contract that is enforceable in a court 
of law is called a valid contract, and a 
contract that is not enforceable in a 
court of law is called a void contract, 
as in, say, a contract between Alice and 
Bob where Bob is a minor who has no 
capacity to contract is a void contract. 
A voidable contract is deficient only in 
terms of free consent. For example, 
the contract between Alice and Bob 
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inputs into garbled inputs for garbled 
circuits or into encrypted inputs for 
FHE schemes. 

PKI is the core component of the 
secure Internet infrastructure. Note, a 
PKI system based on blockchain smart-
contract systems may be established to 
replace the current certificate author-
ity (CA)-based PKI systems for Internet 
infrastructure. It depends on the cor-
responding cost and security charac-
teristics for one to consider whether to 
use the current CA-based PKI system 
or blockchain-based PKI system for 
Internet infrastructure. 
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Theorem 4.2 shows it is infeasible 
to implement an Obama-Trump smart 
contract on blockchains. On the other 
hand, if a trapdoor function exists, then 
coin-flipping protocols (see Blum3 and 
Cleve6) can be used to design weakly 
secure Obama-Trump smart contracts 
over blockchain. 

Smart Contract Scenarios
The results in the preceding section 
show that not all contracts can be imple-
mented as a blockchain smart contract. 
However, blockchain smart contracts 
could do better than other technologies 
in many practical contract scenarios 
where the contract execution process 
takes a significant amount of time. For 
example, insurance-claim process-
ing involves many manual operations 
and much human action. Blockchain 
smart contracts could help reduce 
these manual steps by including some 
measurable parameters, such as earth-
quake magnitude, within the con-
tracts. When an insured event occurs, 
the event information is converted 
to smart contract input parameters, 
and the claim process is triggered 
immediately.

Smart contracts can also be used in 
many other scenarios where a lot of 
paperwork and coordination are 
required. For example, in trade finance, 
the process of letter-of-credit issuance 
requires numerous physical docu-
ments. As another example, in the 
rental-property application process, 
the applicant needs to submit numer-
ous documents, including income 
certificates, rental credit reports, evic-
tion history, and other related docu-
ments to the landlord. Note the user 
may need to submit identical docu-
ments to both the trade-finance ven-
dor and the landlord at different 
times if the user is involved in both 
processes. It is thus preferred for a 
user to keep all these documents in a 
central blockchain account and sub-
mit only appropriate reference num-
bers to the documents for each 
application. The system should be 
designed in such a way that the user 
needs only to disclose minimal man-
datory information to each vendor 
for a specific application. For exam-
ple, for a user to apply for a rental 
property, the system should disclose 
only user income, rental credit 

reports, and eviction reports to the 
landlord. The system should not dis-
close user eviction reports to the trade 
finance organization.

As information stored in the block-
chain is publicly accessible, it is neces-
sary to encrypt user documents in the 
user account. We may assume each 
document in a user profile has been 
certified by a related agency that is also 
a user account in the blockchain. As an 
example, the user Alice’s master profile 
may look like this: 

Alice Profile: DOC1, DOC2, ...

where each document DOCi is in the 
following format: 

DOCi = S.Enc
K
 (F, Sign

Agency.pk
(F)),  

P.Enc
Alice.pk

(K), Agency.pk

where the document F is certified by 
the agency with a digital signature 
Sign

Agency.pk
(F) using the agency public  

key Agency.pk. The certified docu-
ment (F, Sign

Agency.pk
(F) ) is then 

encrypted using a symmetric encryption 
scheme S.Enc

K
(·) with a key K. The sym-

metric key K is encrypted using a pub-
lic encryption scheme P.Enc

Alice.pk
(·) 

with Alice’s public key Alice.pk. 
In order for Alice to disclose the cer-
tified document (F, Sign

Agency.pk
(F) ) to 

the landlord, Alice needs to provide the 
document reference number DOCi and 
the symmetric key K to the landlord.

Other Sophisticated  
Smart Contracts 
A blockchain smart contract is gener-
ally written using a blockchain script-
ing language, such as Solidity. The 
algorithms within the smart contract 
are thus available for public review. In 
some applications, such as the insur-
ance industry, the vendor may not 
want the public to learn the claim-pro-
cessing algorithms used in the smart 
contract. Software obfuscation tech-
niques may be used by smart contracts 
to hide these algorithms. Indeed, 
using reusable garble circuit tech-
niques or fully homomorphic encryp-
tion (FHE) techniques are preferred 
for writing smart contracts in these 
scenarios. However, there are chal-
lenges in employing garbled circuits 
or FHE techniques in these scenarios, 
as it is difficult to convert plaintext 


