
64 COMMUNICATIONS OF THE ACM | MAY 2019 | VOL. 62 | NO. 5

contributed articles

B L O C KC H A I N S H AV E B E C O M E a buzzword, and many
blockchain proponents believe a smart contract is
a panacea for redefining the digital economy. But
the community has a misconception that any kind
of contract could be implemented as a blockchain
smart contract. There is no doubt that Turing-complete
scripting languages in blockchain techniques, such as
Ethereum, can be used to draft many important smart
contracts, but the digital economy is much more than
Turing-complete smart contracts. Many protocols/
contracts in our daily lives could not be implemented
using Turing-complete smart contracts. As an example,
we have formulated an Obama-Trump contract and
show such a contract cannot be implemented using
blockchain smart-contract techniques.

As the Internet increasingly becomes
part of our daily lives, it will be conve-
nient to have a digital payment system
or design digital currency for society. It
is generally easy to design an electronic
cash system using public key infra-
structure (PKI) systems. But PKI-based
electronic cash is also easy to trace.
Theoretically, banknotes could be
traced using sequence numbers, though
there is no convenient infrastructure to
trace banknote sequence numbers back
to users. Banknotes thus maintain suffi-
cient anonymity.

An electronic cash system must
avoid double spending and is preferred
to be nontraceable and convenient for
carrying out small transactions of,
say, even a few cents. Such electronic
cash systems could be designed using
Chaum’s blind signatures for untrace-
able payments.4 Assume the bank has
an RSA public key (e, N) and a private
key d. In order for Alice to withdraw
$10 from her bank account and con-
vert it to a digital coin m of $10, the sys-
tem carries out the following protocol:

˲˲ Alice chooses a random number r
and computes m′ = m · re(mod N).

˲˲ The bank generates a signature
s′ = (m′)d on m′.

˲˲ Alice calculates a signature s on m
as s = s′ · r−1 = (m · re)d · r−1 = md.

˲˲ Alice spends (m, s) as $10, although
the bank cannot link this coin m to Al-
ice’s account.

The Limit of
Blockchains:
Infeasibility
of a Smart
Obama-Trump
Contract

DOI:10.1145/3274276

Although smart contracts are Turing
complete, it is a misconception that
they can fulfill all routine contracts.

BY YONGGE WANG AND QUTAIBAH M. MALLUHI

 key insights
˽˽ Smart contracts are self-executing Turing-

complete programs stored permanently
on the blockchain, triggered by blockchain
transactions and able to read/write data
from/to the blockchain database.

˽˽ Expectations for what smart contracts
can do are inflated; Turing completeness
does not imply they are a comprehensive
tool for implementing contracts, as some
contracts in our daily lives cannot be
realized through smart contracts.

˽˽ The limit of smart contracts is
theoretically proven by using
impossibility results in secure multiparty
computation to show the infeasibility
of implementing an Obama-Trump
contract as a smart contract.

http://dx.doi.org/10.1145/3274276

MAY 2019 | VOL. 62 | NO. 5 | COMMUNICATIONS OF THE ACM 65

I
M

A
G

E
 B

Y
 B

Y
 A

N
D

R
I

J
 B

O
R

Y
S

 A
S

S
O

C
I

A
T

E
S

,
U

S
I

N
G

 D
O

D
 P

H
O

T
O

 O
F

T
R

U
M

P
 &

 O
B

A
M

A
 B

Y
 U

.S
.

A
I

R
 F

O
R

C
E

 S
T

A
F

F
 S

G
T

.
M

A
R

I
A

N
I

Q
U

E
 S

A
N

T
O

S

There are various challenges to
such a blindsignature-based electron-
ic cash system. The first is what hap-
pens if Alice asks the bank to sign m′
= 100 · re(mod N) instead of m′ = 10 · r e

(mod N)? It could be resolved
by requiring that all coins have
the same value or by using the
following probabilistic approach:

˲˲ Alice generates 100 blind coins:
 for i = 1, …, 100.

˲˲ The bank randomly selects 1 ≤ j1 <
… <

˲˲ Alice reveals the values to
the bank for i = 1, …, 99.

˲˲ The bank issues a signature on the
remaining m′ only if the and

 for i = 1, …, 99.

The second challenge for Chaum’s
blind-signature-based electronic
cash system is a seller must contact
the bank to make sure the coin m has
not been spent yet before accepting the
coin m from Alice. This requires that
the bank remains online at all times.
Chaum et al.5 constructed an electronic
cash that does not need the bank to be
online. Let H1, H2 be hash functions
and k be a fixed even integer. Assume
Alice has an account u with a bank,

and the bank keeps a counter number
v for Alice. In order for Alice to get a
digital coin from the bank, the follow-
ing steps are carried out:

˲˲ Alice chooses random ai, ci, di, and
ri for 1 ≤ i ≤ k.

˲˲ Alice sends k blind candidates
 to the bank where

˲˲

˲˲ The bank chooses a random sub-
set R ⊂ {1, … k} of size k/2 and sends
R to Alice.

˲˲ Alice reveals ai, ci, di, and ri for all i ∈ R.

66 COMMUNICATIONS OF THE ACM | MAY 2019 | VOL. 62 | NO. 5

contributed articles

Many other non-PKI-based digital
cash systems have been proposed in
the literature. For example, Rivest and
Shamir12 proposed the PayWord and
MicroMint payment schemes. In
PawWord, Alice computes a sequence
of binary strings w0, w1, w2, …, wn such
that wi = H(wi+1), where H is a secure
cryptographic hash function. Alice
then commits w0 to the bank that can-
not be spent. Assume each payment is
one cent, then the i-th cent is spent as
(i, wi). In MicroMint, there is a central
broker to mint the coins. For example,
in order for the broker to mint 230 coins,
it will use an array of 230. The broker will
repeatedly hash randomly selected
binary strings r and put the pair (r,
H(r) ) in the bin labeled H(r). The mint
process is finished when each of these
bins contains four entries. Each bin is
considered as one coin. That is, each
coin is a tuple (x1, x2, x3, x4) such that
H(x1) = H(x2) = H(x3) = H(x4).

Bitcoin
The cryptographic currencies in the
preceding section have never been
adopted in practice. The situation
has changed as the cryptographic
currency Bitcoin was introduced
in a paper by pseudonym “Satoshi
Nakamoto.”10 Since 2009, Bitcoin
has been in operation and widely
adopted as one of the major crypto-
graphic currencies in the market.
The cryptography behind Bitcoin is
quite simple. The start coinbase by
Satoshi Nakamoto is a binary string w0.
In order to mine the first Bitcoin BTC,
one needs to find a random num-
ber r0 such that the first 32 bits of
w1 = H(w0, r0) are 0...0 (that is,).
Anyone who finds this r0 is rewarded
with a few BTCs. The next person who
finds another r1 such that the first

two bits of w2 = H(w1, r1) are 0...0 will
also be rewarded with a few BTCs.
This process continues, and new
blocks wi+1 keep adding to the exist-
ing block chain w0, …, wi. If the fre-
quency of finding a BTC block is less
than 10 minutes, the community ini-
tiates a voting process to increase the
number of 0s in the required prefix
of the hash outputs. The Bitcoin is a
chain w0, w1, …, wn, where wn is the
current Bitcoin head everyone works
on. The Bitcoin network is a peer-to-
peer (P2P) network with all partici-
pants working on the longest chain.
There is no benefit for one to work
on a shorter chain, as it is a waste of
time and the transaction included
in these chains will not be valid. The
transactions of Bitcoins are included
in the hash inputs so they can be ver-
ified later. Specifically, we have

where TR is the Merkle hash of the
transactions one wants to include and
ri is a random number one finds to
make wi+1 have a certain number of 0s;
the Merkle hash tree is outlined in the
figure here.

In the Bitcoin system, a user is
identified by a public key, and a trans-
action is in the format of “Alice pays x
BTC to Bob.” Alice achieves a trans-
action by signing the message “ref-
erence number, Bob’s pub key, BTC
amount x,” where the reference num-
ber refers to a block wi in the current
BTC chain w0, w1, …, wn where Alice
received at least x BTCs in a transac-
tion with the given reference num-
ber included in wi. For example, the
block wi includes a transaction with
this given reference number showing
Alice received certain amount of BTCs.
Bitcoin transactions are described
using Forth-like scripts. The scripts
enable smart contracts, such as “the
transaction will be valid two days
after all three persons have signed the
contract.” The Forth-like scripts are a
stack-based script language and was
used mainly in calculators. For exam-
ple, in order to compute 25 × 10 + 50,
one needs to initialize the stack as
“[top] 25, 10, *, 50, + [bottom].”

Though it is argued that if the ma-
jority of users are honest, then the Bit-
coin protocol should be reliable,10 Eyal

˲˲ Bank signs , deducts the
dollar from Alice’s account, and in-
creases v by k.

˲˲ Alice extracts coin

When Alice wants to make a payment to
Bob, Alice sends C to Bob. Assume

Bob sends random bits to
Alice. For j = 1, …, k/2, Alice responds
as follows:

1.	 If then Alice sends and
 to Bob. In this case, Bob is able to com-

pute
2.	 If , then Alice sends

, and   to Bob. In this case,
Bob is able to compute

After receiving these values, Bob is able
to verify that C is a signature on the
message .

In this transaction process, Alice’s
bank does not need to be online.
In order for Bob to cash the coin C
at Alice’s bank, Bob sends the coin
C together with Alice’s response to
Alice’s bank. One may wonder: If
Alice’s bank is not online, how can
we avoid double spending? If Alice
spends the same coin both at Bob’s
shop and at Charlie’s shop, then
the challenge sequences
from Bob and Charlie are differ-
ent with high probability. Assume
the challenge bit for Bob and

 for Charlie. Then Alice has
revealed ,
and . That is, Alice’s account num-
ber u could be recovered from these
revealed values. Or if Alice double
spends, her identity will be revealed.

Merkle hash tree.

H12=H(H1,H2)

H1=H(D1) H2=H(D2)

Data D2Data D1

H34=H(H3,H4)

H3=H(D3) H4=H(D4)

Data D4Data D3

root: TR=H(H12,H34)

MAY 2019 | VOL. 62 | NO. 5 | COMMUNICATIONS OF THE ACM 67

contributed articles

Turing-complete programming lan-
guage within the blockchain system so
any kind of smart contract can be sup-
ported in the blockchain. Ethereum was
designed as an Internet Service Platform
with the goal that anybody can upload
programs to the Ethereum World
Computer, and anybody can request
an uploaded program be executed.
There are mainly two new functions in
Ethereum compared with Bitcoin:

˲˲ Ethereum is a blockchain with
a built-in Turing-complete program-
ming language, allowing anyone to
write smart contracts and decentral-
ized applications where they can cre-
ate their own arbitrary rules for own-
ership, transaction formats, and
state transition functions.

˲˲ Bitcoin supports only “proof of
work,” whereas Ethereum supports both
“proof of stake” and “proof of work,”
where “proof of stake” calculates the
weight of a node as proportional to its
currency holdings, not its computa-
tional resources.

The runtime environment for
smart contracts in Ethereum is based
on the Ethereum virtual machine
(EVM). The EVM can run any opera-
tions that are created by the user using
the Turing-complete Ethereum script-
ing language called Solidity. An Ethe-
reum account is a 20-byte string with
four fields: nonce, ether balance, con-
tract code (optional), and storage
(empty by default). There are two
kinds of Ethereum accounts: Ethere-
um externally owned accounts (EOAs)
and contract accounts. An EOA is
linked to a private key, and a contract
account can be “activated” only by an
EOA. A contract account is governed
by its internal smart-contract code
programmed to be controlled by an
EOA with a certain address. A smart-
contract program within a contract
account executes when a transaction
is sent to that account. Senders of a
transaction must pay for each step of
the “program” they activate. This in-
cludes both computation and memo-
ry storage costs. Users can create new
contracts by deploying code to the
blockchain.

Infeasibility of a Smart
Obama-Trump Contract
As blockchains use Turing-complete
script languages to draft smart

and Sirer7 showed this may not be true.
In Eyal’s and Sirer’s attack, the adver-
sary controls 1/3 computing power of
the entire Bitcoin community and does
not reveal the block it mined if it leads.
The other 2/3 of users will waste their
time on a chain that will be abandoned
at some point when the adversary re-
veals its own leading chain. As users
could choose arbitrary public keys for
Bitcoins, it is claimed that user priva-
cy is preserved in Bitcoins to some de-
gree.10 There have been significant ef-
forts to analyze the privacy issues in
Bitcoin systems, and the conclusion
is that a significant amount of private
information could be recovered from
Bitcoin chains. There have been many
proposals concerning privacy-pre-
serving solutions in Bitcoin networks.
Androulaki et al.2 tried to give a priva-
cy definition in Bitcoin networks
based on the traditional definition of
privacy in computer networks. Fol-
lowing these definitions, Androulaki
et al.2 implemented a simulated Bit-
coin network and observed a 40% user
profile could be identified in the sim-
ulated environments. Ober et al.11 an-
alyzed some global properties of Bit-
coin networks and their impact on
user privacy. Möser9 analyzed three
mixing services for Bitcoin networks:
BTC Fog, BitLaundry, and Shared
Wallet from Blockchain.info. Möser9
observed that among these three ser-
vices, BTC Fog and Shared Wallet
have good privacy protection, and
tainted analysis could be used to trace
Bitcoins in BitLaundry due to its low-
er volume per day. Moore and Chris-
tin8 analyzed 40 Bitcoin exchange
centers, observing the smaller the vol-
ume, the shorter the lifetime of the
exchange center. On the other hand,
more recent work by Ahmed et al.1
showed serious attacks against public
cryptocurrency-mining pools, such as
Minergate and Slush Pool. In them, an
attacker needs only a small fraction
(such as one millionth) of the resources
of a victim-mining pool to render the
victim-mining pool nonfunctional.

Ethereum
Though Forth-like scripts in Bitcoin
are sufficient for designing various
kinds of smart contracts, it has a lim-
ited capability. One underlying phi-
losophy in Ethereum is to include a

If the contract
language is Turing-
complete, then the
required validation
systems are
equivalent to the
problem of deciding
whether a universal
Turing machine
halts on a specific
input.

68 COMMUNICATIONS OF THE ACM | MAY 2019 | VOL. 62 | NO. 5

contributed articles

where Bob has forcibly made Alice
involved in the contract is a voidable
contract at the option of Alice. An il-
legal contract contains an unlawful ob-
ject. An unenforceable contract has not
properly fulfilled legal formalities.

With the classification of these con-
tract types, it is important to design
validation systems to check the valid-
ity of smart contracts. We would like to
see the following validation systems:

˲˲ Check whether one transaction is
an implied contract;

˲˲ Check whether one transaction
follows a quasi contract; and

˲˲ Check whether a contract is
valid, void, voidable, illegal, or unen-
forceable.

If the contract language is Turing-
complete, then the required validation
systems are equivalent to the problem
of deciding whether a universal Tur-
ing machine halts on a specific input.
It is thus infeasible to design efficient
validation systems to carry out these
tasks due to the nondecidability of
the universal Turing machine halting
problem. In the Ethereum EVM, gas
is needed to evaluate a contract. If the
gas runs out before the contract is vali-
dated, the contract will not be honored.

Furthermore, not all such contracts
could be enforced in blockchain as
smart contracts. In particular, when
privacy does not have a reasonable
price tag, it is generally difficult to for-
mulate a smart contract with private
inputs. As an example, we show that a
bilateral contract is difficult to imple-
ment if the second consideration in the
bilateral contract is not a digital cash
(such as not an Ethereum ETH). In
April 2011, Donald Trump made the
comment13 in an interview with ABC’s
George Stephanopoulos: “Maybe
I’m going to do the tax returns when
Obama does his birth certificate … I’d
love to give my tax returns. I may tie my
tax returns into Obama’s birth certifi-
cate.” Based on this comment, we for-
mulate the following Obama-Trump
contract and show this kind of bilateral
contract is impossible to implement as
a blockchain smart contract.

Obama-Trump Contract: Donald
Trump releases his tax return forms
as soon as Barack Obama releases his
birth certificate.

The infeasibility of implement-
ing the Obama-Trump contract as a

blockchain smart contract can be math-
ematically proved using the infeasi-
bility results in secure multiparty
computations. We first review Cleve’s
result6 on the limits of coin flips when
half of the participants are faulty.

Theorem 4.1 (Cleve6) If at least half of
the participants are faulty, then there
is no protocol to allow an asynchronous
network of participants to agree on ran-
dom (unbiased) bits.

Cleve6 defines a two-processor bit-
selection scheme as a sequence of
pairs of processors with
the following properties. For each n,
An and Bn each has access to a private
supply of random bits and they
can communicate with each other.
If the system is executed, then An
and Bn will output bits a and b,
respectively, within a polynomial
time. Assume the system consists of
r (n) rounds where each round con-
sists of the following events: An
performs some computations and
sends a message to Bn, and then Bn
performs some computations and
sends a message to An. The two-pro-
cessor bit-selection scheme is said
to be “correct” if after the scheme is
run, we have a ≠ b with a negligible
probability. The two-processor bit-
selection scheme is said to be “ran-
dom” if the scheme is correct and if
after the scheme is run, the value

 is negligible. If one
of the two processors is faulty, then
it is unrealistic to expect the cor-
rectness of the scheme as the faulty
processor could output a bit that is
independent of the scheme that was
run. However, it is desirable that the
output of the honest processor is
still random. Cleve6 defines a two-
processor bit-selection scheme to
be secure if the following holds: For
each n, if one of An, Bn is faulty, then

 is negligible where c
is the output of the honest processor.
Cleve6 shows that no secure two-pro-
cessor bit-selection scheme exists
when one of the processors is faulty.
A similar construction as in Cleve’s
proof6 could be used to show the fol-
lowing theorem, as outlined here.

Theorem 4.2 Obama-Trump smart con-
tract cannot be enforced on blockchain.

contracts, many people might have the
misconception that any kind of contract
can be implemented in blockchains.
Though most financial contracts can be
implemented using Turing-complete
script languages, there are challenges
in implementing smart contracts with
private inputs. In this section, we ana-
lyze the limit of smart contracts that
can be implemented in blockchains.
In particular, we show it is theoretically
impossible to implement the so-called
Obama-Trump contract.

In the legal system, there are four
types of classifications of contracts with
various bases: formation, nature of
consideration, execution, and validity.

1.	 On the basis of formation, there
are three types of contracts: express,
implied, and quasi contracts. For an
express contract, there is an expres-
sion or conversation. For an implied
contract, there is no expression. For
example, sitting in an airplane incurs
an implied contract between the pas-
senger and the airline. For a quasi con-
tract, there are no contractual relations
between the partners. This kind of con-
tract is created by virtue of law.

2.	 On the basis of the nature of the
consideration, there are two types of
contracts: bilateral and unilateral. A bi-
lateral contract requires considerations
in both directions to be moved after the
contract, whereas a unilateral contract
requires considerations to be moved in
only one direction after the contract. An
example of a bilateral contract is “Alice
delivers goods to Bob on January 1st and
Bob pays Alice on January 15th.”

3.	 On the basis of execution, there
are two types of contracts: executed
and executory. In an executed contract,
the performance is completed. In an
executory contract, the contractual
obligations are to be performed in the
future.

4.	 On the basis of validity, there
are five types of contracts: valid, void,
voidable, illegal, and unenforceable. A
contract that is enforceable in a court
of law is called a valid contract, and a
contract that is not enforceable in a
court of law is called a void contract,
as in, say, a contract between Alice and
Bob where Bob is a minor who has no
capacity to contract is a void contract.
A voidable contract is deficient only in
terms of free consent. For example,
the contract between Alice and Bob

MAY 2019 | VOL. 62 | NO. 5 | COMMUNICATIONS OF THE ACM 69

contributed articles

inputs into garbled inputs for garbled
circuits or into encrypted inputs for
FHE schemes.

PKI is the core component of the
secure Internet infrastructure. Note, a
PKI system based on blockchain smart-
contract systems may be established to
replace the current certificate author-
ity (CA)-based PKI systems for Internet
infrastructure. It depends on the cor-
responding cost and security charac-
teristics for one to consider whether to
use the current CA-based PKI system
or blockchain-based PKI system for
Internet infrastructure.

Acknowledgment
The work reported in this article is
supported by Qatar Foundation Grant
NPRP X-063-1-014.�

References
	 1.	 Ahmed, M., Wei, J., Wang, Y., and Al-Shaer, E. A

poisoning attack against cryptocurrency mining pools.
In Data Privacy Management, Cryptocurrencies and
Blockchain Technology. Springer, 2018, 140–154.

	 2.	 Androulaki, E., Karame, G.O., Roeschlin, M.,
Scherer, T., and Capkun, S. Evaluating user privacy
in Bitcoin. In Proceedings of the International
Conference on Financial Cryptography and Data
Security. Springer, 2013, 34–51.

	 3.	 Blum, M. Coin flipping by telephone a protocol for
solving impossible problems. ACM SIGACT News,
15, 1 (1983), 23–27.

	 4.	 Chaum, D. Blind signatures for untraceable payments.
In Proceedings of Crypto. Springer, 1983, 199–203.

	 5.	 Chaum, D., Fiat, A., Naor, M. Untraceable electronic
cash. In Proceedings of Crypto. Springer-Verlag, New
York, 1990, 319–327.

	 6.	 Cleve, R. Limits on the security of coin flips
when half the processors are faulty. In Proceedings
of 18th ACM Symposium on Theory of Computing.
ACM, 1986, 364–369.

	 7.	 Eyal, I., Sirer, E.G. Majority is not enough: Bitcoin
mining is vulnerable. In Proceedings of the
International Conference on Financial Cryptography
and Data Security. Springer, 2014, 436–454.

	 8.	 Moore, T. and Christin, N. Beware the middleman:
Empirical analysis of Bitcoin-exchange risk. In
Proceedings of the International Conference on
Financial Cryptography and Data Security. Springer,
2013, 25–33.

	 9.	 Moser, M., Bohme, R., and Breuker, D. An inquiry
into money-laundering tools in the Bitcoin ecosystem.
In eCrime Researchers Summit. IEEE, 2013, 1–14.

	10.	 Nakamoto, S. Bitcoin: A peer-to-peer electronic cash
system, 2008; https://bitcoin.org/bitcoin.pdf

	11.	 Ober, M., Katzenbeisser, S., and Hamacher, K.
Structure and anonymity of the Bitcoin transaction
graph. Future Internet 5, 2 (2013), 237–250.

	12.	 Rivest, R.L. and Shamir, A. PayWord and MicroMint:
Two simple micropayment schemes. In Proceedings
of the International Workshop on Security Protocols.
Springer, 1996, 69–87.

	13.	 Trump, D. I will release my tax returns
when Obama releases his birth certificate. 2011;
http://www.businessinsider.com/donald-trump-
tax-returns-obama-birth-certificate-2011-4

Yongge Wang (Yongge.wang@gmail.com) is in the
Department of Software and Information Systems,
University of North Carolina, Charlotte, NC, USA.

Qutaibah M. Malluhi (qmalluhi@qu.edu.qa) is in the
Department of Computer Science and Engineering,
Qatar University, Qatar.

© 2019 ACM 0001-0782/19/5

Theorem 4.2 shows it is infeasible
to implement an Obama-Trump smart
contract on blockchains. On the other
hand, if a trapdoor function exists, then
coin-flipping protocols (see Blum3 and
Cleve6) can be used to design weakly
secure Obama-Trump smart contracts
over blockchain.

Smart Contract Scenarios
The results in the preceding section
show that not all contracts can be imple-
mented as a blockchain smart contract.
However, blockchain smart contracts
could do better than other technologies
in many practical contract scenarios
where the contract execution process
takes a significant amount of time. For
example, insurance-claim process-
ing involves many manual operations
and much human action. Blockchain
smart contracts could help reduce
these manual steps by including some
measurable parameters, such as earth-
quake magnitude, within the con-
tracts. When an insured event occurs,
the event information is converted
to smart contract input parameters,
and the claim process is triggered
immediately.

Smart contracts can also be used in
many other scenarios where a lot of
paperwork and coordination are
required. For example, in trade finance,
the process of letter-of-credit issuance
requires numerous physical docu-
ments. As another example, in the
rental-property application process,
the applicant needs to submit numer-
ous documents, including income
certificates, rental credit reports, evic-
tion history, and other related docu-
ments to the landlord. Note the user
may need to submit identical docu-
ments to both the trade-finance ven-
dor and the landlord at different
times if the user is involved in both
processes. It is thus preferred for a
user to keep all these documents in a
central blockchain account and sub-
mit only appropriate reference num-
bers to the documents for each
application. The system should be
designed in such a way that the user
needs only to disclose minimal man-
datory information to each vendor
for a specific application. For exam-
ple, for a user to apply for a rental
property, the system should disclose
only user income, rental credit

reports, and eviction reports to the
landlord. The system should not dis-
close user eviction reports to the trade
finance organization.

As information stored in the block-
chain is publicly accessible, it is neces-
sary to encrypt user documents in the
user account. We may assume each
document in a user profile has been
certified by a related agency that is also
a user account in the blockchain. As an
example, the user Alice’s master profile
may look like this:

Alice Profile: DOC1, DOC2, ...

where each document DOCi is in the
following format:

DOCi = S.Enc
K
 (F, Sign

Agency.pk
(F)),

P.Enc
Alice.pk

(K), Agency.pk

where the document F is certified by
the agency with a digital signature
Sign

Agency.pk
(F) using the agency public

key Agency.pk. The certified docu-
ment (F, Sign

Agency.pk
(F) ) is then

encrypted using a symmetric encryption
scheme S.Enc

K
(·) with a key K. The sym-

metric key K is encrypted using a pub-
lic encryption scheme P.Enc

Alice.pk
(·)

with Alice’s public key Alice.pk.
In order for Alice to disclose the cer-
tified document (F, Sign

Agency.pk
(F) ) to

the landlord, Alice needs to provide the
document reference number DOCi and
the symmetric key K to the landlord.

Other Sophisticated
Smart Contracts
A blockchain smart contract is gener-
ally written using a blockchain script-
ing language, such as Solidity. The
algorithms within the smart contract
are thus available for public review. In
some applications, such as the insur-
ance industry, the vendor may not
want the public to learn the claim-pro-
cessing algorithms used in the smart
contract. Software obfuscation tech-
niques may be used by smart contracts
to hide these algorithms. Indeed,
using reusable garble circuit tech-
niques or fully homomorphic encryp-
tion (FHE) techniques are preferred
for writing smart contracts in these
scenarios. However, there are chal-
lenges in employing garbled circuits
or FHE techniques in these scenarios,
as it is difficult to convert plaintext

